

Active Task Selection for Lifelong Machine Learning

Paul Ruvolo Olin College

Eric Eaton Univ. of Pennsylvania

This work was supported by ONR Grant #N00014-11-1-0139

Consider a robot tasked with learning to recognize many objects over an extended time period

Paul Ruvolo & Eric Eaton

Paul Ruvolo & Eric Eaton

Lifelong learning enables the agent to build continually on its knowledge

Task Selection Problem

Task Selection Problem

Task Selection Problem

Introduction

- We present two methods for active task selection toward general knowledge acquisition:
 - Information Maximization approach
 - Diversity approach

Introduction

- We present two methods for active task selection toward general knowledge acquisition:
 - Information Maximization approach
 - Diversity approach
- We show how to focus InfoMax selection toward a specific future task for targeted knowledge acquisition

Introduction

- We present two methods for active task selection toward general knowledge acquisition:
 - Information Maximization approach
 - Diversity approach
- We show how to focus InfoMax selection toward a specific future task for targeted knowledge acquisition

Active task selection accelerates knowledge acquisition in a lifelong learning setting

Outline

Introduction

- Efficient Lifelong Learning Algorithm
- Active Task Selection
- Targeted Active Task Selection

Outline

Introduction

Efficient Lifelong Learning Algorithm

- Active Task Selection
- Targeted Active Task Selection

ELLA is a method for online multi-task learning in a lifelong learning setting

	Transfer Learning	Batch Multi- Task Learning
Optimizes performance over	Target task	All tasks
Learns tasks consecutively	Yes, efficiently	Very inefficiently
Computational cost	Low	High

Lifelong learning includes elements of both transfer and multi-task learning

ELLA is a method for online multi-task learning in a lifelong learning setting

ELLA's Capabilities:

- 1. Learns tasks consecutively
- 2. Transfers knowledge from previous tasks
- 3. Complexity independent of the number of tasks

	Transfer Learning	Batch Multi- Task Learning
Optimizes performance over	Target task	All tasks
Learns tasks consecutively	Yes, efficiently	Very inefficiently
Computational cost	Low	High

Lifelong learning includes elements of both transfer and multi-task learning

4. Theoretical guarantees on performance and convergence

- ELLA is a method for online multi-task learning in a lifelong learning setting
- **ELLA's Capabilities**:
 - 1. Learns tasks consecutively
 - 2. Transfers knowledge from previous tasks
 - 3. Complexity independent of the number of tasks

	Transfer Learning	Batch Multi- Task Learning
Optimizes performance over	Target task	All tasks
Learns tasks consecutively	Yes, efficiently	Very inefficiently
Computational cost	Low	High

Lifelong learning includes elements of both transfer and multi-task learning

4. Theoretical guarantees on performance and convergence

ELLA has equivalent accuracy to batch multi-task learning, but is over 1,000x faster and can learn online

Paul Ruvolo & Eric Eaton

Task Structure Model

- ELLA fits a parametric model for each task t $f^{(t)}(\mathbf{x}) = f(\mathbf{x}; \boldsymbol{\theta}^{(t)}) \quad \boldsymbol{\theta}^{(t)} \in \mathbb{R}^d$ $\boldsymbol{\theta}^{(t)}$
- The parameters $\boldsymbol{\theta}^{(t)}$ are linear combinations of a shared basis L $\boldsymbol{\theta}^{(t)} = \mathbf{L}\boldsymbol{s}^{(t)} \qquad \mathbf{L} \in \mathbb{R}^{d \times k}, \, \boldsymbol{s}^{(t)} \in \mathbb{R}^{k}$

Task Structure Model

- ELLA fits a parametric model for each task t $f^{(t)}(\mathbf{x}) = f(\mathbf{x}; \boldsymbol{\theta}^{(t)}) \quad \boldsymbol{\theta}^{(t)} \in \mathbb{R}^d$ $\boldsymbol{\theta}^{(t)}$
- The parameters $\boldsymbol{\theta}^{(t)}$ are linear combinations of a shared basis L $\boldsymbol{\theta}^{(t)} = \mathbf{L}\boldsymbol{s}^{(t)} \quad \mathbf{L} \in \mathbb{R}^{d \times k}, \, \boldsymbol{s}^{(t)} \in \mathbb{R}^{k}$

Multi-Task Learning Objective Fn:

$$e_{T} (\mathbf{L}) = \frac{1}{T} \sum_{t=1}^{T} \min_{\mathbf{s}^{(t)}} \left\{ \frac{1}{n_{t}} \sum_{i=1}^{n_{t}} \mathcal{L} \left(f \left(\mathbf{x}_{i}^{(t)}; \mathbf{L}\mathbf{s}^{(t)} \right), y_{i}^{(t)} \right) + \mu \|\mathbf{s}^{(t)}\|_{1} \right\} + \lambda \|\mathbf{L}\|_{\mathsf{F}}^{2}$$
#tasks seen so far
model fit to data sparsity complexity

Paul Ruvolo & Eric Eaton

ELLA: Given a new task t,

 $e_T \left(\mathbf{L} \right) = \frac{1}{T} \sum_{t=1}^T \min_{\mathbf{s}^{(t)}} \left\{ \frac{1}{n_t} \sum_{i=1}^{n_t} \mathcal{L} \left(f \left(\mathbf{x}_i^{(t)}; \mathbf{L}\mathbf{s}^{(t)} \right), y_i^{(t)} \right) + \mu \| \mathbf{s}^{(t)} \|_1 \right\} + \lambda \| \mathbf{L} \|_{\mathsf{F}}^2$

MTL Objective Function:

- 1. Train a single-task model $oldsymbol{ heta}^{(t)}$ for task t
- 2. Reconstruct $\theta^{(t)}$ in the current basis (LASSO)

$$\boldsymbol{s}^{(t)} \leftarrow rg\min_{\boldsymbol{s}^{(t)}} \ell(\mathbf{L}_m, \boldsymbol{s}^{(t)}, \boldsymbol{\theta}^{(t)}, \boldsymbol{D}^{(t)})$$

3. Update the basis $\mathbf{L}_{m+1} \leftarrow \arg\min_{\mathbf{L}} \lambda \|\mathbf{L}\|_{\mathsf{F}}^2 + \frac{1}{T} \sum_{t=1}^T \ell\left(\mathbf{L}, \boldsymbol{s}^{(t)}, \boldsymbol{\theta}^{(t)}, \boldsymbol{D}^{(t)}\right)$

in practice, ${\bf L}$ is constructed incrementally with each task

where
$$\ell (\mathbf{L}, \mathbf{s}, \boldsymbol{\theta}, \mathbf{D}) = \mu \|\mathbf{s}\|_1 + \|\boldsymbol{\theta} - \mathbf{Ls}\|_{\mathbf{D}}^2$$

 $D^{(t)}$ is ½ the Hessian of the single-task loss evaluated at $\boldsymbol{\theta}^{(t)}$
 $\|\mathbf{x}\|_{\mathbf{D}}^2 = \mathbf{x}^{\top} \mathbf{D} \mathbf{x}$

Paul Ruvolo & Eric Eaton

ELLA's per-task computational complexity is:

- 1. Independent of the number of tasks T
- 2. Independent of the numbers of training instances for previous tasks
- We have a variety of theoretical guarantees on ELLA's performance and convergence
- Online dictionary learning for sparse coding [Mairal et al ICML'09] is a special case of ELLA

Summary of Previous Results [Ruvolo & Eaton, ICML'13]

ELLA achieves nearly identical accuracy to batch MTL:

	Problem	Batch MTL	ELLA Relative	OMTL Relative	STL Relative
Dataset	\mathbf{Type}	Accuracy	Accuracy	Accuracy	Accuracy
Land Mine	Classification	0.7802 ± 0.013 (AUC)	$99.73 \pm 0.7\%$	$82.2\pm3.0\%$	$97.97 \pm 1.5\%$
Facial Expr.	Classification	0.6577 ± 0.021 (AUC)	$99.37\pm3.1\%$	$97.58 \pm 3.8\%$	$97.34\pm3.9\%$
Syn. Data	Regression	-1.084 ± 0.006 (-rMSE)	$97.74 \pm 2.7\%$	N/A	$92.91 \pm 1.5\%$
London Sch.	Regression	-10.10 ± 0.066 (-rMSE)	$98.90 \pm 1.5\%$	N/A	$97.20 \pm 0.4\%$

Batch MTL = [Kumar & Daumé III, ICML'12]

OMTL = [Saha et al, AISTATS'11]

Paul Ruvolo & Eric Eaton

Summary of Previous Results [Ruvolo & Eaton, ICML'13]

ELLA achieves nearly identical accuracy to batch MTL:

	Problem	Batch MTL	ELLA Relative	OMTL Relative	STL Relative
Dataset	Type	Accuracy	Accuracy	Accuracy	Accuracy
Land Mine	Classification	0.7802 ± 0.013 (AUC)	$99.73 \pm 0.7\%$	$82.2\pm3.0\%$	$97.97 \pm 1.5\%$
Facial Expr.	Classification	0.6577 ± 0.021 (AUC)	$99.37\pm3.1\%$	$97.58 \pm 3.8\%$	$97.34\pm3.9\%$
Syn. Data	Regression	-1.084 ± 0.006 (-rMSE)	$97.74 \pm 2.7\%$	N/A	$92.91 \pm 1.5\%$
London Sch.	Regression	-10.10 ± 0.066 (-rMSE)	$98.90\pm1.5\%$	N/A	$97.20\pm0.4\%$

While obtaining speedups of:

over 1,000x for learning all tasks

	Batch Runtime	ELLA All Tasks	ELLA New Task	OMTL All Tasks	OMTL New Task	STL All Tasks	STL New Task
Dataset	(seconds)	(speedup)	$({f speedup})$	(speedup)	$({ m speedup})$	$({ m speedup})$	$({ m speedup})$
Land Mine	231 ± 6.2	$1,350\pm 58$	$39,150\pm1,682$	22 ± 0.88	638 ± 25	$3,342{\pm}409$	$96,918 \pm 11,861$
Facial Expr.	$2,200{\pm}92$	$1,828{\pm}100$	$38,\!400{\pm}2,\!100$	$948 {\pm} 65$	$19,900 \pm 1,360$	$8,511{\pm}1,107$	$178,719\pm23,239$
Syn. Data	$1,300{\pm}141$	$5,026{\pm}685$	$502,\!600{\pm}68,\!500$	N/A	N/A	$156,\!489{\pm}17,\!564$	$1.6\mathrm{E}6{\pm}1.8\mathrm{E}5$
London Sch.	715 ± 36	$2,721{\pm}225$	$378,219 \pm 31,275$	N/A	N/A	$36,000{\pm}4,800$	$5.0\mathrm{E}6{\pm}6.7\mathrm{E}5$

Batch MTL = [Kumar & Daumé III, ICML'12]

OMTL = [Saha et al, AISTATS'11]

Paul Ruvolo & Eric Eaton

Summary of Previous Results [Ruvolo & Eaton, ICML'13]

ELLA achieves nearly identical accuracy to batch MTL:

	Problem	Batch MTL	ELLA Relative	OMTL Relative	STL Relative
Dataset	Type	Accuracy	Accuracy	Accuracy	Accuracy
Land Mine	Classification	0.7802 ± 0.013 (AUC)	$99.73 \pm 0.7\%$	$82.2\pm3.0\%$	$97.97 \pm 1.5\%$
Facial Expr.	Classification	0.6577 ± 0.021 (AUC)	$99.37\pm3.1\%$	$97.58 \pm 3.8\%$	$97.34\pm3.9\%$
Syn. Data	Regression	-1.084 ± 0.006 (-rMSE)	$97.74 \pm 2.7\%$	N/A	$92.91 \pm 1.5\%$
London Sch.	Regression	-10.10 ± 0.066 (-rMSE)	$98.90\pm1.5\%$	N/A	$97.20\pm0.4\%$

While obtaining speedups of:

- over 1,000x for learning all tasks
- over 38,000x for learning each new task

	Batch Runtime	ELLA All Tasks	ELLA New Task	OMTL All Tasks	OMTL New Task	STL All Tasks	STL New Task
Dataset	(seconds)	(speedup)	$({ m speedup})$	$({ m speedup})$	$({ m speedup})$	$({ m speedup})$	$({ m speedup})$
Land Mine	231 ± 6.2	$1,350\pm 58$	$39,150\pm1,682$	22 ± 0.88	638 ± 25	$3,342{\pm}409$	$96,918 \pm 11,861$
Facial Expr.	$2,200{\pm}92$	$1,828{\pm}100$	$38,400{\pm}2,100$	$948 {\pm} 65$	$19,900\pm1,360$	$8,511{\pm}1,107$	$178,719 \pm 23,239$
Syn. Data	$1,300{\pm}141$	$5,026 \pm 685$	$502,\!600{\pm}68,\!500$	N/A	N/A	$156,489\pm17,564$	$1.6\mathrm{E}6{\pm}1.8\mathrm{E}5$
London Sch.	715 ± 36	$2,721{\pm}225$	$378,219 \pm 31,275$	N/A	N/A	$36,000{\pm}4,800$	$5.0\mathrm{E}6{\pm}6.7\mathrm{E}5$

Batch MTL = [Kumar & Daumé III, ICML'12]

OMTL = [Saha et al, AISTATS'11]

Paul Ruvolo & Eric Eaton

Outline

Introduction

Efficient Lifelong Learning Algorithm

- Active Task Selection
- Targeted Active Task Selection

Outline

Introduction

Efficient Lifelong Learning Algorithm

Active Task Selection

Targeted Active Task Selection

Active Task Selection

Active Task Selection

Information Maximization Approach

 $\hfill\blacksquare$ Idea: Select the task that maximizes the information gain on L

current information available

$$t_{\text{next}} = \arg\min_{t} \iint p(\boldsymbol{\theta}^{(t)} = \mathbf{u}, \mathbf{D}^{(t)} = \mathbf{V} | \mathcal{I}_{m}) \times H \left[\mathbf{L} | \boldsymbol{\theta}^{(t)} = \mathbf{u}, \mathbf{D}^{(t)} = \mathbf{V}, \mathcal{I}_{m} \right] d\mathbf{u} d\mathbf{V}$$

probability of model for task t differential entropy of L

Information Maximization Approach

Idea: Select the task that maximizes the information gain on ${f L}$

current information available

$$t_{\text{next}} = \arg\min_{t} \iint p(\boldsymbol{\theta}^{(t)} = \mathbf{u}, \mathbf{D}^{(t)} = \mathbf{V} | \mathcal{I}_{m}) \times H \left[\mathbf{L} | \boldsymbol{\theta}^{(t)} = \mathbf{u}, \mathbf{D}^{(t)} = \mathbf{V}, \mathcal{I}_{m} \right] d\mathbf{u} d\mathbf{V}$$

probability of model for task t

differential entropy of L

- To compute this efficiently, we
 - 1. Approximate the model probability using a Dirac delta function around the optimal single task model ($\hat{\theta}^{(t)}$, $\hat{\mathbf{D}}^{(t)}$)
 - 2. Use a Laplace approximation of $L^\prime s$ density as a multivariate Gaussian for the entropy term

Information Maximization Approach

Idea: Select the task that maximizes the information gain on ${f L}$

current information available

$$t_{\text{next}} = \arg\min_{t} \iint p(\boldsymbol{\theta}^{(t)} = \mathbf{u}, \mathbf{D}^{(t)} = \mathbf{V} | \mathcal{I}_{m}) \times H \Big[\mathbf{L} | \boldsymbol{\theta}^{(t)} = \mathbf{u}, \mathbf{D}^{(t)} = \mathbf{V}, \mathcal{I}_{m} \Big] d\mathbf{u} d\mathbf{V}$$

probability of model for task t

differential entropy of L

To compute this efficiently, we

- 1. Approximate the model probability using a Dirac delta function around the optimal single task model ($\hat{\theta}^{(t)}$, $\hat{\mathbf{D}}^{(t)}$)
- 2. Use a Laplace approximation of $\mathbf{L}'s$ density as a multivariate Gaussian for the entropy term
- This yields the following InfoMax task selection rule:

$$t_{\text{next}} = \arg \min_{t \in \{T+1,...,T_{\text{pool}}\}} \ln |\mathbf{\Sigma}^{(t)}|$$
$$\mathbf{\Sigma}^{(t)} = \operatorname{Cov} \left[\operatorname{vec}(\mathbf{L}) | \boldsymbol{\theta}^{(t)} = \hat{\boldsymbol{\theta}}^{(t)}, \mathbf{D}^{(t)} = \hat{\mathbf{D}}^{(t)}, \mathcal{I}_{m} \right]$$

Diversity Approach

- Idea: Focus on candidate tasks that are poorly encoded by the current L
 - This encourages L to serve as an effective basis for a variety of tasks

Diversity Approach

- Idea: Focus on candidate tasks that are poorly encoded by the current L
 - This encourages L to serve as an effective basis for a variety of tasks
- Select the candidate task that the current L is doing the <u>worst</u> job solving:

$$t_{\text{next}} = \underset{t \in \{T+1, \dots, T_{\text{pool}}\}}{\operatorname{arg\,max}} \underset{\mathbf{s}}{\min} \ \ell\left(\mathbf{L}_{m}, \mathbf{s}, \hat{\boldsymbol{\theta}}^{(t)}, \hat{\mathbf{D}}^{(t)}\right)$$

Diversity Approach

- Idea: Focus on candidate tasks that are poorly encoded by the current L
 - This encourages L to serve as an effective basis for a variety of tasks
- Select the candidate task that the current L is doing the <u>worst</u> job solving:

$$t_{\text{next}} = \underset{t \in \{T+1, \dots, T_{\text{pool}}\}}{\operatorname{arg\,max}} \underset{\mathbf{s}}{\min} \ \ell\left(\mathbf{L}_{m}, \mathbf{s}, \hat{\boldsymbol{\theta}}^{(t)}, \hat{\mathbf{D}}^{(t)}\right)$$

loss in reconstructing model for task t

We also explore a probabilistic version (Diversity++) that chooses a task proportionally to its reconstruction loss

Paul Ruvolo & Eric Eaton

Applications

Facial Expression Recognition: identify presence of facial action units (#5 upper lid raiser, #10 upper lip raiser, #12 lip corner pull)

- 3 action units
- 450-999 images each
- 576 locations

Applications

Facial Expression Recognition: identify presence of facial action units (#5 upper lid raiser, #10 upper lip raiser, #12 lip corner pull)

Land Mine Detection from

radar images [Xue et al. 2007]

29 Classification Tasks:29 regions

- 2 terrain types
- 14,820 instances total

Applications

Facial Expression Recognition: identify presence of facial action units (#5 upper lid raiser, #10 upper lip raiser, #12 lip corner pull)

Land Mine Detection from radar images [Xue et al. 2007]

29 Classification Tasks:29 regions

- 2 terrain types
- 14,820 instances total

Exam Score Prediction for London schools [Kumar et al. 2012]

- 139 Regression Tasks:
- 139 schools
- 15,362 students total
- 4 school-specific features
- 3 student-specific features
- Exam year + bias term

Active Task Selection Results

Plots show the relevant efficiency (in #tasks) as compared to random task selection

Average Task Reduction (%)						
Data Set	InfoMax	Diversity	Diversity++			
Land Mine	5.1±3.7	$29.4{\pm}4.1$	18.1±3.0			
Facial Expr.	0.5 ± 2.6	$14.6{\pm}5.1$	$9.9{\pm}4.0$			
Syn. Data	10.2 ± 7.9	$20.2{\pm}6.7$	17.0 ± 5.9			
London Sch.	$29.8{\pm}6.8$	21.0 ± 3.1	26.2 ± 3.1			

Tack Daduction (0/)

Targeted InfoMax Task Selection

The general InfoMax selection method tries to maximize the information gain on L

Focuses on an unknown set of future tasks

What if we are working toward learning a specific target set of future tasks?

Can improve performance by targeting InfoMax toward those tasks

Targeted Task Selection Results

Plots show the relevant efficiency (in #tasks) as compared to random task selection

Average Task Reduction (%)							
	Targeted						
Data Set	InfoMax	InfoMax	Diversity	Diversity++			
Land Mine	17.9±2.7	-1.7 ± 3.0	14.9 ± 3.2	8.5 ± 2.5			
Facial Expr.	7.8 ± 0.7	2.6 ± 0.8	$10.0{\pm}2.5$	$2.7{\pm}1.3$			
Syn. Data	38.4±7.5	11.4 ± 5.6	19.9 ± 4.9	16.6 ± 5.0			
London Sch.	26.9±1.8	20.1 ± 2.8	22.3 ± 1.1	16.4 ± 2.7			

Conclusions

- We presented two approaches to active task selection in a lifelong learning setting
 - Diversity approach is cheap and effective
 - InfoMax works well for targeted knowledge acquisition
- Future work: integrating with instance-based active learning and guidance from a teacher

Active task selection accelerates knowledge acquisition in a lifelong learning setting

Active Task Selection for Lifelong Machine Learning Paul Ruvolo & Eric Eaton

Thank you!

Code for ELLA & active task selection is available at cs.brynmawr.edu/~eeaton

This work was supported by ONR Grant #N00014-11-1-0139