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Problem	
  1:	
  	
  Without	
  prior	
  knowledge,	
  	
  
	
   	
   	
  	
  	
  	
  	
  	
  RL	
  in	
  a	
  new	
  task	
  is	
  slow	
  

	
  

Idea:	
  	
  Reuse	
  knowledge	
  from	
  	
  
	
   	
  previously	
  learned	
  tasks	
  

Mo;va;on	
  

G

	
  
standard	
  

“tabula	
  rasa”	
  	
  
ini>aliza>on	
   ini>aliza>on	
  

via	
  transfer	
  

We	
  focus	
  on	
  the	
  lifelong	
  learning	
  case:	
  
•  Agent	
  learns	
  mul;ple	
  tasks	
  consecu;vely	
  
•  Want	
  a	
  fully	
  online	
  method	
  with	
  sublinear	
  regret	
  
	
  
	
  

… … … … 

Time	
  

Current	
  Task	
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Problem	
  2:	
  Robot	
  control	
  policies	
  must	
  obey	
  safety	
  constraints	
  
•  Prevent	
  damage	
  to	
  the	
  robot	
  or	
  environment	
  
•  Limit	
  joint	
  veloci;es	
  
•  Avoid	
  catastrophic	
  failure	
  

Idea:	
  Incorporate	
  constraints	
  directly	
  into	
  policy	
  op;miza;on	
  

Mo;va;on	
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Contribu;on	
  

Safe	
  lifelong	
  policy	
  gradient	
  reinforcement	
  learner	
  
•  Learns	
  mul;ple,	
  consecu;ve	
  RL	
  tasks	
  online	
  
•  Operates	
  in	
  an	
  adversarial	
  seNng	
  
•  Ensures	
  that	
  policies	
  respect	
  given	
  safety	
  constraints	
  
•  Exhibits	
  sublinear	
  regret	
  for	
  lifelong	
  policy	
  search	
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•  Agent	
  interacts	
  with	
  environment,	
  taking	
  consecu;ve	
  ac;ons	
  
•  PG	
  methods	
  support	
  con;nuous	
  state	
  and	
  ac;on	
  spaces	
  

–  Have	
  shown	
  recent	
  success	
  in	
  applica;ons	
  to	
  robo;c	
  control	
  
[Kober	
  &	
  Peters	
  2011;	
  Peters	
  &	
  Schaal	
  2008;	
  SuYon	
  et	
  al.	
  2000]	
  

G	
  

reward	
  	
  
func;on	
  

agent	
  

probabilis;c	
  
transi;on	
  

Agent	
  makes	
  sequen;al	
  decisions	
  

Background:	
  Policy	
  Gradient	
  Methods	
  for	
  Control	
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Background:	
  Policy	
  Gradient	
  Methods	
  for	
  Control	
  

•  Agent	
  interacts	
  with	
  environment,	
  taking	
  consecu;ve	
  ac;ons	
  
•  PG	
  methods	
  support	
  con;nuous	
  state	
  and	
  ac;on	
  spaces	
  

–  Have	
  shown	
  recent	
  success	
  in	
  applica;ons	
  to	
  robo;c	
  control	
  
[Kober	
  &	
  Peters	
  2011;	
  Peters	
  &	
  Schaal	
  2008;	
  SuYon	
  et	
  al.	
  2000]	
  

Goal:	
  find	
  policy	
  	
  	
  	
  	
  	
  	
  that	
  minimizes	
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Background:	
  Online	
  Learning	
  &	
  Regret	
  Analysis	
  

Regret	
  Minimiza>on	
  Game:	
  	
  Each	
  round	
  j	
  = 1 ... R,	
  	
  
a.)	
  agent	
  chooses	
  a	
  predic;on	
  	
  	
  	
  	
  	
  	
  ,	
  and	
  	
  	
  	
  	
  	
  
b.)	
  environment	
  (i.e.,	
  the	
  adversary)	
  chooses	
  a	
  loss	
  func;on	
  	
  

	
  

	
  

Goal:	
  minimize	
  cumula;ve	
  regret	
  (modified	
  for	
  mul;-­‐task	
  case)	
  

	
  

	
  
	
  

lj

↵j

loss	
  of	
  task	
  t	
  
at	
  round	
  j!

RR =
RX

j=1

ltj (↵j)� inf
✓2K

2

4
RX

j=1

ltj (✓)

3

5

agent’s	
  total	
  loss	
   best	
  fixed	
  loss	
  in	
  hindsight	
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Lifelong	
  Machine	
  Learning	
  

Policy parameters 

Task-specific coefficients shared 
basis 

Each task has 
associated safety 
constraints 

Lifelong	
  Learning	
  System	
  

2.)	
  Knowledge	
  is	
  	
  
transferred	
  from	
  	
  
previously	
  	
  
learned	
  tasks	
  

3.)	
  New	
  
knowledge	
  	
  
is	
  stored	
  for	
  
future	
  use	
  

4.)	
  Exis;ng	
  
knowledge	
  	
  
is	
  refined	
  

learned	
  policy  

⇡↵tj

previously	
  learned	
  
knowledge Lj -1 

1.)	
  Tasks	
  are	
  received	
  	
  
consecu;vely	
  

learned	
  tasks	
  from	
  previous	
  rounds	
   future	
  learning	
  rounds	
  

... ... tj tj-1 tj-2 tj-3 tj+1 tj+2 tj+3 

trajectories	
  for	
  
task	
  tj!

current	
  round	
  j!
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Task	
  Model	
  

•  For	
  a	
  specific	
  task	
  tj ,	
  find	
  the	
  op;mal	
  policy	
  

•  The	
  parameters	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  are	
  linear	
  	
  
combina;ons	
  of	
  a	
  shared	
  basis	
  L 

	
  	
  	
  	
  Policy	
  gradient	
  objec;ve:	
   l(↵) =
nX
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Safety	
  Constraints	
  on	
  Policy	
  

Each	
  task	
  tj	
  has	
  associated	
  safety	
  constraints	
  
such	
  that	
  
	
  

Atj↵tj  btj

(Atj , btj )
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Goal:	
  	
  minimize	
  total	
  cumula;ve	
  loss-­‐so-­‐far	
  

Lifelong	
  Learning	
  Problem	
  Defini;on	
  

s.t. Atj↵tj  btj 8tj 2 Ir
�
min

(LLT) � p and �
max

(LLT)  q

safety	
  constraints	
  

ensure	
  “informa;ve”	
  policies	
  by	
  bounding	
  ||	
  	
  L||	
  	
  F	
  	
  

Online	
  Mul>-­‐task	
  Objec>ve:	
  	
  	
  Aler	
  observing	
  r	
  rounds,	
  

tj ntjEach	
  round,	
  we	
  observe	
  	
  	
  	
  	
  	
  	
  	
  	
  trajectories	
  of	
  task	
  tj !
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min
L,S

rX
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⇥
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�
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�⇤
+ µ

1

||S||2F + µ
2

||L||2F

s.t. Atj↵tj  btj 8tj 2 Ir
�
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�
LLT

�
� p and �
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�
LLT

�
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regularize	
  projec;ons	
  
	
  and	
  shared	
  repository	
  

loss	
  for	
  task	
  tj!



Online	
  Formula;on	
  

Let	
  
We	
  can	
  re-­‐write	
  the	
  objec;ve	
  as:	
  

✓ = [vec(L), vec(S)]T

s.t. Atj↵tj  btj 8tj 2 Ir
�
min

(LLT) � p and �
max

(LLT)  q

min
L,S

rX

j=1

⇥
⌘tj ltj

�
Lstj

�⇤
+ µ

1

||S||2F + µ
2

||L||2F

s.t. Atj↵tj  btj 8tj 2 Ir
�
min

�
LLT

�
� p and �

max

�
LLT

�
 q

Online	
  MTL	
  Objec;ve	
  

✓r+1 = argmin
✓2K

⌦r(✓)

set	
  of	
  safe	
  policies	
  

⌦0(✓) = µ2

dkX

i=1

✓2
i + µ1

dk+1X

i=1

✓2
i

⌦j(✓) = ⌦j�1(✓) + ⌘tj ltj (✓)
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Solu;on	
  Strategy	
  	
  

✓̃r+1

Step	
  2:	
  Constrained	
  Solu;on	
  
Idea:	
  Alternate	
  to	
  learn	
  projec;on	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

onto	
  the	
  constraint	
  set	
  

Problem:	
  Computa;onally	
  Expensive	
  	
  

Step	
  1:	
  Unconstrained	
  Solu;on	
  
a.)	
  Update	
  L,	
  holding	
  S	
  fixed	
  

L�+1 = L� � ⌘�LrLer(L,S)

s
(tj)
�+1 = s

(tj)
� � ⌘�SrLer(L,S)

b.)	
  Update	
  S,	
  holding	
  L fixed	
  

unconstrained	
  solu;on	
  

✓̃r+1
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Constrained	
  Projec;on	
  Learning	
  
Learning	
  the	
  constrained	
  solu;on	
  is	
  equivalent	
  to:	
  

✓̂r+1 = argmin
✓2K

B⌦r,K

⇣
✓, ✓̃r+1

⌘

Bregman	
  	
  
divergence	
  	
  

Reduce	
  computa;onal	
  complexity	
  by	
  linearizing	
  losses	
  

ltr (û) = f̂tr

���
T

✓̂r

û linearized	
  loss	
  around	
  constrained	
  
solu;on	
  to	
  previous	
  round	
  

f̂tr

���
✓̂r

=


r✓ltr (✓)

���
✓̂r

, ltr (✓)
���
✓̂r

�r✓ltr (✓)
���
✓̂r

✓̂r

�T

first-­‐order	
  term	
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Constrained	
  Projec;on	
  Learning	
  
Using	
  linearized	
  losses,	
  the	
  constrained	
  solu;on	
  simplifies	
  to:	
  	
  

✓̂r+1 = argmin
✓2K

B⌦0,K

⇣
✓, ✓̃r+1

⌘

Constrained	
  Problem	
  for	
  Determining	
  Safe	
  Policies	
  

min
L,S

µ1||S||2F + µ2||L||2F + 2µ1tr

✓
S
���
T

✓̃r+1

S

◆
+ 2µ2tr

✓
L
���
T

✓̃r+1

L

◆

s.t. AtjL↵tj  btj 8tj 2 Ir
�
min

(LLT) � p and �
max

(LLT)  q

Solved	
  via	
  (1)	
  a	
  2nd	
  order	
  cone	
  program	
  for	
  S	
  and	
  
(2)	
  a	
  semi-­‐definite	
  program	
  for	
  L	
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Regret	
  Guarantees	
  

Proof	
  Sketch:	
   Bound	
  	
  

constant	
   bounded	
  in	
  terms	
  
	
  of	
  local	
  losses	
  

constraints	
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����+
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���
✓̂r

����

����
2

+

����
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���
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2

���
���✓̂r

���
���
2

RX

j=1

ltj (ˆ✓j)� ltj (u) = O(

p
R) for any u 2 K

Aler	
  R	
  rounds,	
  our	
  algorithm	
  aYains	
  sublinear	
  regret:	
  
Theorem	
  (Sublinear	
  Regret):	
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Safe Policy Search for Lifelong Reinforcement Learning with Sublinear Regret

of L and that the constraints are met. This leads to
r
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1/
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R, we acquire sublinear regret,

finalizing the statement of Theorem 1:
r
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6. Experimental Validation
To validate the empirical performance of our method, we
applied our safe online PG algorithm to learn multiple con-
secutive control tasks on three dynamical systems (Fig-
ure 1). To generate multiple tasks, we varied the parameter-
ization of each system, yielding a set of control tasks from
each domain with varying dynamics. The optimal control
policies for these systems vary widely with only minor
changes in the system parameters, providing substantial di-
versity among the tasks within a single domain.

Figure 1. Dynamical systems used in the experiments: a) simple
mass system (left), b) cart-pole (middle), and c) quadrotor un-
manned aerial vehicle (right).

Simple Mass Spring Damper: The simple mass (SM)
system is characterized by three parameters: the spring con-
stant k in N/m, the damping constant d in Ns/m and the
mass m in kg. The system’s state is given by the position x

and ˙

x of the mass, which varies according to a linear force
F . The goal is to train a policy for controlling the mass in
a specific state gref = hxref, ˙xrefi.
Cart Pole: The cart-pole (CP) has been used extensively
as a benchmark for evaluating RL methods (Busoniu et al.,
2010). CP dynamics are characterized by the cart’s mass
mc in kg, the pole’s mass mp in kg, the pole’s length in
meters, and a damping parameter d in Ns/m. The state is
given by the cart’s position x and velocity ˙

x, as well as the
pole’s angle ✓ and angular velocity ˙

✓. The goal is to train a
policy that controls the pole in an upright position.

6.1. Experimental Protocol
We generated 10 tasks for each domain by varying the sys-
tem parameters to ensure a variety of tasks with diverse op-

timal policies, including those with highly chaotic dynam-
ics that are difficult to control. We ran each experiment for
a total of R rounds, varying from 150 for the simple mass
to 10, 000 for the quadrotor to train L and S, as well as
for updating the PG-ELLA and PG models. At each round
j, the learner observed a task tj through 50 trajectories of
150 steps and updated L and stj . The dimensionality k of
the latent space was chosen independently for each domain
via cross-validation over 3 tasks, and the learning step size
for each task domain was determined by a line search after
gathering 10 trajectories of length 150. We used eNAC, a
standard PG algorithm, as the base learner.

We compared our approach to both standard PG (i.e.,
eNAC) and PG-ELLA (Bou Ammar et al., 2014), examin-
ing both the constrained and unconstrained variants of our
algorithm. We also varied the number of iterations in our al-
ternating optimization from 10 to 100 to evaluate the effect
of these inner iterations on the performance, as shown in
Figures 2 and 3. For the two MTL algorithms (our approach
and PG-ELLA), the policy parameters for each task tj were
initialized using the learned basis (i.e., ↵tj = Lstj ). We
configured PG-ELLA as described by Bou Ammar et al.
(2014), ensuring a fair comparison. For the standard PG
learner, we provided additional trajectories in order to en-
sure a fair comparison, as described below.

For the experiments with policy constraints, we generated
a set of constraints (At, bt) for each task that restricted the
policy parameters to pre-specified “safe” regions, as shown
in Figures 2(c) and 2(d). We also tested different values for
the constraints on L, varying p and q between 0.1 to 10;
our approach showed robustness against this broad range,
yielding similar average cost performance.

6.2. Results on Benchmark Systems
Figure 2 reports our results on the benchmark simple mass
and cart-pole systems. Figures 2(a) and 2(b) depicts the
performance of the learned policy in a lifelong learning set-
ting over consecutive unconstrained tasks, averaged over
all 10 systems over 100 different initial conditions. These
results demonstrate that our approach is capable of outper-
forming both standard PG (which was provided with 50
additional trajectories each iteration to ensure a more fair
comparison) and PG-ELLA, both in terms of initial perfor-
mance and learning speed. These figures also show that the
performance of our method increases as it is given more
alternating iterations per-round for fitting L and S.

We evaluated the ability of these methods to respect safety
constraints, as shown in Figures 2(c) and 2(d). The thicker
black lines in each figure depict the allowable “safe” region
of the policy space. To enable online learning per-task, the
same task tj was observed on each round and the shared
basis L and coefficients stj were updated using alternating
optimization. We then plotted the change in the policy pa-

Cart	
  Pole	
  Simple	
  Mass	
   Quadrotor	
  

Experiments	
  
Goal:	
  	
  Learn	
  policies	
  for	
  consecu;ve	
  control	
  tasks	
  on	
  

three	
  types	
  of	
  dynamical	
  systems	
  
	
  
	
  
	
  
	
  
	
  

Generated	
  10	
  tasks	
  per	
  system	
  by	
  varying	
  specifica;ons	
  
	
  

Compared	
  to	
  (1)	
  standard	
  PG	
  and	
  	
  
(2)	
  PG-­‐ELLA	
  lifelong	
  learner	
  [Bou	
  Ammar	
  et	
  al,	
  ICML’14]	
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Results:	
  	
  Performance	
  

Safe	
  lifelong	
  learner	
  shows	
  superior	
  performance	
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Figure 2. Results on benchmark simple mass and cart-pole systems. Figures (a) and (b) depict performance in lifelong learning scenarios
over consecutive unconstrained tasks, showing that our approach outperforms standard PG and PG-ELLA. Figures (c) and (d) examine
the ability of these method to abide by safety constraints on sample constrained tasks, depicting two dimensions of the policy space (↵1

vs ↵2) and demonstrating that our approach abides by the constraints (the dashed black region).

rameter vectors per iterations (i.e., ↵tj = Lstj ) for each
method, demonstrating that our approach abides by the
safety constraints, while standard PG and PG-ELLA can
violate them (since they only solve an unconstrained opti-
mization problem). In addition, these figures show that in-
creasing the number of alternating iterations in our method
causes it to take a more direct path to the optimal solution.

6.3. Application to Quadrotor Control

We also applied our approach to the more challenging do-
main of quadrotor control. The dynamics of the quadro-
tor system (Figure 1) are influenced by inertial constants
around e

1,B , e
2,B , and e

3,B , thrust factors influencing how
the rotor’s speed affects the overall variation of the system’s
state, and the lengths of the rods supporting the rotors. Al-
though the overall state of the system can be described by
a 12-dimensional vector, we focus on stability and so con-
sider only six of these state-variables. The quadrotor sys-
tem has a high-dimensional action space, where the goal is
to control the four rotational velocities {wi}4i=1

of the ro-
tors to stabilize the system. To ensure realistic dynamics,
we used the simulated model described by (Bouabdallah,
2007; Voos & Bou Ammar, 2010), which has been verified
and used in the control of physical quadrotors.

We generated 10 different quadrotor systems by varying
the inertia around the x, y and z-axes. We used a linear
quadratic regulator, as described by Bouabdallah (2007),
to initialize the policies in both the learning and testing
phases. We followed a similar experimental procedure to
that discussed above to update the models.

Figure 3 shows the performance of the unconstrained solu-
tion as compared to standard PG and PG-ELLA. Again, our
approach clearly outperforms standard PG and PG-ELLA
in both the initial performance and learning speed. We
also evaluated constrained tasks in a similar manner, again
showing that our approach is capable of respecting con-
straints. Since the policy space is higher dimensional, we
cannot visualize it as well as the benchmark systems, and so
instead report the number of iterations it takes our approach
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Figure 4. Average number of task observations before acquiring
policy parameters that abide by the constraints, showing that our
approach immediately projects policies to safe regions.

to project the policy into the safe region. Figure 4 shows
that our approach requires only one observation of the task
to acquire safe policies, which is substantially lower then
standard PG or PG-ELLA (e.g., which require 545 and 510
observations, respectively, in the quadrotor scenario).

7. Conclusion
We described the first lifelong PG learner that provides sub-
linear regret O(

p
R) with R total rounds. In addition, our

approach supports safety constraints on the learned policy,
which are essential for robust learning in real applications.
Our framework formalizes lifelong learning as online MTL
with limited resources, and enables safe transfer by sharing
policy parameters through a latent knowledge base that is
efficiently updated over time.
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vs ↵2) and demonstrating that our approach abides by the constraints (the dashed black region).

rameter vectors per iterations (i.e., ↵tj = Lstj ) for each
method, demonstrating that our approach abides by the
safety constraints, while standard PG and PG-ELLA can
violate them (since they only solve an unconstrained opti-
mization problem). In addition, these figures show that in-
creasing the number of alternating iterations in our method
causes it to take a more direct path to the optimal solution.

6.3. Application to Quadrotor Control

We also applied our approach to the more challenging do-
main of quadrotor control. The dynamics of the quadro-
tor system (Figure 1) are influenced by inertial constants
around e

1,B , e
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3,B , thrust factors influencing how
the rotor’s speed affects the overall variation of the system’s
state, and the lengths of the rods supporting the rotors. Al-
though the overall state of the system can be described by
a 12-dimensional vector, we focus on stability and so con-
sider only six of these state-variables. The quadrotor sys-
tem has a high-dimensional action space, where the goal is
to control the four rotational velocities {wi}4i=1

of the ro-
tors to stabilize the system. To ensure realistic dynamics,
we used the simulated model described by (Bouabdallah,
2007; Voos & Bou Ammar, 2010), which has been verified
and used in the control of physical quadrotors.

We generated 10 different quadrotor systems by varying
the inertia around the x, y and z-axes. We used a linear
quadratic regulator, as described by Bouabdallah (2007),
to initialize the policies in both the learning and testing
phases. We followed a similar experimental procedure to
that discussed above to update the models.

Figure 3 shows the performance of the unconstrained solu-
tion as compared to standard PG and PG-ELLA. Again, our
approach clearly outperforms standard PG and PG-ELLA
in both the initial performance and learning speed. We
also evaluated constrained tasks in a similar manner, again
showing that our approach is capable of respecting con-
straints. Since the policy space is higher dimensional, we
cannot visualize it as well as the benchmark systems, and so
instead report the number of iterations it takes our approach
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Figure 4. Average number of task observations before acquiring
policy parameters that abide by the constraints, showing that our
approach immediately projects policies to safe regions.

to project the policy into the safe region. Figure 4 shows
that our approach requires only one observation of the task
to acquire safe policies, which is substantially lower then
standard PG or PG-ELLA (e.g., which require 545 and 510
observations, respectively, in the quadrotor scenario).

7. Conclusion
We described the first lifelong PG learner that provides sub-
linear regret O(

p
R) with R total rounds. In addition, our

approach supports safety constraints on the learned policy,
which are essential for robust learning in real applications.
Our framework formalizes lifelong learning as online MTL
with limited resources, and enables safe transfer by sharing
policy parameters through a latent knowledge base that is
efficiently updated over time.
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the ability of these method to abide by safety constraints on sample constrained tasks, depicting two dimensions of the policy space (↵1

vs ↵2) and demonstrating that our approach abides by the constraints (the dashed black region).

rameter vectors per iterations (i.e., ↵tj = Lstj ) for each
method, demonstrating that our approach abides by the
safety constraints, while standard PG and PG-ELLA can
violate them (since they only solve an unconstrained opti-
mization problem). In addition, these figures show that in-
creasing the number of alternating iterations in our method
causes it to take a more direct path to the optimal solution.

6.3. Application to Quadrotor Control

We also applied our approach to the more challenging do-
main of quadrotor control. The dynamics of the quadro-
tor system (Figure 1) are influenced by inertial constants
around e

1,B , e
2,B , and e

3,B , thrust factors influencing how
the rotor’s speed affects the overall variation of the system’s
state, and the lengths of the rods supporting the rotors. Al-
though the overall state of the system can be described by
a 12-dimensional vector, we focus on stability and so con-
sider only six of these state-variables. The quadrotor sys-
tem has a high-dimensional action space, where the goal is
to control the four rotational velocities {wi}4i=1

of the ro-
tors to stabilize the system. To ensure realistic dynamics,
we used the simulated model described by (Bouabdallah,
2007; Voos & Bou Ammar, 2010), which has been verified
and used in the control of physical quadrotors.

We generated 10 different quadrotor systems by varying
the inertia around the x, y and z-axes. We used a linear
quadratic regulator, as described by Bouabdallah (2007),
to initialize the policies in both the learning and testing
phases. We followed a similar experimental procedure to
that discussed above to update the models.

Figure 3 shows the performance of the unconstrained solu-
tion as compared to standard PG and PG-ELLA. Again, our
approach clearly outperforms standard PG and PG-ELLA
in both the initial performance and learning speed. We
also evaluated constrained tasks in a similar manner, again
showing that our approach is capable of respecting con-
straints. Since the policy space is higher dimensional, we
cannot visualize it as well as the benchmark systems, and so
instead report the number of iterations it takes our approach
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Figure 4. Average number of task observations before acquiring
policy parameters that abide by the constraints, showing that our
approach immediately projects policies to safe regions.

to project the policy into the safe region. Figure 4 shows
that our approach requires only one observation of the task
to acquire safe policies, which is substantially lower then
standard PG or PG-ELLA (e.g., which require 545 and 510
observations, respectively, in the quadrotor scenario).

7. Conclusion
We described the first lifelong PG learner that provides sub-
linear regret O(

p
R) with R total rounds. In addition, our

approach supports safety constraints on the learned policy,
which are essential for robust learning in real applications.
Our framework formalizes lifelong learning as online MTL
with limited resources, and enables safe transfer by sharing
policy parameters through a latent knowledge base that is
efficiently updated over time.
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Figure 2. Results on benchmark simple mass and cart-pole systems. Figures (a) and (b) depict performance in lifelong learning scenarios
over consecutive unconstrained tasks, showing that our approach outperforms standard PG and PG-ELLA. Figures (c) and (d) examine
the ability of these method to abide by safety constraints on sample constrained tasks, depicting two dimensions of the policy space (↵1

vs ↵2) and demonstrating that our approach abides by the constraints (the dashed black region).

rameter vectors per iterations (i.e., ↵tj = Lstj ) for each
method, demonstrating that our approach abides by the
safety constraints, while standard PG and PG-ELLA can
violate them (since they only solve an unconstrained opti-
mization problem). In addition, these figures show that in-
creasing the number of alternating iterations in our method
causes it to take a more direct path to the optimal solution.

6.3. Application to Quadrotor Control

We also applied our approach to the more challenging do-
main of quadrotor control. The dynamics of the quadro-
tor system (Figure 1) are influenced by inertial constants
around e

1,B , e
2,B , and e

3,B , thrust factors influencing how
the rotor’s speed affects the overall variation of the system’s
state, and the lengths of the rods supporting the rotors. Al-
though the overall state of the system can be described by
a 12-dimensional vector, we focus on stability and so con-
sider only six of these state-variables. The quadrotor sys-
tem has a high-dimensional action space, where the goal is
to control the four rotational velocities {wi}4i=1

of the ro-
tors to stabilize the system. To ensure realistic dynamics,
we used the simulated model described by (Bouabdallah,
2007; Voos & Bou Ammar, 2010), which has been verified
and used in the control of physical quadrotors.

We generated 10 different quadrotor systems by varying
the inertia around the x, y and z-axes. We used a linear
quadratic regulator, as described by Bouabdallah (2007),
to initialize the policies in both the learning and testing
phases. We followed a similar experimental procedure to
that discussed above to update the models.

Figure 3 shows the performance of the unconstrained solu-
tion as compared to standard PG and PG-ELLA. Again, our
approach clearly outperforms standard PG and PG-ELLA
in both the initial performance and learning speed. We
also evaluated constrained tasks in a similar manner, again
showing that our approach is capable of respecting con-
straints. Since the policy space is higher dimensional, we
cannot visualize it as well as the benchmark systems, and so
instead report the number of iterations it takes our approach
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Figure 4. Average number of task observations before acquiring
policy parameters that abide by the constraints, showing that our
approach immediately projects policies to safe regions.

to project the policy into the safe region. Figure 4 shows
that our approach requires only one observation of the task
to acquire safe policies, which is substantially lower then
standard PG or PG-ELLA (e.g., which require 545 and 510
observations, respectively, in the quadrotor scenario).

7. Conclusion
We described the first lifelong PG learner that provides sub-
linear regret O(

p
R) with R total rounds. In addition, our

approach supports safety constraints on the learned policy,
which are essential for robust learning in real applications.
Our framework formalizes lifelong learning as online MTL
with limited resources, and enables safe transfer by sharing
policy parameters through a latent knowledge base that is
efficiently updated over time.
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Figure 2. Results on benchmark simple mass and cart-pole systems. Figures (a) and (b) depict performance in lifelong learning scenarios
over consecutive unconstrained tasks, showing that our approach outperforms standard PG and PG-ELLA. Figures (c) and (d) examine
the ability of these method to abide by safety constraints on sample constrained tasks, depicting two dimensions of the policy space (↵1

vs ↵2) and demonstrating that our approach abides by the constraints (the dashed black region).

rameter vectors per iterations (i.e., ↵tj = Lstj ) for each
method, demonstrating that our approach abides by the
safety constraints, while standard PG and PG-ELLA can
violate them (since they only solve an unconstrained opti-
mization problem). In addition, these figures show that in-
creasing the number of alternating iterations in our method
causes it to take a more direct path to the optimal solution.

6.3. Application to Quadrotor Control

We also applied our approach to the more challenging do-
main of quadrotor control. The dynamics of the quadro-
tor system (Figure 1) are influenced by inertial constants
around e

1,B , e
2,B , and e

3,B , thrust factors influencing how
the rotor’s speed affects the overall variation of the system’s
state, and the lengths of the rods supporting the rotors. Al-
though the overall state of the system can be described by
a 12-dimensional vector, we focus on stability and so con-
sider only six of these state-variables. The quadrotor sys-
tem has a high-dimensional action space, where the goal is
to control the four rotational velocities {wi}4i=1

of the ro-
tors to stabilize the system. To ensure realistic dynamics,
we used the simulated model described by (Bouabdallah,
2007; Voos & Bou Ammar, 2010), which has been verified
and used in the control of physical quadrotors.

We generated 10 different quadrotor systems by varying
the inertia around the x, y and z-axes. We used a linear
quadratic regulator, as described by Bouabdallah (2007),
to initialize the policies in both the learning and testing
phases. We followed a similar experimental procedure to
that discussed above to update the models.

Figure 3 shows the performance of the unconstrained solu-
tion as compared to standard PG and PG-ELLA. Again, our
approach clearly outperforms standard PG and PG-ELLA
in both the initial performance and learning speed. We
also evaluated constrained tasks in a similar manner, again
showing that our approach is capable of respecting con-
straints. Since the policy space is higher dimensional, we
cannot visualize it as well as the benchmark systems, and so
instead report the number of iterations it takes our approach
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Figure 4. Average number of task observations before acquiring
policy parameters that abide by the constraints, showing that our
approach immediately projects policies to safe regions.

to project the policy into the safe region. Figure 4 shows
that our approach requires only one observation of the task
to acquire safe policies, which is substantially lower then
standard PG or PG-ELLA (e.g., which require 545 and 510
observations, respectively, in the quadrotor scenario).

7. Conclusion
We described the first lifelong PG learner that provides sub-
linear regret O(

p
R) with R total rounds. In addition, our

approach supports safety constraints on the learned policy,
which are essential for robust learning in real applications.
Our framework formalizes lifelong learning as online MTL
with limited resources, and enables safe transfer by sharing
policy parameters through a latent knowledge base that is
efficiently updated over time.
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Conclusion	
  

The	
  safe	
  lifelong	
  policy	
  gradient	
  learner:	
  
•  Fully	
  online	
  learning	
  of	
  mul;ple,	
  consecu;ve	
  RL	
  tasks	
  
•  Ensures	
  “safe”	
  policies	
  by	
  respec;ng	
  safety	
  constraints	
  
•  Exhibits	
  sublinear	
  regret	
  for	
  lifelong	
  policy	
  search	
  
•  Validated	
  on	
  benchmark	
  dynamical	
  systems	
  and	
  

quadrotor	
  control	
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