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Summary

We developed an efficient online method for learning multiple consecutive
tasks based on the K-SVD algorithm for sparse dictionary optimization.

Capabilities of our ELLA-SVD algorithm:
* Learns multiple tasks consecutively
* Transfers knowledge to accelerate learning of new tasks
e Supports a variety of base learning algorithms
 Has lower computational cost than current lifelong learning algorithms
e Supports both task and feature similarity matrices

We demonstrate the effectiveness of ELLA-SVD in lifelong learning settings.

IntrOd UCtion Transfer  Batch Multi-
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3 performance over task
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Computational cost Low High

3. Exhibit versatility over multiple tasks
Lifelong learning includes elements of

both transfer and multi-task learning

This work investigates a formulation of online multi-task learning (MTL)
based on sparse dictionary optimization.

This approach builds upon our earlier work on the Efficient Lifelong
Learning Algorithm (ELLA) [ruvolo & Eaton, icvL “13].

Background: Dictionary Learning for Sparse Coding via K-SVD

Goal: Given a dataset {X1,...,Xn} C Rd, output a dictionary
L € RY%* that sparse codes the data by solving:

arg mmme{HLs(i) — Xsz + ,ILHS(i) Ho}

The K-SVD Algorithm
lterate two steps until convergence to yield L:

Step 1: update codes for each point
s\ < arg min {||Ls — x;||3 + x/|s[lo }

S
Step 2: update each basis vector and the weights of the data
points that utilize this basis vector
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Step 2 can be solved efficiently via SVD: |
* Let the i"" column of E be given by e; = x; — Z s,ff)lr
* Then take rt

(U, X, V) =svd (E4)
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Surprisingly, we can efficiently find the global minimum!
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Assumes a parametric model for each task ¢
fOx) = f(x:6") 0 R

The parameter vectors for each model are

linear combinations of a shared latent basis LL
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The MTL objective function encourages transfer between models:
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We can re-write this objective as a sparse coding problem (ruoio & eaton, icmL 13]
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where: H(t) — arg ming nitzzzl ,C(f (ajgt), 9)7yz(t)>

D®) is % the Hessian of the single-task loss evaluated at (%)

|x[|b = x Dx

Using K-SVD for Multi-Task Learning
The sparse coding formulation of MTL is similar to the K-SVD objective.

Key Idea: Use SVD to efficiently solve the MTL objective

* Need to use the generalized SVD (U, X, V) = gsvd (E4, M, W)
instead of the SVD to properly account for 2"d order information, where
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* M and W serve as feature and task relationship matrices

Modifications to Learn Tasks Online

* When training on task ¢, update only s'Y and the relevant basis vectors
* Perform each step of K-SVD only once per batch of training data

ELLA-SVD Algorithm

Given a new task ¢,
1. Train a single-task model %) for task ¢

One pass per
training set

(no “loop until

convergence”)
2. Reconstruct 6(Y) in the current basis (LASSO):
s(t) « arg min, {HLS — H(t)H%(t) L ,uHsHO}
3. Update the basis:
for j=1 ... k such that sl #0, solve via GSVD
5,8 arg min D" (sl Lo — 892, + s
ljasgA) =1l V

Per-Task Computational Complexity

ELLA-SVD: O(base learner + d?k + k’d + gd? + gr?d)
q = sparsity of s r = # tasks utilizing same basis component

ELLA: O(base learner + d3k?) & significantly less efficient than ELLA-SVD

Applications

Facial Expression Recognition: identify presence of facial action units
(#5 upper lid raiser, #10 upper lip raiser, #12 lip corner pull)
e , "
4ﬁs

N

21 Classification Tasks:
*7 subjects
*450-999 images each

PCA

100 features + bias

ELLA

Models

2,880 Gabor Features

Land Mine Detection from radar
29 Classification Tasks:

. * ” *29 regions
el N “ “ 2 terrain types
SR - 14,820 instances total

Student Exam Score Prediction

139 Regression Tasks:
*139 schools
*15,362 students total

3 student specific features

Results

We compared ELLA-SVD to ELLA and two variants:
 ELLA Incremental — a more efficient but suboptimal version of ELLA
 ELLA Dual Update — a hybrid combination of ELLA-SVD & ELLA Incremental

Synthetic Data Land Mine Data
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Sparse dictionary optimization provides a computationally efficient method for online multi-task learning




