
Summary	
  
We	
  developed	
  an	
  efficient	
  online	
  method	
  for	
  learning	
  mul5ple	
  consecu5ve	
  
tasks	
  based	
  on	
  the	
  K-­‐SVD	
  algorithm	
  for	
  sparse	
  dic5onary	
  op5miza5on.	
  	
  	
  

Capabili-es	
  of	
  our	
  ELLA-­‐SVD	
  algorithm:	
  
•  Learns	
  mul5ple	
  tasks	
  consecu5vely	
  
•  Transfers	
  knowledge	
  to	
  accelerate	
  learning	
  of	
  new	
  tasks	
  
•  Supports	
  a	
  variety	
  of	
  base	
  learning	
  algorithms	
  
•  Has	
  lower	
  computa5onal	
  cost	
  than	
  current	
  lifelong	
  learning	
  algorithms	
  
•  Supports	
  both	
  task	
  and	
  feature	
  similarity	
  matrices	
  

We	
  demonstrate	
  the	
  effec5veness	
  of	
  ELLA-­‐SVD	
  in	
  lifelong	
  learning	
  seIngs.	
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Introduc-on	
  
Goal:	
  	
  Develop	
  intelligent	
  agents	
  that	
  
1. Quickly	
  learn	
  new	
  tasks	
  
2. Learn	
  con5nually	
  with	
  experience	
  
3. Exhibit	
  versa5lity	
  over	
  mul5ple	
  tasks	
  
	
  

	
  
This	
  work	
  inves5gates	
  a	
  formula5on	
  of	
  online	
  mul5-­‐task	
  learning	
  (MTL)	
  
based	
  on	
  sparse	
  dic5onary	
  op5miza5on.	
  
	
  

This	
  approach	
  builds	
  upon	
  our	
  earlier	
  work	
  on	
  the	
  Efficient	
  Lifelong	
  
Learning	
  Algorithm	
  (ELLA)	
  [Ruvolo	
  &	
  Eaton,	
  ICML	
  ‘13].	
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Lifelong	
  learning	
  includes	
  elements	
  of	
  
both	
  transfer	
  and	
  mul5-­‐task	
  learning	
  

Sparse	
  dic5onary	
  op5miza5on	
  provides	
  a	
  computa5onally	
  efficient	
  method	
  for	
  online	
  mul5-­‐task	
  learning	
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  students	
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Background:	
  Dic-onary	
  Learning	
  for	
  Sparse	
  Coding	
  via	
  K-­‐SVD	
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  that	
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  by	
  solving:	
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  Step	
  1:	
  update	
  codes	
  for	
  each	
  point	
  

The	
  K-­‐SVD	
  Algorithm	
  
Iterate	
  two	
  steps	
  un5l	
  convergence	
  to	
  yield	
  L:	
  

	
  	
  Step	
  2:	
  update	
  each	
  basis	
  vector	
  and	
  the	
  weights	
  of	
  the	
  data	
  
points	
  that	
  u5lize	
  this	
  basis	
  vector	
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call MTL-SVD. We then modify the batch MTL-SVD
algorithm to operate online, making it suitable for ap-
plication to lifelong learning settings.

2. The K-SVD Algorithm

This section reviews the K-SVD algorithm of Aharon
et al. (2006) for learning dictionaries for sparse coding,
which forms the foundation of our approach. Suppose
we are designing a dictionary consisting of k vectors to
sparsely code a set of points {x

1

, . . . ,xn} ⇢ Rd. We
would like to compute a dictionary L 2 Rd⇥k such that
each input point can be coded with a minimal number
of dictionary elements. This objective can be realized
by solving the following optimization problem:

arg min
L

n
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min
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�

�

2

2

+ µ
�

�s(i)
�

�

0

o
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where s(i) is the vector of coe�cients over the columns
of L to encode xi and µ is a positive constant that
defines the tradeo↵ between accurate reconstruction
of the input points and the sparsity of the coe�cient
vectors. This objective is computationally hard to op-
timize due to the cross terms between the dictionary
L and coe�cients S =

⇥

s(1) · · · s(n)
⇤

as well as the
presence of the L

0

norm k · k
0

, which both make the
objective non-convex. Some approaches for solving
Equation 1 alternately optimize L and S until a lo-
cal minima is reached.1

Like other approaches for dictionary learning, K-SVD
alternates two optimization steps.
1. Optimize S in Equation 1 given the current L.
2. For a particular dictionary element (i.e., the jth

column of L), jointly optimize the element as well
as its corresponding coe�cient for each data point
currently encoded by the dictionary element (i.e.,
the non-zero entries in the jth row of S).

We next describe each of these steps of K-SVD; the
complete K-SVD algorithm is given as Algorithm 1.

Step 1: Optimizing S

Given a fixed value of L, Equation 1 decomposes into
n independent optimization problems of the form:

s(i)  arg min
s

�

kLs� xik2
2

+ µksk
0

 

. (2)

Equation 2 is known as the sparse coding problem, and
can be solved (approximately) using numerous tech-

1Optimizing L given a fixed S is a convex optimization
problem, whereas optimizing the columns of S with fixed L,
while not convex, can be relaxed into a convex optimization
problem by replacing the L0 norm with the L1 norm.

Algorithm 1 K-SVD (Aharon et al., 2006)

input data points {x
1

, . . . ,xn}, dictionary size k
init L using random column vectors of unit length
loop until convergence do

for i 2 {1, . . . , n}, perform update in Eqn. 2
for j 2 {1, . . . , k}, perform updates in Eqns. 4–6

end loop
return L

niques (e.g., Matching Pursuit, Orthogonal Matching
Pursuit, or the Lasso (Tibshirani, 1996)).

Step 2: Optimizing a Dictionary Element and
its Corresponding Non-Zero Coe�cients

This step updates a particular dictionary element as
well as the corresponding coe�cients for data points
that are encoded using the element (i.e., have a non-
zero coe�cient value). Let lj indicate the particular
column of L to optimize. First, we form the matrix
E representing the residual for each data point given
that lj is zeroed out. The ith column of E is given by:

ei = xi �
X

r 6=j

s(i)r lr , (3)

where s
(i)
r is the rth entry of s(i). Next, we perform

a singular value decomposition (SVD) on E. The first
left singular vector provides the updated value for lj
and the corresponding right singular vector scaled by
the corresponding singular value yields the updated
coe�cients for each data point (i.e., the jth row of S).

We would like both steps (1) and (2) to either maintain
or improve the quality of our solution to Equation 1.
Unfortunately, using the SVD of E will cause some
coe�cients in S that were previously zero to become
non-zero, eliminating the guarantee that the quality of
our solution cannot become worse. To eliminate this
possibility, we take the SVD of the subset A of the

columns of E such m 2 A, s(m)

j 6= 0:

(U,⌃,V) = svd (EA) (4)

lj  u
1

(5)

s(A)

j  �
1,1v1

, (6)

where EA denotes the matrix formed from the subset
of columns in A, the singular values are assumed to all
be positive (this is possible for any real matrix) and

sorted in descending order, and s(A)

j denotes the vec-
tor formed from the columns in A of the jth row of S.
It is well-known that this optimization procedure min-

imizes kEA�Bk2
2

for all rank-1 matrices B = ljs
(A)>
j .

lj , s
(A)
j  arg min

lj ,s
(A)
j

nX

i=1

⇣
kLs(i) � xik22 + µks(i)k0

⌘

s

(i)  arg min
s

�
kLs� xik22 + µksk0

 

Online Multi-Task Learning based on K-SVD

call MTL-SVD. We then modify the batch MTL-SVD
algorithm to operate online, making it suitable for ap-
plication to lifelong learning settings.

2. The K-SVD Algorithm

This section reviews the K-SVD algorithm of Aharon
et al. (2006) for learning dictionaries for sparse coding,
which forms the foundation of our approach. Suppose
we are designing a dictionary consisting of k vectors to
sparsely code a set of points {x

1

, . . . ,xn} ⇢ Rd. We
would like to compute a dictionary L 2 Rd⇥k such that
each input point can be coded with a minimal number
of dictionary elements. This objective can be realized
by solving the following optimization problem:

arg min
L

n
X

i=1

min
s(i)

n

�

�Ls(i) � xi

�

�

2

2

+ µ
�

�s(i)
�

�

0

o

, (1)
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where s
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a singular value decomposition (SVD) on E. The first
left singular vector provides the updated value for lj
and the corresponding right singular vector scaled by
the corresponding singular value yields the updated
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where EA denotes the matrix formed from the subset
of columns in A, the singular values are assumed to all
be positive (this is possible for any real matrix) and

sorted in descending order, and s(A)
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tor formed from the columns in A of the jth row of S.
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Step	
  2	
  can	
  be	
  solved	
  efficiently	
  via	
  SVD:	
  
•  Let	
  the	
  ith	
  column	
  of	
  E	
  be	
  given	
  by	
  
•  Then	
  take	
  	
  	
  

Surprisingly,	
  we	
  can	
  efficiently	
  find	
  the	
  global	
  minimum!	
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�

0

o

, (1)

where s(i) is the vector of coe�cients over the columns
of L to encode xi and µ is a positive constant that
defines the tradeo↵ between accurate reconstruction
of the input points and the sparsity of the coe�cient
vectors. This objective is computationally hard to op-
timize due to the cross terms between the dictionary
L and coe�cients S =

⇥

s(1) · · · s(n)
⇤

as well as the
presence of the L

0

norm k · k
0

, which both make the
objective non-convex. Some approaches for solving
Equation 1 alternately optimize L and S until a lo-
cal minima is reached.1

Like other approaches for dictionary learning, K-SVD
alternates two optimization steps.
1. Optimize S in Equation 1 given the current L.
2. For a particular dictionary element (i.e., the jth

column of L), jointly optimize the element as well
as its corresponding coe�cient for each data point
currently encoded by the dictionary element (i.e.,
the non-zero entries in the jth row of S).

We next describe each of these steps of K-SVD; the
complete K-SVD algorithm is given as Algorithm 1.

Step 1: Optimizing S

Given a fixed value of L, Equation 1 decomposes into
n independent optimization problems of the form:

s(i)  arg min
s

�

kLs� xik2
2

+ µksk
0

 

. (2)

Equation 2 is known as the sparse coding problem, and
can be solved (approximately) using numerous tech-

1Optimizing L given a fixed S is a convex optimization
problem, whereas optimizing the columns of S with fixed L,
while not convex, can be relaxed into a convex optimization
problem by replacing the L0 norm with the L1 norm.

Algorithm 1 K-SVD (Aharon et al., 2006)

input data points {x
1

, . . . ,xn}, dictionary size k
init L using random column vectors of unit length
loop until convergence do

for i 2 {1, . . . , n}, perform update in Eqn. 2
for j 2 {1, . . . , k}, perform updates in Eqns. 4–6

end loop
return L

niques (e.g., Matching Pursuit, Orthogonal Matching
Pursuit, or the Lasso (Tibshirani, 1996)).

Step 2: Optimizing a Dictionary Element and
its Corresponding Non-Zero Coe�cients

This step updates a particular dictionary element as
well as the corresponding coe�cients for data points
that are encoded using the element (i.e., have a non-
zero coe�cient value). Let lj indicate the particular
column of L to optimize. First, we form the matrix
E representing the residual for each data point given
that lj is zeroed out. The ith column of E is given by:

ei = xi �
X

r 6=j

s(i)r lr , (3)

where s
(i)
r is the rth entry of s(i). Next, we perform

a singular value decomposition (SVD) on E. The first
left singular vector provides the updated value for lj
and the corresponding right singular vector scaled by
the corresponding singular value yields the updated
coe�cients for each data point (i.e., the jth row of S).

We would like both steps (1) and (2) to either maintain
or improve the quality of our solution to Equation 1.
Unfortunately, using the SVD of E will cause some
coe�cients in S that were previously zero to become
non-zero, eliminating the guarantee that the quality of
our solution cannot become worse. To eliminate this
possibility, we take the SVD of the subset A of the

columns of E such m 2 A, s(m)

j 6= 0:

(U,⌃,V) = svd (EA) (4)

lj  u
1

(5)

s(A)

j  �
1,1v1

, (6)

where EA denotes the matrix formed from the subset
of columns in A, the singular values are assumed to all
be positive (this is possible for any real matrix) and

sorted in descending order, and s(A)

j denotes the vec-
tor formed from the columns in A of the jth row of S.
It is well-known that this optimization procedure min-

imizes kEA�Bk2
2

for all rank-1 matrices B = ljs
(A)>
j .
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Figure 2: Lifelong learning results, averaged over 100 trials. Performance was evaluated on all tasks after learning each new task.

to maximize the average performance when learning using
all tasks. Although this procedure inflates performance rela-
tive to fitting the parameters online using a validation set, it
allows us to better compare the relative performance levels
of the different algorithms (which is our principal focus).

Results
The results of our evaluation are given in Figure 2. The pro-
posed ELLA-SVD approach is better than all other methods
on the land mine task. Specifically, the approach performs
much better than the other efficient update approach, ELLA
Incremental. On the synthetic regression tasks, the original
ELLA method is clearly the best, with the ELLA-SVD and
ELLA Incremental approaches lagging behind.

In contrast to the strong performance of ELLA-SVD on
land mine and the synthetic tasks, ELLA-SVD does not
perform well on either facial expression recognition or stu-
dent exam score prediction. In particular, the performance of
ELLA-SVD on student exam score prediction actually de-

clines as it learns more tasks. Further investigation revealed
that the cause of this problem was that the matrix M formed
as a consensus of the D

(t)’s (which is required for Eq. (8))
is a poor approximation to the true objective function we
would like to minimize (Eq. (7)). The primary reason for
this poor approximation is that the input distributions for
each task (i.e., each school) are quite different due to the
school-specific features of each instance. In this case, the
ELLA-SVD updates turn out to be counter-productive.

We proposed the ELLA Dual Update approach in order to
get the best of both worlds. That is, we seek to achieve the

high performance of ELLA-SVD on tasks where it is appro-
priate for application (e.g., for land mine detection), and to
fall back to ELLA Incremental when ELLA-SVD performs
poorly (e.g., for the London schools data). The results for the
Dual Update version shown in Figure 2 suggest that this hy-
brid approach is successful. The performance of ELLA Dual
Update clusters tightly with the best performing algorithm
for each learning problem (with the exception of the syn-
thetic regression tasks, for which none of the more-efficient
approaches does as well as the original ELLA).

Conclusion
We explored the use of the K-SVD algorithm (Aharon et
al. 2006) in the lifelong machine learning setting. Adapting
K-SVD to the lifelong learning setting required several key
innovations including: a) replacing the SVD step in the orig-
inal algorithm with a generalized SVD, and b) selectively
updating components of the model as new task data is pre-
sented. We showed that ELLA-SVD performs well on prob-
lems where the input distributions of the data are similar.

For domains where the input distributions are not sim-
ilar, we showed that a hybrid approach (in which we in-
terleave the ELLA-SVD update with another efficient up-
date step called ELLA Incremental) performs robustly. In fu-
ture work, we will conduct experiments to better understand
the tradeoffs between ELLA-SVD and ELLA Incremental.
Additionally, we plan to test our more-efficient versions of
ELLA in settings where applying the original ELLA is com-
putationally intractable (e.g., when k and d are large).
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