An Automated Measure of MDP Similarity for **Transfer in Reinforcement Learning**

Haitham Bou Ammar

Eric Eaton

Matthew Taylor

Decebal Mocanu

Kurt Driessens

Karl Tuyls

Gerhard Weiss

Maastricht University

Introduction

Reinforcement learning (RL) is a key technique for learning through interaction with the environment

Problem Definition:

RL problems are formalized as Markov Decision Processes (MDPs): $\langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$

S: State Space

 ${\mathcal P}$: Transition Probability

 ${\cal A}\,:$ Action Space

R: Reward Function

? : Discount Factor

Goal

Learn optimal policy by maximizing

$$Q(s, a) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t \mathcal{R}_t\right]$$

Motivation

Problem

Reinforcement learners are slow to learn

Possible Solution

Reuse knowledge from other sources

Impressive Results

- Learning from Demonstration
- Transfer Learning

Transfer Learning

Pool of source tasks from same domain

New target task

Questions to answer:

1. How to transfer?

lots of approaches

2. What to transfer?

lots of approaches

3. When to transfer?

Less progress has been achieved

Needs a task similarity measure

Our measure is based on

Restricted Boltzmann Machines (RBMs):

- Set of visible units $\mathcal{V} = \{v^{(1)}, \dots, v^{(n_v)}\}$
- Set of hidden units $\mathcal{H} = \{h^{(1)}, \dots, h^{(n_h)}\}$

Visible Hidden Layer

RBM Energy Function

$$E(\mathbf{v}, \mathbf{h}) = -\sum_{i,j} v^{(i)} h^{(j)} w^{(i,j)} - \sum_{i} v^{(i)} a^{(i)} - \sum_{j} h^{(j)} b^{(j)}$$

Probability distribution

 $p(\mathbf{v}, \mathbf{h}) \propto \exp(-E(\mathbf{v}, \mathbf{h}))$

Weights are trained using contrastive divergence

The RBM learns a generative model that captures the source dynamics.

Key Idea: If the dynamics of a source and target domain are similar, the RBM trained on the source task should be able to **reconstruct** trajectories from the target task.

Step 2: Reconstruct target task trajectories by sampling the trained RBM

Step 3: Measure reconstruction error of sampled target trajectories as RBDist

$$\mathsf{RBDist} = \frac{1}{n} \sum_{k=1}^{n} e_k \qquad e_k = \mathsf{L}_2\left(\left\langle s_2^{(k)}, a_2^{(k)}, s_2'^{(k)} \right\rangle_0, \left\langle s_2^{(k)}, a_2^{(k)}, s_2'^{(k)} \right\rangle_1\right)$$
 original tuple reconstructed tuple

Experiments & Results

Dynamical Systems & Benchmarks

Swing and balance pole upright by applying torques

Balance pole upright by applying linear forces

Control car to reach goal by oscillating around the valley

Results: Dynamical Phases

Mountain Car

RBDist can automatically cluster dynamical phases

Results: Transfer Performance

RBDist correlates with transfer performance

Thank you!

Please send correspondence to:

Haitham Bou Ammar Eric Eaton

<u>haithamb@seas.upenn.edu</u> <u>eeaton@seas.upenn.edu</u>

This work was supported in part by ONR N00014-11-1-0139, AFOSR FA8750-14-1-0069, and NSF IIS-1149917.