ELLA: An Efficient Lifelong Machine
Learning Algorithm

Paul Ruvolo Eric Eaton

Bryn Mawr College
Computer Science Department

This work was supported by ONR Grant #N00014-11-1-0139



lifelong learning setting

m ELLA is a method for online multi-task learning in a

Transfer = Batch Multi-
Learning Task Learning
Optimizes Target
performance over task All tasks
Learns tasks Yes, Very
consecutively efficiently | inefficiently
Computational cost Low High

Lifelong learning includes elements of both
transfer and multi-task learning

Paul Ruvolo & Eric Eaton ELLA: An Efficient Lifelong Learning Algorithm




m ELLA’s Capabilities:
1. Learns tasks consecutively

2. Transfers knowledge from
previous tasks

3. Optimizes performance
over all tasks

m ELLA is a method for online multi-task learning in a
lifelong learning setting

Transfer = Batch Multi-
Learning Task Learning
Optimizes Target
performance over task All tasks
Learns tasks Yes, Very
consecutively efficiently | inefficiently
Computational cost Low High

Lifelong learning includes elements of both
transfer and multi-task learning

4. Theoretical guarantees on performance and convergence

Paul Ruvolo & Eric Eaton ELLA: An Efficient Lifelong Learning Algorithm




m ELLA’s Capabilities:
1. Learns tasks consecutively

2. Transfers knowledge from
previous tasks

3. Optimizes performance
over all tasks

m ELLA is a method for online multi-task learning in a
lifelong learning setting

Transfer = Batch Multi-
Learning Task Learning
Optimizes Target
performance over task All tasks
Learns tasks Yes, Very
consecutively efficiently | inefficiently
Computational cost Low High

Lifelong learning includes elements of both
transfer and multi-task learning

4. Theoretical guarantees on performance and convergence

ELLA has equivalent accuracy to batch multi-task learning,

but is over 1,000x faster and can learn online
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Task Structure Model
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Efficient Lifelong Learning

Objective Function:
T
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t=1

Problem 1: The complexity of the inner summation scales linearly
with the number of training instances

Our solution: Replace the model-fit-to-data term with the second-

order Taylor expansion around the optimal single task model:
T

gr (L) = m(gl{HH“ Ls<t>|r%<t>+uus<t>u1}+A||L||‘.%

where, 0 — arg wming 571", £(f(2(":6). /")
D@ is % the Hessian of the single-task loss evaluated at o(t)
Ix]|5 = x'Dx
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Efficient Lifelong Learning

Objective Function:
T
1

gr (L) = rggy{uw —~Ls" B0 +u||s<t>ul} + AL

Problem 2: The complexity of the outer summation grows linearly
with the number of tasks T’

Our solution: Optimize S(t) only when training on task £ and not on
any other tasks

m We prove that the penalty for not re-optimizing the other s(t)’s
vanishes as 1’ gets large
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Efficient Lifelong Learning Algorithm

MTL Objective Function:
T n
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ELLA: Given a new task ¢,

1. Train a single-task model @(%) for task ¢
2. Reconstruct (%) in the current basis (LASSO)

s « argmin ¢(L,,, s, 0" D®)

s(t)
3. Update the basis
L1 < argmin A[L|[E + = Z (L s gt) D(t))

\ =1 J
Y
in practice, L is constructed incrementally with each task

where ¢(L,s,0,D) = p|s||, + |0 — Ls|3

D® is % the Hessian of the single-task loss evaluated at o)
x5 = x"Dx
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Efficient Lifelong Learning

m ELLA’s per-task computational complexity is:
1. Independent of the number of tasks T’

2. Independent of the numbers of training instances for
previous tasks

m We show a variety of theoretical guarantees on
ELLA’s performance and convergence

m Online dictionary learning for sparse coding
[Mairal et al IcML'09] IS @ special case of ELLA
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Applications

Facial Expression Recognition: identify presence of facial
action units (#5 upper lid raiser, #10 upper lip raiser, #12 lip corner pull)

100 felits:eﬁ bias E I— I—A

NS

21 Classification Tasks: 2,880 Gabor Features: Models
7 subjects * 2 spatial scales
* 3 action units * 4 orientations

* 450-999 images each ¢ 576 locations



Applications

Facial Expression Recognition: identify presence of facial
action units (#5 upper lid raiser, #10 upper lip raiser, #12 lip corner pull)

100 features + bias E L I—A

21 Classification Tasks 2,880 Gabor Features Models

Land Mine Detection from  Exam Score Prediction for
radar images [xue et al. 2007] London schools [kumar et al. 2012]

139 Regression Tasks:

* 139 schools

* 15,362 students total

* 4 school-specific features
* 3 student-specific features
* Exam year + bias term

29

* 29 regions
* 2 terrain types 3
* 14,820 instances total ¥«




ELLA achieves nearly identical accuracy to batch MTL:

Empirical Results

Problem Batch MTL ELLA Relative | OMTL Relative | STL Relative
Dataset Type Accuracy Accuracy Accuracy Accuracy
Land Mine | Classification | 0.7802 4+ 0.013 (AUC) 99.73 £ 0.7% 82.2 £ 3.0% 97.97 £ 1.5%
Facial Expr. | Classification | 0.6577 4+ 0.021 (AUC) 99.37 £ 3.1% 97.58 + 3.8% 97.34 £+ 3.9%
Syn. Data Regression | —1.084 +0.006 (-rMSE) | 97.74 +2.7% N/A 92.91 + 1.5%
London Sch. | Regression | —10.10+0.066 (-rMSE) | 98.90 + 1.5% N/A 97.20 + 0.4%

Batch MTL = [Kumar & Daumé Ill, ICML’12]

Paul Ruvolo & Eric Eaton

OMTL = [Saha et al, AISTATS’11]
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Empirical Results

ELLA achieves nearly identical accuracy to batch MTL:

Problem Batch MTL ELLA Relative | OMTL Relative | STL Relative
Dataset Type Accuracy Accuracy Accuracy Accuracy
Land Mine | Classification | 0.7802 4+ 0.013 (AUC) 99.73 £ 0.7% 82.2 £ 3.0% 97.97 £ 1.5%
Facial Expr. | Classification | 0.6577 4+ 0.021 (AUC) 99.37+3.1% 97.58 + 3.8% 97.34 + 3.9%
Syn. Data Regression | —1.084 +0.006 (-rMSE) | 97.74 +2.7% N/A 92.91 + 1.5%
London Sch. | Regression | —10.10+0.066 (-rMSE) | 98.90 + 1.5% N/A 97.20 + 0.4%

While obtaining speedups of:
m over 1,000x for learning all tasks
Batch ELLA ELLA OMTL OMTL STL STL
Runtime | All Tasks New Task All Tasks | New Task All Tasks New Task

Dataset (seconds) | (speedup) (speedup) (speedup) | (speedup) (speedup) (speedup)
Land Mine 231+6.2 | 1,350458 39,150+1,682 2240.88 638+£25 3,3424+409 96,918+11,861
Facial Expr. | 2,200492 | 1,8284+100 | 38,4004+2,100 | 948465 19,90041,360 8,5114+1,107 | 178,719+23,239
Syn. Data | 1,300+141 | 5,026+685 | 502,600+68,500 N/A N/A 156,489+17,564 | 1.6E6+1.8E5
London Sch. | 715436 |2,7214225 |378,219431,275 N/A N/A 36,000£4,800 5.0E6+6.7E5
Batch MTL = [Kumar & Daumé Ill, ICML’12] OMTL = [Saha et al, AISTATS’11]
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Empirical Results

ELLA achieves nearly identical accuracy to batch MTL:

Problem Batch MTL ELLA Relative | OMTL Relative | STL Relative
Dataset Type Accuracy Accuracy Accuracy Accuracy
Land Mine | Classification | 0.7802 4+ 0.013 (AUC) 99.73 £ 0.7% 82.2 + 3.0% 97.97 £ 1.5%
Facial Expr. | Classification | 0.6577 4+ 0.021 (AUC) 99.37+3.1% 97.58 + 3.8% 97.34 + 3.9%
Syn. Data Regression | —1.084 +0.006 (-rMSE) | 97.74 +2.7% N/A 92.91 + 1.5%
London Sch. | Regression | —10.10+0.066 (-rMSE) | 98.90 + 1.5% N/A 97.20 + 0.4%
While obtaining speedups of:
m over 1,000x for learning all tasks
m over 38,000x for learning each new task
Batch ELLA ELLA OMTL OMTL STL STL
Runtime | All Tasks New Task All Tasks | New Task All Tasks New Task
Dataset (seconds) | (speedup) (speedup) (speedup) | (speedup) (speedup) (speedup)
Land Mine 23146.2 | 1,350+58 39,1504+1,682 | 22+0.88 638+25 3,342+409 96,9184+11,861
Facial Expr. | 2,200£92 | 1,828+100 38,40042,100 | 948465 19,900+1,360 8,5114+1,107 | 178,719+23,239
Syn. Data | 1,3004+141 | 5,0264+685 §502,600+68,500 N/A N/A 156,489+17,564 | 1.6E6+1.8E5
London Sch. | 715436 |2,721+225 §378,219431,275 N/A N/A 36,000+4,800 5.0E6+6.7E5
Batch MTL = [Kumar & Daumé Ill, ICML’12] OMTL = [Saha et al, AISTATS’11]
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Reverse Transfer in ELLA
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Thank you!

Code for ELLA is available at cs.brynmawr.edu/~eeaton

ELLA has equivalent accuracy to batch multi-task learning,

but is over 1,000x faster and can learn online



