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Reinforcement learning (RL) is a key
technique for learning through
interaction with the environment

Problem Definition:

RL problems are formalized as Markov Decision Processes (MDPs): (S, A, P, R,~)

S :state Space P : Transition Probability

A _ Learn optimal policy by maximizing
: Action Space R :Reward Function

7 : Discount Factor

Goal / Q(s,a) =E | > 7Ry
| t=0 R
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Problem

Reinforcement learners are
slow to learn

Possible Solution

Reuse knowledge
from other sources

* Learning from Demonstration

Bou Ammar, Eaton, et al. 3



Transfer Learning

Pool of source tasks from same domain
New target task

see %

=4 A
o000
Questions to answer:
1. How to transfer? 2. What to transfer?
— lots of approaches — lots of approaches

3. When to transfer?

Less progress has

o . I Needs a task similarity measure
e been achieved _— Y
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RBDist: Similarity Measure Between MDPs
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RBDist: Similarity Measure Between MDPs

Our measure is based on
Restricted Boltzmann Machines (RBMs):

» Set of visible units ¥V = [y, ..., v™)}
+ Set of hidden units H = {A, ..., A"}

RBM Energy Function Visible Hidden

o o o Layer Layer
E(Wv,h) = — Z VOB ED _ Z g0 _ Z JAOFX0)
IJ i J

Probability distribution
Weights are trained
/ p(v,h) x exp(—E(v,h))  using contrastive

divergence
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RBDist: Similarity Measure Between MDPs

Step 1: Train an RBM to approximate
the source task’s dynamics

J Qﬁ?\}‘ Separate into (s,a,s’) i.i.d.
.?‘z z\bx‘ tuples and train RBI\/I/

o
Sampled trajectories capturing Visible Hidden
source dynamics Layer Layer

The RBM learns a generative model that captures the source dynamics.

Key Idea: If the dynamics of a source and target domain are similar, the
RBM trained on the source task should be able to reconstruct
trajectories from the target task.
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RBDist: Similarity Measure Between MDPs

Step 2: Reconstruct target task trajectories
by sampling the trained RBM

Hidden
Layer
Trajectories from Visible Reconstruction of target
target task Laver trajectories based on source
7’ y ( task’s dynamics
@->0-0 @

0 0

Step 3: Measure reconstruction error of sampled target
trajectories as RBDist

. 1 < K (k) (k) (k) (k) (k)
RBDist = — :L(<(, , >< Lay”, >)

n
k=1 L )\ J

| |
original tuple reconstructed tuple
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Experiments & Results

Bou Ammar, Eaton, et al. 9



Dynamical Systems & Benchmarks

£
b

Inverted Pendulum

Swing and balance pole
upright by applying torques

Cart Pole

Balance pole upright by
applying linear forces
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Mountain Car

Control car to reach goal by
oscillating around the valley

10



Results: Dynamical Phases
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RBDist can automatically cluster dynamical phases
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Reward

Results: Transfer Performance
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RBDist correlates with transfer performance
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Thank you!
T~

Please send correspondence to:

Haitham Bou Ammar Eric Eaton
haithamb@seas.upenn.edu eeaton@seas.upenn.edu
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