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Consider a robot tasked with learning to recognize
many objects over an extended time period
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Lifelong learning enables the agent to build
continually on its knowledge
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Task Selection Problem

previously learned tasks unknown future tasks

Time @ @ ®

_______________

current time

Goal: ensure the best
possible performance
on future tasks
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Task Selection Problem

previously learned tasks unknown future tasks
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Which task should it ((EHRED,

choose to learn next?
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m We present two methods for active task selection
toward general knowledge acquisition:

®m Information Maximization approach
m Diversity approach
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m We present two methods for active task selection
toward general knowledge acquisition:

®m Information Maximization approach
m Diversity approach

m We show how to focus InfoMax selection toward a
specific future task for targeted knowledge acquisition
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m We present two methods for active task selection
toward general knowledge acquisition:

®m Information Maximization approach
m Diversity approach

m We show how to focus InfoMax selection toward a
specific future task for targeted knowledge acquisition

Active task selection accelerates knowledge

acquisition in a lifelong learning setting
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m Efficient Lifelong Learning Algorithm
m Active Task Selection

m Targeted Active Task Selection
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Efficient Lifelong Learning Algorithm

[Ruvolo & Eaton, ICML’13]

lifelong learning setting

m ELLA is a method for online multi-task learning in a

Transfer = Batch Multi-
Learning Task Learning
Optimizes Target
performance over task All tasks
Learns tasks Yes, Very
consecutively efficiently | inefficiently
Computational cost Low High

Lifelong learning includes elements of both
transfer and multi-task learning
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Efficient Lifelong Learning Algorithm

[Ruvolo & Eaton, ICML’13]

m ELLA is a method for online multi-task learning in a
lifelong learning setting

Transfer Batch Multi-

m ELLA’s CapabiliﬁES: Learning = Task Learning
. Optimizes Target
1. Learns tasks consecutively performance over |  task Al el
Learns tasks Yes, Very
2. Transfers knowledge from consecutively efficiently | inefficiently
previous tasks Computational cost Low High
3. Complexity independent Lifelong learning includes elements of both

transfer and multi-task learning
of the number of tasks

4. Theoretical guarantees on performance and convergence
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Efficient Lifelong Learning Algorithm

[Ruvolo & Eaton, ICML’13]

m ELLA is a method for online multi-task learning in a
lifelong learning setting

Transfer Batch Multi-

m ELLA’s CapabiliﬁES: Learning = Task Learning
. Optimizes Target
1. Learns tasks consecutively performance over |  task Al el
Learns tasks Yes, Very
2. Transfers knowledge from consecutively efficiently | inefficiently
previous tasks Computational cost Low High
3. Complexity independent Lifelong learning includes elements of both

transfer and multi-task learning
of the number of tasks

4. Theoretical guarantees on performance and convergence

ELLA has equivalent accuracy to batch multi-task learning,

but is over 1,000x faster and can learn online
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Lifelong Machine Learning
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Lifelong Machine Learning

previously learned tasks
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current
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previously
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3.) New
knowledge
is stored for
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Task Structure Model

fOx) = f(x;0%) 8" e R ot

m The parameters 0 are linear
combinations of a shared basis L
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Task Structure Model

m ELLA fits a parametric model for each task ¢
fUx) = f(x;00) 0" e R
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m The parameters 0 are linear
combinations of a shared basis L

Coefficients

_H EHE =l

() — 1,5(%) dxk (1) k | |
0() = Ls LeR™, s eR e o
Knowledge
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Efficient Lifelong Learning Algorithm

[Ruvolo & Eaton, ICML’13]

MTL Objective Function:
T n

- %Zm{i >oL(f(="Ls®) u?) +uns<t>n1} +AL?
= 1=1

ELLA: Given a new task ¢,

1. Train a single-task model @(%) for task ¢
2. Reconstruct (%) in the current basis (LASSO)

s « argmin ¢(L,,, s, 0" D®)

s(t)
3. Update the basis
L1 < argmin A[L|[E + = Z (L s gt) D(t))

\ — y

Y
in practice, L is constructed incrementally with each task

where ¢(L,s,0,D) = p|s||, + |0 — Ls|3

D® is % the Hessian of the single-task loss evaluated at o)
x5 = x"Dx
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Efficient Lifelong Learning Algorithm

[Ruvolo & Eaton, ICML’13]

m ELLA’s per-task computational complexity is:
1. Independent of the number of tasks T’

2. Independent of the numbers of training instances for
previous tasks

m We have a variety of theoretical guarantees on
ELLA’s performance and convergence

m Online dictionary learning for sparse coding
[Mairal et al IcML'09] IS @ special case of ELLA
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ELLA achieves nearly identical accuracy to batch MTL:

Summary of Previous Results

[Ruvolo & Eaton, ICML’13]

Problem Batch MTL ELLA Relative | OMTL Relative | STL Relative
Dataset Type Accuracy Accuracy Accuracy Accuracy
Land Mine | Classification | 0.7802 4+ 0.013 (AUC) 99.73 £ 0.7% 82.2 £ 3.0% 97.97 £ 1.5%
Facial Expr. | Classification | 0.6577 4+ 0.021 (AUC) 99.37 £ 3.1% 97.58 + 3.8% 97.34 £+ 3.9%
Syn. Data Regression | —1.084 +0.006 (-rMSE) | 97.74 +2.7% N/A 92.91 + 1.5%
London Sch. | Regression | —10.10+0.066 (-rMSE) | 98.90 + 1.5% N/A 97.20 + 0.4%

Batch MTL = [Kumar & Daumé Ill, ICML’12]

Paul Ruvolo & Eric Eaton

OMTL = [Saha et al, AISTATS’11]

Active Task Selection for Lifelong Machine Learning
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Summary of Previous Results

[Ruvolo & Eaton, ICML’13]

ELLA achieves nearly identical accuracy to batch MTL:

Problem Batch MTL ELLA Relative | OMTL Relative | STL Relative
Dataset Type Accuracy Accuracy Accuracy Accuracy
Land Mine | Classification | 0.7802 4+ 0.013 (AUC) 99.73 £ 0.7% 82.2 £ 3.0% 97.97 £ 1.5%
Facial Expr. | Classification | 0.6577 4+ 0.021 (AUC) 99.37+3.1% 97.58 + 3.8% 97.34 + 3.9%
Syn. Data Regression | —1.084 +0.006 (-rMSE) | 97.74 +2.7% N/A 92.91 + 1.5%
London Sch. | Regression | —10.10+0.066 (-rMSE) | 98.90 + 1.5% N/A 97.20 + 0.4%

While obtaining speedups of:
m over 1,000x for learning all tasks
Batch ELLA ELLA OMTL OMTL STL STL
Runtime | All Tasks New Task All Tasks | New Task All Tasks New Task

Dataset (seconds) | (speedup) (speedup) (speedup) | (speedup) (speedup) (speedup)
Land Mine 231+6.2 | 1,350458 39,150+1,682 2240.88 638425 3,3424+409 96,918+11,861
Facial Expr. | 2,2004+92 | 1,8284+100 | 38,400+2,100 |948465 19,90041,360 8,5114+1,107 | 178,719+23,239
Syn. Data | 1,300+141 | 5,026+685 | 502,600+68,500 N/A N/A 156,489+17,564 | 1.6E6+1.8E5
London Sch. | 715436 |2,7214225 |378,219431,275 N/A N/A 36,000£4,800 5.0E6+6.7E5
Batch MTL = [Kumar & Daumé Ill, ICML’12] OMTL = [Saha et al, AISTATS’11]
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Summary of Previous Results

[Ruvolo & Eaton, ICML’13]

ELLA achieves nearly identical accuracy to batch MTL:

Problem Batch MTL ELLA Relative | OMTL Relative | STL Relative
Dataset Type Accuracy Accuracy Accuracy Accuracy
Land Mine | Classification | 0.7802 4+ 0.013 (AUC) 99.73 £ 0.7% 82.2 + 3.0% 97.97 £ 1.5%
Facial Expr. | Classification | 0.6577 4+ 0.021 (AUC) 99.37+3.1% 97.58 + 3.8% 97.34 + 3.9%
Syn. Data Regression | —1.084 +0.006 (-rMSE) | 97.74 +2.7% N/A 92.91 + 1.5%
London Sch. | Regression | —10.10+0.066 (-rMSE) | 98.90 + 1.5% N/A 97.20 + 0.4%
While obtaining speedups of:
m over 1,000x for learning all tasks
m over 38,000x for learning each new task
Batch ELLA ELLA OMTL OMTL STL STL
Runtime | All Tasks New Task All Tasks | New Task All Tasks New Task
Dataset (seconds) | (speedup) (speedup) (speedup) | (speedup) (speedup) (speedup)
Land Mine 23146.2 | 1,350+58 39,1504+1,682 | 22+0.88 638+25 3,342+409 96,9184+11,861
Facial Expr. | 2,200£92 | 1,828+100 38,40042,100 | 948465 19,900+1,360 8,5114+1,107 | 178,719+23,239
Syn. Data | 1,3004+141 | 5,0264+685 §502,600+68,500 N/A N/A 156,489+17,564 | 1.6E6+1.8E5
London Sch. | 715436 |2,721+225 §378,219431,275 N/A N/A 36,000+4,800 5.0E6+6.7E5
Batch MTL = [Kumar & Daumé Ill, ICML’12] OMTL = [Saha et al, AISTATS’11]
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Active Task Selection

p
Time e o ® t_z t-1 ‘l t l
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3.) New
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Active Task Selection
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Time © @ @

previously learned tasks lecrl’eknt ‘ candidate task pool future tasks
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1.) Tasks are learned
consecutively labeled data
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3.) New
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transferred from learned model f;  fyture use 5.) Agent chooses

the next task to
learn from the
candidate pool

previously
learned tasks 4.) Existing
knowledge

is refined

Lifelong Learning System




Information Maximization Approach

m ldea: Select the task that maximizes the information gain on LL

current information available

v
tnext = arg min // p(0®") =u, DW :V|Im)><H[L|9<t> =u,DW :V,Im} du dV
t
\

J J
Y Y
probability of model for task ¢ differential entropy of LL
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Information Maximization Approach

m ldea: Select the task that maximizes the information gain on LL

current information available

v
tnext = arg min / / p(0®") =u, DW :V|Im)><H[L|9<t> =u,DW :V,Im} du dV
t
\

J \ J
Y Y

probability of model for task ¢ differential entropy of LL

m To compute this efficiently, we

1. Approximate the model probability using a Dirac delta
function around the optimal single task model (8, D®)

2. Use a Laplace approximation of L’s density as a multivariate
Gaussian for the entropy term
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Information Maximization Approach

m ldea: Select the task that maximizes the information gain on LL

current information available

v
thext = arg mm// () =u,DW V|Im)><H{L|H(t> =u, D :V,Zm} du dV

J \ J
Y

probability of model for task ¢ differential entropy of LL

m To compute this efficiently, we

1. Approximate the model probability using a Dirac delta
function around the optimal single task model (8, D®)

2. Use a Laplace approximation of L’s density as a multivariate
Gaussian for the entropy term

m This yields the following InfoMax task selection rule:
thext = arg min  In ‘2“)’
tE{T+]— pool}

> = Cov [Vec( )0 =61 DO =D®), Im}
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Diversity Approach

m Ildea: Focus on candidate tasks that are poorly
encoded by the current L

m This encourages L to serve as an effective basis for a
variety of tasks
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Diversity Approach

m Ildea: Focus on candidate tasks that are poorly
encoded by the current L

m This encourages L to serve as an effective basis for a
variety of tasks

m Select the candidate task that the current L is doing
the worst job solving:

bnext = argmax  min £ (Lm,sjé(t)j]j(t))
te{T+1,....Tpo01 } S /

Y
loss in reconstructing model for task ¢
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Diversity Approach

m Ildea: Focus on candidate tasks that are poorly
encoded by the current L

m This encourages L to serve as an effective basis for a
variety of tasks

m Select the candidate task that the current L is doing
the worst job solving:

bnext = argmax  min £ (Lm,sjé(t)j]j(t))
te{T+1,....Tpo01 } S /

Y
loss in reconstructing model for task ¢

m We also explore a probabilistic version (Diversity++) that
chooses a task proportionally to its reconstruction loss
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Applications

Facial Expression Recognition: identify presence of facial
action units (#5 upper lid raiser, #10 upper lip raiser, #12 lip corner pull)

100 felits:eﬁ bias E I— I—A

NS

21 Classification Tasks: 2,880 Gabor Features: Models
7 subjects * 2 spatial scales
* 3 action units * 4 orientations

* 450-999 images each ¢ 576 locations
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Applications

Facial Expression Recognition: identify presence of facial
action units (#5 upper lid raiser, #10 upper lip raiser, #12 lip corner pull)

100 features + bias E L I—A

21 Classification Tasks 2,880 Gabor Features Models

Land Mine Detection from  Exam Score Prediction for
radar images [xue et al. 2007] London schools [kumar et al. 2012]

139 Regression Tasks:

* 139 schools

* 15,362 students total

* 4 school-specific features
* 3 student-specific features
* Exam year + bias term

29

* 29 regions
* 2 terrain types 3
* 14,820 instances total ¥«




Active Task Selection Results

Land Mine Data Facial Expression Data London Schools Data
: : : 25 : : : : 50— : : : ‘ :
50! —Diversity | — Diversity — Diversity
o ---Diversity++| 3 20! ---Diversity++| 9 - - -Diversity++
§ 40+ -~ InfoMax ‘5' -~ InfoMax ‘g 40 ~ InfoMax
3 g 15 g ,
@ 30- o ' o 3g-
2 L
= Eos e T = 20
% 104~ % %
- :I, 0 -1 10+
2 0 2 S
10 S 0
- 0.66 0.69 0.72 0.75 0.78 0.54 0.56 0.58 0.6 0.62 0.64 -11.2 -11 -10.8 -10.6 -10.4 -10.2
Performance (AROC) Performance (AROC) Performance (—-rMSE)
. o
Plots show the relevant Average Task Reduction (%)

.. . Data Set InfoMax | Diversity | Diversity++
efficiency (in #tasks) as Land Mine | 5.143.7 | 29.4%4.1 | 18.1£3.0
compared to random Facial Expr. | 0.542.6 | 14.6£5.1 | 9.944.0

. Syn. Data 10.2£7.9 | 20.2+6.7 | 17.0+5.9
task selection London Sch. | 29.8£6.8 | 21.0+3.1 [26.243.1
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Targeted InfoMax Task Selection

m The general InfoMax selection method tries to
maximize the information gain on L

m Focuses on an unknown set of future tasks

m What if we are working toward learning a
specific target set of future tasks?

m Can improve performance by targeting InfoMax
toward those tasks
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Targeted Task Selection Results

Land Mine Data Facial Expression Data London Schools Data
40 | ;Dive}sity | 2 | | ;Diversify | 50" | | | —biversiiy
o - - -Diversity++ kS - - -Diversity++ kS - - -Diversity++
5 30/ - - Targeted InfoMax| -5 20/ - - Targeted InfoMax| -5 - - Targeted InfoMax
o - InfoMax = - InfoMax = 40/ - InfoMax I
@ 20, X 15 -
° ) @ 30
% 10}-- e 10 - % 20!
10066 068 07 072 074 076 078 0 056 058 06 0.82 0.4 0212 —11 108 -106 -104 102
Performance (AROC) Performance (AROC) Performance (-rMSE)
Plots show the relevant Average Task Reduction (%)
. . . Targeted
efficien Cy ( In #tas kS) dsS Data Set InfoMax | InfoMax | Diversity | Diversity++
combared to random Land Mine |17.942.7| -1.7£3.0|14.943.2 8.5+2.5
P . Facial Expr. 7.8+0.7| 2.6+0.8 | 10.0+2.5 2.7+1.3
task selection Syn. Data | 38.447.5|11.4+5.6 [ 19.944.9 | 16.64+5.0
London Sch. | 26.9+1.8 | 20.1+2.8 | 22.34+1.1 | 16.4+2.7




Conclusions

m We presented two approaches to active task
selection in a lifelong learning setting

m Diversity approach is cheap and effective
m InfoMax works well for targeted knowledge acquisition

m Future work: integrating with instance-based active
learning and guidance from a teacher

Active task selection accelerates knowledge

acquisition in a lifelong learning setting
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Active Task Selection for Lifelong Machine Learning

Paul Ruvolo & Eric Eaton

Thank you!
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Code for ELLA & active task selection is available at
cs.brynmawr.edu/~eeaton

This work was supported by
ONR Grant #N00014-11-1-0139



