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Motivation

Problem 1: Without prior knowledge,

RLin a new task is slow

Idea: Reuse knowledge from
previously learned tasks

Current Task

standard
“tabula rasa’
initialization

’

initialization
via transfer

Time

We focus on the lifelong learning case:

* Agent learns multiple tasks consecutively

e Want a fully online method with sublinear regret
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Motivation

Problem 2: Robot control policies must obey safety constraints
* Prevent damage to the robot or environment

* Limit joint velocities

e Avoid catastrophic failure

Idea: Incorporate constraints directly into policy optimization
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Contribution

Safe lifelong policy gradient reinforcement learner
e Learns multiple, consecutive RL tasks online

* Operates in an adversarial setting

* Ensures that policies respect given safety constraints

* Exhibits sublinear regret for lifelong policy search
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Background: Policy Gradient Methods for Control

* Agent interacts with environment, taking consecutive actions

* PG methods support continuous state and action spaces

— Have shown recent success in applications to robotic control
[Kober & Peters 2011; Peters & Schaal 2008; Sutton et al. 2000]

probabilistic
transition

Agent makes sequential decisions
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Background: Policy Gradient Methods for Control
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Background: Online Learning & Regret Analysis

Regret Minimization Game: Eachroundj=1 ... R,
a.) agent chooses a prediction «;, and

b.) environment (i.e., the adversary) chooses a loss function lj

Goal: minimize cumulative regret (modified for multi-task case)
loss of task ¢

R R
Re = » (o) — inf > 1,(6)
j=1 ==t oo
- = at round J

| J
Y \ Y J

agent’s total loss best fixed loss in hindsight
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Lifelong Machine Learning

current round j

) e -+

learned tasks from previous rounds |osg o =g future learning rounds
consecutively task ¢,

3.) New
knowledge
is stored for

2.) Knowledge is learned policy

transferred from future use
previously
learned tasks 4.) Existing

knowledge
is refined
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Task Model

Policy gradient objective: |

S () o)

* For a specific task ¢, find the optimal policy

To; (w|®) st o =minl, (a)

* The parameters o are linear
combinations of a shared basis L

(th = LStj L € Rka, Stj ~ Rk
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Safety Constraints on Policy

Each task ¢, has associated safety constraints (A¢,,by.)
such that A; a;;, < by,
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Lifelong Learning Problem Definition

Each round, we observe 7, trajectories of task ¢,
Goal: minimize total cumulative loss-so-far

Online Multi-task Objective: After observing rrounds,

Tr

min el (Lsy,) ] + 1S|[f + pe HLHE

J=1 Y g
loss for task t, regularize projections
and shared repository

S.t. Atj oy, < btj Vi; € 1, e safety constraints
Amin(LL") > p and Apax(LL") < ¢

ensure “informative” policies by bounding
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Online Formulation

Online MTL Objective
T

: 2 2
e [Utjltj (LStj)] + 1 [|S||g + p2 || L
’ le

S.t. Atjatj < btj \V/tj ~ IT
Amin(LL") > p and Apax (LL") < ¢

Let 8 = [vec(L), vec(S)]"
We can re-write the objective as:

dk+1
_ : 2 2
0,1 —argznellrclﬂr(e) ,uQE 0; + 11 E 0;
)

set of safe policies

0,(6) = ﬂj_1<9> gl <e>
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Solution Strategy

Step 1: Unconstrained Solution
a.) Update L, holding S fixed
Lg1 = Lg — g Vier(L,S)
b.) Update S, holding L fixed
t; t;
s\ =547 — 3 Ve, (L, S)

~

e 07“—|—1 unconstrained solution
Step 2: Constrained Solution

Idea: Alternate to learn projection of
0.1 onto the constraint set

Problem: Computationally Expensive
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Constrained Projection Learning

Learning the constrained solution is equivalent to:

0,11 = argmin Bo_ x (9, 9r+1)
0ckC /,
Y
Bregman

divergence

Reduce computational complexity by linearizing losses

~ T
) — % (——— linearized loss around constrained
lt,,,. (u) ft'f‘ 0 u solution to previous round
T
ft L — VQlt 0 R lt 0 R —VQlt 0 R H
T 97» r( )9r7 7“( )er r( )QT r
- J

: \{
first-order term
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Constrained Projection Learning

Using linearized losses, the constrained solution simplifies to:

0,1 = argmin B, (9, em)
0ciC

v
Constrained Problem for Determining Safe Policies

T
L
Or—i—l

T
i} S) + 2u9tr (L
97"—|—1
S.t. Athatj < btj \V/tj c Ir

Amin(LL") > p and Apax(LL") < ¢

i 01812 + ol LI + 24t (S

Solved via (1) a 2" order cone program for S and
(2) a semi-definite program for L
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Regret Guarantees

Theorem (Sublinear Regret):
After R rounds, our algorithm attains sublinear regret:

R
> 1,(0;) — I, (u) = O(VR) for any u € K
j=1

*

Proof Sketch: Bound |[£. |
112
£ || <. |+ vaztr(e) o+ vaztr(e) e, |
97" 07" {12 T2 2
. 7 L _J
v "
constant bounded in terms constraints

of local losses
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Goal: Learn policies for consecutive control tasks on
three types of dynamical systems

€11
g <0’ 9) F2 831l§e21 \ Fl
‘.......MMA;\___‘W-—_——‘ —F_) ‘, ; F ‘.“I'

)
\J

Generated 10 tasks per system by varying specifications

Compared to (1) standard PG and
(2) PG-ELLA lifelong learner (zou Ammar et al, icm’14]
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Results: Performance
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Safe lifelong learner shows superior performance

H. Bou Ammar, R. Tutunov, E. Eaton

18



Results: Safety Constraint Enforcement
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Enforces safety constraints, unlike alternative methods
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Results: Safety Constraint Enforcement

Number of Observations to Reach a Safe Policy
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Our approach immediately projects policies to safe regions,

even during the policy search process
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Teaser: Autonomous Cross-Domain Transfer

Key Idea: Use projections to specialize a shared KB to
individual task domains for lifelong RL

Task Groups EL%&}

e B
x>

ey

KN 3@

Task-Specific
Coefficients
Group-Specific
Bases

Group Projections

Shared Knowledge Base

[Bou Ammar, Eaton, et al,,
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Conclusion

The safe lifelong policy gradient learner:

Fully online learning of multiple, consecutive RL tasks
Ensures “safe” policies by respecting safety constraints
Exhibits sublinear regret for lifelong policy search

Validated on benchmark dynamical systems and
qguadrotor control
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Constrained Solution

Alternate to determine safety-constrained L and S:

Semi-Definite Program for L:

L|.

trace(X) + 2
XZin po ace(X') + 2p2

r-41

S.t. sthstj = a;rjatj Vt; € L,
X <pI and X >qI, with X=L'L

Second-Order Cone Program for S:

min MlZ”St “2"‘2#123::

stla sst actI, .y t

5 St_,,-

S.t. AthStj — btj — G,
2 2
Ct; >0 ”ctj ”2 < Cmax th S Zr
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