
Summary	

We	
 developed	
 an	
 efficient	
 online	
 method	
 for	
 learning	
 mul5ple	
 consecu5ve	

tasks	
 based	
 on	
 the	
 K-­‐SVD	
 algorithm	
 for	
 sparse	
 dic5onary	
 op5miza5on.	
 	
 	

Capabili-es	
 of	
 our	
 ELLA-­‐SVD	
 algorithm:	

•  Learns	
 mul5ple	
 tasks	
 consecu5vely	

•  Transfers	
 knowledge	
 to	
 accelerate	
 learning	
 of	
 new	
 tasks	

•  Supports	
 a	
 variety	
 of	
 base	
 learning	
 algorithms	

•  Has	
 lower	
 computa5onal	
 cost	
 than	
 current	
 lifelong	
 learning	
 algorithms	

•  Supports	
 both	
 task	
 and	
 feature	
 similarity	
 matrices	

We	
 demonstrate	
 the	
 effec5veness	
 of	
 ELLA-­‐SVD	
 in	
 lifelong	
 learning	
 seIngs.	

Paul	
 Ruvolo	

Olin	
 College	
 of	
 Engineering	

Online	
 Mul--­‐Task	
 Learning	
 via	
 Sparse	
 Dic-onary	
 Op-miza-on	

Introduc-on	

Goal:	
 	
 Develop	
 intelligent	
 agents	
 that	

1. Quickly	
 learn	
 new	
 tasks	

2. Learn	
 con5nually	
 with	
 experience	

3. Exhibit	
 versa5lity	
 over	
 mul5ple	
 tasks	

	

	

This	
 work	
 inves5gates	
 a	
 formula5on	
 of	
 online	
 mul5-­‐task	
 learning	
 (MTL)	

based	
 on	
 sparse	
 dic5onary	
 op5miza5on.	

	

This	
 approach	
 builds	
 upon	
 our	
 earlier	
 work	
 on	
 the	
 Efficient	
 Lifelong	

Learning	
 Algorithm	
 (ELLA)	
 [Ruvolo	
 &	
 Eaton,	
 ICML	
 ‘13].	

Op5mizes	

performance	
 over	
 All	
 tasks	

Learns	
 tasks	

consecu5vely	

Very	

inefficiently	

Computa5onal	
 cost	
 High	

Target	

task	

Yes,	

efficiently	

Low	

Transfer	

Learning	

Batch	
 Mul--­‐
Task	
 Learning	

Lifelong	
 learning	
 includes	
 elements	
 of	

both	
 transfer	
 and	
 mul5-­‐task	
 learning	

Sparse	
 dic5onary	
 op5miza5on	
 provides	
 a	
 computa5onally	
 efficient	
 method	
 for	
 online	
 mul5-­‐task	
 learning	
 	
 	

Acknowledgement:	
 	
 This	
 research	
 was	
 supported	
 by	
 ONR	
 grant	
 #N00014-­‐11-­‐1-­‐0139	

Applica-ons	

Student	
 Exam	
 Score	
 Predic-on	

139	
 Regression	
 Tasks:	

• 139	
 schools	

• 15,362	
 students	
 total	

• 4	
 school-­‐specific	
 features	

• 3	
 student-­‐specific	
 features	

Land	
 Mine	
 Detec-on	
 from	
 radar	

29	
 Classifica5on	
 Tasks:	

• 29	
 regions	

• 2	
 terrain	
 types	

• 14,820	
 instances	
 total	

Mines	

Facial	
 Expression	
 Recogni-on:	
 	
 iden5fy	
 presence	
 of	
 facial	
 ac5on	
 units	

(#5	
 upper	
 lid	
 raiser,	
 #10	
 upper	
 lip	
 raiser,	
 #12	
 lip	
 corner	
 pull)	

	

	
 	
 PCA	

	
 	
 100	
 features	
 +	
 bias	

2,880	
 Gabor	
 Features	

21	
 Classifica5on	
 Tasks:	

• 7	
 subjects	

• 450-­‐999	
 images	
 each	

...	
 ELLA	

M
od

el
s	

Eric	
 Eaton	

University	
 of	
 Pennsylvania	

Background:	
 Dic-onary	
 Learning	
 for	
 Sparse	
 Coding	
 via	
 K-­‐SVD	

	
 	
 	
 Goal:	
 	
 Given	
 a	
 data	
 set	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ,	
 output	
 a	
 dic5onary	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 that	
 sparse	
 codes	
 the	
 data	
 by	
 solving:	

	

{x1, . . . ,xn} ⇢ Rd

L 2 Rd⇥k

arg min
L

n
X

i=1

min
s(i)

n

�

�

Ls

(i) � xi

�

�

2

2
+ µ

�

�

s

(i)
�

�

0

o

	
 	
 Step	
 1:	
 update	
 codes	
 for	
 each	
 point	

The	
 K-­‐SVD	
 Algorithm	

Iterate	
 two	
 steps	
 un5l	
 convergence	
 to	
 yield	
 L:	

	
 	
 Step	
 2:	
 update	
 each	
 basis	
 vector	
 and	
 the	
 weights	
 of	
 the	
 data	

points	
 that	
 u5lize	
 this	
 basis	
 vector	

Online Multi-Task Learning based on K-SVD

call MTL-SVD. We then modify the batch MTL-SVD
algorithm to operate online, making it suitable for ap-
plication to lifelong learning settings.

2. The K-SVD Algorithm

This section reviews the K-SVD algorithm of Aharon
et al. (2006) for learning dictionaries for sparse coding,
which forms the foundation of our approach. Suppose
we are designing a dictionary consisting of k vectors to
sparsely code a set of points {x

1

, . . . ,xn} ⇢ Rd. We
would like to compute a dictionary L 2 Rd⇥k such that
each input point can be coded with a minimal number
of dictionary elements. This objective can be realized
by solving the following optimization problem:

arg min
L

n
X

i=1

min
s(i)

n

�

�Ls(i) � xi

�

�

2

2

+ µ
�

�s(i)
�

�

0

o

, (1)

where s(i) is the vector of coe�cients over the columns
of L to encode xi and µ is a positive constant that
defines the tradeo↵ between accurate reconstruction
of the input points and the sparsity of the coe�cient
vectors. This objective is computationally hard to op-
timize due to the cross terms between the dictionary
L and coe�cients S =

⇥

s(1) · · · s(n)
⇤

as well as the
presence of the L

0

norm k · k
0

, which both make the
objective non-convex. Some approaches for solving
Equation 1 alternately optimize L and S until a lo-
cal minima is reached.1

Like other approaches for dictionary learning, K-SVD
alternates two optimization steps.
1. Optimize S in Equation 1 given the current L.
2. For a particular dictionary element (i.e., the jth

column of L), jointly optimize the element as well
as its corresponding coe�cient for each data point
currently encoded by the dictionary element (i.e.,
the non-zero entries in the jth row of S).

We next describe each of these steps of K-SVD; the
complete K-SVD algorithm is given as Algorithm 1.

Step 1: Optimizing S

Given a fixed value of L, Equation 1 decomposes into
n independent optimization problems of the form:

s(i) arg min
s

�

kLs� xik2
2

+ µksk
0

. (2)

Equation 2 is known as the sparse coding problem, and
can be solved (approximately) using numerous tech-

1Optimizing L given a fixed S is a convex optimization
problem, whereas optimizing the columns of S with fixed L,
while not convex, can be relaxed into a convex optimization
problem by replacing the L0 norm with the L1 norm.

Algorithm 1 K-SVD (Aharon et al., 2006)

input data points {x
1

, . . . ,xn}, dictionary size k
init L using random column vectors of unit length
loop until convergence do

for i 2 {1, . . . , n}, perform update in Eqn. 2
for j 2 {1, . . . , k}, perform updates in Eqns. 4–6

end loop
return L

niques (e.g., Matching Pursuit, Orthogonal Matching
Pursuit, or the Lasso (Tibshirani, 1996)).

Step 2: Optimizing a Dictionary Element and
its Corresponding Non-Zero Coe�cients

This step updates a particular dictionary element as
well as the corresponding coe�cients for data points
that are encoded using the element (i.e., have a non-
zero coe�cient value). Let lj indicate the particular
column of L to optimize. First, we form the matrix
E representing the residual for each data point given
that lj is zeroed out. The ith column of E is given by:

ei = xi �
X

r 6=j

s(i)r lr , (3)

where s
(i)
r is the rth entry of s(i). Next, we perform

a singular value decomposition (SVD) on E. The first
left singular vector provides the updated value for lj
and the corresponding right singular vector scaled by
the corresponding singular value yields the updated
coe�cients for each data point (i.e., the jth row of S).

We would like both steps (1) and (2) to either maintain
or improve the quality of our solution to Equation 1.
Unfortunately, using the SVD of E will cause some
coe�cients in S that were previously zero to become
non-zero, eliminating the guarantee that the quality of
our solution cannot become worse. To eliminate this
possibility, we take the SVD of the subset A of the

columns of E such m 2 A, s(m)

j 6= 0:

(U,⌃,V) = svd (EA) (4)

lj u
1

(5)

s(A)

j �
1,1v1

, (6)

where EA denotes the matrix formed from the subset
of columns in A, the singular values are assumed to all
be positive (this is possible for any real matrix) and

sorted in descending order, and s(A)

j denotes the vec-
tor formed from the columns in A of the jth row of S.
It is well-known that this optimization procedure min-

imizes kEA�Bk2
2

for all rank-1 matrices B = ljs
(A)>
j .

lj , s
(A)
j arg min

lj ,s
(A)
j

nX

i=1

⇣
kLs(i) � xik22 + µks(i)k0

⌘

s

(i) arg min
s

�
kLs� xik22 + µksk0

Online Multi-Task Learning based on K-SVD

call MTL-SVD. We then modify the batch MTL-SVD
algorithm to operate online, making it suitable for ap-
plication to lifelong learning settings.

2. The K-SVD Algorithm

This section reviews the K-SVD algorithm of Aharon
et al. (2006) for learning dictionaries for sparse coding,
which forms the foundation of our approach. Suppose
we are designing a dictionary consisting of k vectors to
sparsely code a set of points {x

1

, . . . ,xn} ⇢ Rd. We
would like to compute a dictionary L 2 Rd⇥k such that
each input point can be coded with a minimal number
of dictionary elements. This objective can be realized
by solving the following optimization problem:

arg min
L

n
X

i=1

min
s(i)

n

�

�Ls(i) � xi

�

�

2

2

+ µ
�

�s(i)
�

�

0

o

, (1)

where s(i) is the vector of coe�cients over the columns
of L to encode xi and µ is a positive constant that
defines the tradeo↵ between accurate reconstruction
of the input points and the sparsity of the coe�cient
vectors. This objective is computationally hard to op-
timize due to the cross terms between the dictionary
L and coe�cients S =

⇥

s(1) · · · s(n)
⇤

as well as the
presence of the L

0

norm k · k
0

, which both make the
objective non-convex. Some approaches for solving
Equation 1 alternately optimize L and S until a lo-
cal minima is reached.1

Like other approaches for dictionary learning, K-SVD
alternates two optimization steps.
1. Optimize S in Equation 1 given the current L.
2. For a particular dictionary element (i.e., the jth

column of L), jointly optimize the element as well
as its corresponding coe�cient for each data point
currently encoded by the dictionary element (i.e.,
the non-zero entries in the jth row of S).

We next describe each of these steps of K-SVD; the
complete K-SVD algorithm is given as Algorithm 1.

Step 1: Optimizing S

Given a fixed value of L, Equation 1 decomposes into
n independent optimization problems of the form:

s(i) arg min
s

�

kLs� xik2
2

+ µksk
0

. (2)

Equation 2 is known as the sparse coding problem, and
can be solved (approximately) using numerous tech-

1Optimizing L given a fixed S is a convex optimization
problem, whereas optimizing the columns of S with fixed L,
while not convex, can be relaxed into a convex optimization
problem by replacing the L0 norm with the L1 norm.

Algorithm 1 K-SVD (Aharon et al., 2006)

input data points {x
1

, . . . ,xn}, dictionary size k
init L using random column vectors of unit length
loop until convergence do

for i 2 {1, . . . , n}, perform update in Eqn. 2
for j 2 {1, . . . , k}, perform updates in Eqns. 4–6

end loop
return L

niques (e.g., Matching Pursuit, Orthogonal Matching
Pursuit, or the Lasso (Tibshirani, 1996)).

Step 2: Optimizing a Dictionary Element and
its Corresponding Non-Zero Coe�cients

This step updates a particular dictionary element as
well as the corresponding coe�cients for data points
that are encoded using the element (i.e., have a non-
zero coe�cient value). Let lj indicate the particular
column of L to optimize. First, we form the matrix
E representing the residual for each data point given
that lj is zeroed out. The ith column of E is given by:

ei = xi �
X

r 6=j

s(i)r lr , (3)

where s
(i)
r is the rth entry of s(i). Next, we perform

a singular value decomposition (SVD) on E. The first
left singular vector provides the updated value for lj
and the corresponding right singular vector scaled by
the corresponding singular value yields the updated
coe�cients for each data point (i.e., the jth row of S).

We would like both steps (1) and (2) to either maintain
or improve the quality of our solution to Equation 1.
Unfortunately, using the SVD of E will cause some
coe�cients in S that were previously zero to become
non-zero, eliminating the guarantee that the quality of
our solution cannot become worse. To eliminate this
possibility, we take the SVD of the subset A of the

columns of E such m 2 A, s(m)

j 6= 0:

(U,⌃,V) = svd (EA) (4)

lj u
1

(5)

s(A)

j �
1,1v1

, (6)

where EA denotes the matrix formed from the subset
of columns in A, the singular values are assumed to all
be positive (this is possible for any real matrix) and

sorted in descending order, and s(A)

j denotes the vec-
tor formed from the columns in A of the jth row of S.
It is well-known that this optimization procedure min-

imizes kEA�Bk2
2

for all rank-1 matrices B = ljs
(A)>
j .

Step	
 2	
 can	
 be	
 solved	
 efficiently	
 via	
 SVD:	

•  Let	
 the	
 ith	
 column	
 of	
 E	
 be	
 given	
 by	

•  Then	
 take	
 	
 	

Surprisingly,	
 we	
 can	
 efficiently	
 find	
 the	
 global	
 minimum!	

Online Multi-Task Learning based on K-SVD

call MTL-SVD. We then modify the batch MTL-SVD
algorithm to operate online, making it suitable for ap-
plication to lifelong learning settings.

2. The K-SVD Algorithm

This section reviews the K-SVD algorithm of Aharon
et al. (2006) for learning dictionaries for sparse coding,
which forms the foundation of our approach. Suppose
we are designing a dictionary consisting of k vectors to
sparsely code a set of points {x

1

, . . . ,xn} ⇢ Rd. We
would like to compute a dictionary L 2 Rd⇥k such that
each input point can be coded with a minimal number
of dictionary elements. This objective can be realized
by solving the following optimization problem:

arg min
L

n
X

i=1

min
s(i)

n

�

�Ls(i) � xi

�

�

2

2

+ µ
�

�s(i)
�

�

0

o

, (1)

where s(i) is the vector of coe�cients over the columns
of L to encode xi and µ is a positive constant that
defines the tradeo↵ between accurate reconstruction
of the input points and the sparsity of the coe�cient
vectors. This objective is computationally hard to op-
timize due to the cross terms between the dictionary
L and coe�cients S =

⇥

s(1) · · · s(n)
⇤

as well as the
presence of the L

0

norm k · k
0

, which both make the
objective non-convex. Some approaches for solving
Equation 1 alternately optimize L and S until a lo-
cal minima is reached.1

Like other approaches for dictionary learning, K-SVD
alternates two optimization steps.
1. Optimize S in Equation 1 given the current L.
2. For a particular dictionary element (i.e., the jth

column of L), jointly optimize the element as well
as its corresponding coe�cient for each data point
currently encoded by the dictionary element (i.e.,
the non-zero entries in the jth row of S).

We next describe each of these steps of K-SVD; the
complete K-SVD algorithm is given as Algorithm 1.

Step 1: Optimizing S

Given a fixed value of L, Equation 1 decomposes into
n independent optimization problems of the form:

s(i) arg min
s

�

kLs� xik2
2

+ µksk
0

. (2)

Equation 2 is known as the sparse coding problem, and
can be solved (approximately) using numerous tech-

1Optimizing L given a fixed S is a convex optimization
problem, whereas optimizing the columns of S with fixed L,
while not convex, can be relaxed into a convex optimization
problem by replacing the L0 norm with the L1 norm.

Algorithm 1 K-SVD (Aharon et al., 2006)

input data points {x
1

, . . . ,xn}, dictionary size k
init L using random column vectors of unit length
loop until convergence do

for i 2 {1, . . . , n}, perform update in Eqn. 2
for j 2 {1, . . . , k}, perform updates in Eqns. 4–6

end loop
return L

niques (e.g., Matching Pursuit, Orthogonal Matching
Pursuit, or the Lasso (Tibshirani, 1996)).

Step 2: Optimizing a Dictionary Element and
its Corresponding Non-Zero Coe�cients

This step updates a particular dictionary element as
well as the corresponding coe�cients for data points
that are encoded using the element (i.e., have a non-
zero coe�cient value). Let lj indicate the particular
column of L to optimize. First, we form the matrix
E representing the residual for each data point given
that lj is zeroed out. The ith column of E is given by:

ei = xi �
X

r 6=j

s(i)r lr , (3)

where s
(i)
r is the rth entry of s(i). Next, we perform

a singular value decomposition (SVD) on E. The first
left singular vector provides the updated value for lj
and the corresponding right singular vector scaled by
the corresponding singular value yields the updated
coe�cients for each data point (i.e., the jth row of S).

We would like both steps (1) and (2) to either maintain
or improve the quality of our solution to Equation 1.
Unfortunately, using the SVD of E will cause some
coe�cients in S that were previously zero to become
non-zero, eliminating the guarantee that the quality of
our solution cannot become worse. To eliminate this
possibility, we take the SVD of the subset A of the

columns of E such m 2 A, s(m)

j 6= 0:

(U,⌃,V) = svd (EA) (4)

lj u
1

(5)

s(A)

j �
1,1v1

, (6)

where EA denotes the matrix formed from the subset
of columns in A, the singular values are assumed to all
be positive (this is possible for any real matrix) and

sorted in descending order, and s(A)

j denotes the vec-
tor formed from the columns in A of the jth row of S.
It is well-known that this optimization procedure min-

imizes kEA�Bk2
2

for all rank-1 matrices B = ljs
(A)>
j .

Online Multi-Task Learning based on K-SVD

call MTL-SVD. We then modify the batch MTL-SVD
algorithm to operate online, making it suitable for ap-
plication to lifelong learning settings.

2. The K-SVD Algorithm

This section reviews the K-SVD algorithm of Aharon
et al. (2006) for learning dictionaries for sparse coding,
which forms the foundation of our approach. Suppose
we are designing a dictionary consisting of k vectors to
sparsely code a set of points {x

1

, . . . ,xn} ⇢ Rd. We
would like to compute a dictionary L 2 Rd⇥k such that
each input point can be coded with a minimal number
of dictionary elements. This objective can be realized
by solving the following optimization problem:

arg min
L

n
X

i=1

min
s(i)

n

�

�Ls(i) � xi

�

�

2

2

+ µ
�

�s(i)
�

�

0

o

, (1)

where s(i) is the vector of coe�cients over the columns
of L to encode xi and µ is a positive constant that
defines the tradeo↵ between accurate reconstruction
of the input points and the sparsity of the coe�cient
vectors. This objective is computationally hard to op-
timize due to the cross terms between the dictionary
L and coe�cients S =

⇥

s(1) · · · s(n)
⇤

as well as the
presence of the L

0

norm k · k
0

, which both make the
objective non-convex. Some approaches for solving
Equation 1 alternately optimize L and S until a lo-
cal minima is reached.1

Like other approaches for dictionary learning, K-SVD
alternates two optimization steps.
1. Optimize S in Equation 1 given the current L.
2. For a particular dictionary element (i.e., the jth

column of L), jointly optimize the element as well
as its corresponding coe�cient for each data point
currently encoded by the dictionary element (i.e.,
the non-zero entries in the jth row of S).

We next describe each of these steps of K-SVD; the
complete K-SVD algorithm is given as Algorithm 1.

Step 1: Optimizing S

Given a fixed value of L, Equation 1 decomposes into
n independent optimization problems of the form:

s(i) arg min
s

�

kLs� xik2
2

+ µksk
0

. (2)

Equation 2 is known as the sparse coding problem, and
can be solved (approximately) using numerous tech-

1Optimizing L given a fixed S is a convex optimization
problem, whereas optimizing the columns of S with fixed L,
while not convex, can be relaxed into a convex optimization
problem by replacing the L0 norm with the L1 norm.

Algorithm 1 K-SVD (Aharon et al., 2006)

input data points {x
1

, . . . ,xn}, dictionary size k
init L using random column vectors of unit length
loop until convergence do

for i 2 {1, . . . , n}, perform update in Eqn. 2
for j 2 {1, . . . , k}, perform updates in Eqns. 4–6

end loop
return L

niques (e.g., Matching Pursuit, Orthogonal Matching
Pursuit, or the Lasso (Tibshirani, 1996)).

Step 2: Optimizing a Dictionary Element and
its Corresponding Non-Zero Coe�cients

This step updates a particular dictionary element as
well as the corresponding coe�cients for data points
that are encoded using the element (i.e., have a non-
zero coe�cient value). Let lj indicate the particular
column of L to optimize. First, we form the matrix
E representing the residual for each data point given
that lj is zeroed out. The ith column of E is given by:

ei = xi �
X

r 6=j

s(i)r lr , (3)

where s
(i)
r is the rth entry of s(i). Next, we perform

a singular value decomposition (SVD) on E. The first
left singular vector provides the updated value for lj
and the corresponding right singular vector scaled by
the corresponding singular value yields the updated
coe�cients for each data point (i.e., the jth row of S).

We would like both steps (1) and (2) to either maintain
or improve the quality of our solution to Equation 1.
Unfortunately, using the SVD of E will cause some
coe�cients in S that were previously zero to become
non-zero, eliminating the guarantee that the quality of
our solution cannot become worse. To eliminate this
possibility, we take the SVD of the subset A of the

columns of E such m 2 A, s(m)

j 6= 0:

(U,⌃,V) = svd (EA) (4)

lj u
1

(5)

s(A)

j �
1,1v1

, (6)

where EA denotes the matrix formed from the subset
of columns in A, the singular values are assumed to all
be positive (this is possible for any real matrix) and

sorted in descending order, and s(A)

j denotes the vec-
tor formed from the columns in A of the jth row of S.
It is well-known that this optimization procedure min-

imizes kEA�Bk2
2

for all rank-1 matrices B = ljs
(A)>
j .

Online Multi-Task Learning based on K-SVD

call MTL-SVD. We then modify the batch MTL-SVD
algorithm to operate online, making it suitable for ap-
plication to lifelong learning settings.

2. The K-SVD Algorithm

This section reviews the K-SVD algorithm of Aharon
et al. (2006) for learning dictionaries for sparse coding,
which forms the foundation of our approach. Suppose
we are designing a dictionary consisting of k vectors to
sparsely code a set of points {x

1

, . . . ,xn} ⇢ Rd. We
would like to compute a dictionary L 2 Rd⇥k such that
each input point can be coded with a minimal number
of dictionary elements. This objective can be realized
by solving the following optimization problem:

arg min
L

n
X

i=1

min
s(i)

n

�

�Ls(i) � xi

�

�

2

2

+ µ
�

�s(i)
�

�

0

o

, (1)

where s(i) is the vector of coe�cients over the columns
of L to encode xi and µ is a positive constant that
defines the tradeo↵ between accurate reconstruction
of the input points and the sparsity of the coe�cient
vectors. This objective is computationally hard to op-
timize due to the cross terms between the dictionary
L and coe�cients S =

⇥

s(1) · · · s(n)
⇤

as well as the
presence of the L

0

norm k · k
0

, which both make the
objective non-convex. Some approaches for solving
Equation 1 alternately optimize L and S until a lo-
cal minima is reached.1

Like other approaches for dictionary learning, K-SVD
alternates two optimization steps.
1. Optimize S in Equation 1 given the current L.
2. For a particular dictionary element (i.e., the jth

column of L), jointly optimize the element as well
as its corresponding coe�cient for each data point
currently encoded by the dictionary element (i.e.,
the non-zero entries in the jth row of S).

We next describe each of these steps of K-SVD; the
complete K-SVD algorithm is given as Algorithm 1.

Step 1: Optimizing S

Given a fixed value of L, Equation 1 decomposes into
n independent optimization problems of the form:

s(i) arg min
s

�

kLs� xik2
2

+ µksk
0

. (2)

Equation 2 is known as the sparse coding problem, and
can be solved (approximately) using numerous tech-

1Optimizing L given a fixed S is a convex optimization
problem, whereas optimizing the columns of S with fixed L,
while not convex, can be relaxed into a convex optimization
problem by replacing the L0 norm with the L1 norm.

Algorithm 1 K-SVD (Aharon et al., 2006)

input data points {x
1

, . . . ,xn}, dictionary size k
init L using random column vectors of unit length
loop until convergence do

for i 2 {1, . . . , n}, perform update in Eqn. 2
for j 2 {1, . . . , k}, perform updates in Eqns. 4–6

end loop
return L

niques (e.g., Matching Pursuit, Orthogonal Matching
Pursuit, or the Lasso (Tibshirani, 1996)).

Step 2: Optimizing a Dictionary Element and
its Corresponding Non-Zero Coe�cients

This step updates a particular dictionary element as
well as the corresponding coe�cients for data points
that are encoded using the element (i.e., have a non-
zero coe�cient value). Let lj indicate the particular
column of L to optimize. First, we form the matrix
E representing the residual for each data point given
that lj is zeroed out. The ith column of E is given by:

ei = xi �
X

r 6=j

s(i)r lr , (3)

where s
(i)
r is the rth entry of s(i). Next, we perform

a singular value decomposition (SVD) on E. The first
left singular vector provides the updated value for lj
and the corresponding right singular vector scaled by
the corresponding singular value yields the updated
coe�cients for each data point (i.e., the jth row of S).

We would like both steps (1) and (2) to either maintain
or improve the quality of our solution to Equation 1.
Unfortunately, using the SVD of E will cause some
coe�cients in S that were previously zero to become
non-zero, eliminating the guarantee that the quality of
our solution cannot become worse. To eliminate this
possibility, we take the SVD of the subset A of the

columns of E such m 2 A, s(m)

j 6= 0:

(U,⌃,V) = svd (EA) (4)

lj u
1

(5)

s(A)

j �
1,1v1

, (6)

where EA denotes the matrix formed from the subset
of columns in A, the singular values are assumed to all
be positive (this is possible for any real matrix) and

sorted in descending order, and s(A)

j denotes the vec-
tor formed from the columns in A of the jth row of S.
It is well-known that this optimization procedure min-

imizes kEA�Bk2
2

for all rank-1 matrices B = ljs
(A)>
j .

Online	
 Mul--­‐Task	
 Learning	
 via	
 K-­‐SVD	

f (t)(x) = f(x;✓(t)) ✓(t) 2 Rd

✓(t) = Ls(t) L 2 Rd⇥k, s(t) 2 Rk

X =

Source''
Knowledge'

Co
effi

ci
en

ts
'

✓(t) s(t)LAssumes	
 a	
 parametric	
 model	
 for	
 each	
 task	
 t

The	
 parameter	
 vectors	
 for	
 each	
 model	
 are	

linear	
 combina5ons	
 of	
 a	
 shared	
 latent	
 basis	
 L

The	
 MTL	
 objec5ve	
 func5on	
 encourages	
 transfer	
 between	
 models:	

model	
 fit	
 to	
 data	
 sparsity	
 complexity	

eT (L) =
1

T

TX

t=1

min
s(t)

(
1

nt

ntX

i=1

L
⇣
f
⇣
x

(t)
i ;Ls(t)

⌘
, y(t)i

⌘
+ µks(t)k1

�
+ �kLk2F

#tasks	
 seen	
 so	
 far	

Lifelong)
Learning)System)

1.)$Tasks$are$received$$
sequen2ally$

previously$learned$tasks$ future$learning$tasks$

...$...$t t:1$t:2$t:3$ t+1$ t+2$ t+3$

labeled$data$

previously$learned$
knowledge$L

learned$model$ft$
$

2.)$Knowledge$is$$
transferred$from$$
previously$$
learned$tasks$

3.)New
knowledge$$
is$stored$for$
futureuse

4.)$Exis2ng$
knowledge$$
is$refined$

ft$
$

current$
task$

X(t),$y(t)$

✓

(t) = arg min✓
1
nt

Pnt

i=1 L
⇣
f
�
x

(t)
i ;✓

�
, y(t)i

⌘

D(t) is	
 ½	
 the	
 Hessian	
 of	
 the	
 single-­‐task	
 loss	
 evaluated	
 at	

where:	

✓(t)

kxk2D = x

>
Dx

gT (L) =
1

T

TX

t=1

min
s(t)

⇢��✓(t) � Ls(t)k2D(t) + µks(t)k1
�
+ �kLk2F

We	
 can	
 re-­‐write	
 this	
 objec5ve	
 as	
 a	
 sparse	
 coding	
 problem	
 [Ruvolo	
 &	
 Eaton,	
 ICML	
 ‘13]	

	

	

	

	

	

	

	

Using	
 K-­‐SVD	
 for	
 Mul--­‐Task	
 Learning	

The	
 sparse	
 coding	
 formula5on	
 of	
 MTL	
 is	
 similar	
 to	
 the	
 K-­‐SVD	
 objec5ve.	

	
 Key	
 Idea:	
 	
 Use	
 SVD	
 to	
 efficiently	
 solve	
 the	
 MTL	
 objec5ve	

•  Need	
 to	
 use	
 the	
 generalized	
 SVD	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

instead	
 of	
 the	
 SVD	
 to	
 properly	
 account	
 for	
 2nd	
 order	
 informa5on,	
 where	

•  	
 	
 and	
 	
 	
 serve	
 as	
 feature	
 and	
 task	
 rela5onship	
 matrices	

	

Modifica-ons	
 to	
 Learn	
 Tasks	
 Online	

•  When	
 training	
 on	
 task	
 t,	
 update	
 only	
 s(t)	
 and	
 the	
 relevant	
 basis	
 vectors	

•  Perform	
 each	
 step	
 of	
 K-­‐SVD	
 only	
 once	
 per	
 batch	
 of	
 training	
 data	

(U,⌃,V) = gsvd (EA,M,W)

(U,⌃,V) = gsvd (EA,M,W)(U,⌃,V) = gsvd (EA,M,W)

ELLA-­‐SVD	
 Algorithm	

	

	

Given	
 a	
 new	
 task	
 t,	

1. 	
 Train	
 a	
 single-­‐task	
 model	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 for	
 task	
 t
2. 	
 Reconstruct	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 in	
 the	
 current	
 basis	
 (LASSO):	

	

3. 	
 Update	
 the	
 basis:	

	
 	
 	
 	
 	
 	
 	
 	
 for	
 j	
 =	
 1	
 ...	
 k such	
 that	
 sj(t)	
 ≠	
 0,	
 solve	
 via	
 GSVD	

✓(t)

✓(t)

s(t) arg mins
�
kLs� ✓(t)k2

D(t) + µksk0

One	
 pass	
 per	

training	
 set	

(no	
 “loop	
 un5l	

convergence”)	

Results	

We	
 compared	
 ELLA-­‐SVD	
 to	
 ELLA	
 and	
 two	
 variants:	

•  ELLA	
 Incremental	
 –	
 a	
 more	
 efficient	
 but	
 subop5mal	
 version	
 of	
 ELLA	

•  ELLA	
 Dual	
 Update	
 –	
 a	
 hybrid	
 combina5on	
 of	
 ELLA-­‐SVD	
 &	
 ELLA	
 Incremental	

0 20 40 60 80 100−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

Number of Tasks Learned

Ac
cu

ra
cy

 (−
rM

SE
)

Synthetic Data

ELLA
ELLA Incremental
ELLA−SVD
ELLA Dual Update

0 5 10 15 20 25 300.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

Number of Tasks Learned

Ac
cu

ra
cy

 (A
RO

C)

Land Mine Data

ELLA
ELLA Incremental
ELLA−SVD
ELLA Dual Update

0 50 100 150−12

−11.5

−11

−10.5

−10

Number of Tasks Learned

Ac
cu

ra
cy

 (−
rM

SE
)

London Schools Data

ELLA
ELLA Incremental
ELLA−SVD
ELLA Dual Update

0 5 10 15 20 250.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

Number of Tasks Learned

Ac
cu

ra
cy

 (A
RO

C)

Facial Expression Data

ELLA
ELLA Incremental
ELLA−SVD
ELLA Dual Update

Figure 2: Lifelong learning results, averaged over 100 trials. Performance was evaluated on all tasks after learning each new task.

to maximize the average performance when learning using
all tasks. Although this procedure inflates performance rela-
tive to fitting the parameters online using a validation set, it
allows us to better compare the relative performance levels
of the different algorithms (which is our principal focus).

Results
The results of our evaluation are given in Figure 2. The pro-
posed ELLA-SVD approach is better than all other methods
on the land mine task. Specifically, the approach performs
much better than the other efficient update approach, ELLA
Incremental. On the synthetic regression tasks, the original
ELLA method is clearly the best, with the ELLA-SVD and
ELLA Incremental approaches lagging behind.

In contrast to the strong performance of ELLA-SVD on
land mine and the synthetic tasks, ELLA-SVD does not
perform well on either facial expression recognition or stu-
dent exam score prediction. In particular, the performance of
ELLA-SVD on student exam score prediction actually de-

clines as it learns more tasks. Further investigation revealed
that the cause of this problem was that the matrix M formed
as a consensus of the D

(t)’s (which is required for Eq. (8))
is a poor approximation to the true objective function we
would like to minimize (Eq. (7)). The primary reason for
this poor approximation is that the input distributions for
each task (i.e., each school) are quite different due to the
school-specific features of each instance. In this case, the
ELLA-SVD updates turn out to be counter-productive.

We proposed the ELLA Dual Update approach in order to
get the best of both worlds. That is, we seek to achieve the

high performance of ELLA-SVD on tasks where it is appro-
priate for application (e.g., for land mine detection), and to
fall back to ELLA Incremental when ELLA-SVD performs
poorly (e.g., for the London schools data). The results for the
Dual Update version shown in Figure 2 suggest that this hy-
brid approach is successful. The performance of ELLA Dual
Update clusters tightly with the best performing algorithm
for each learning problem (with the exception of the syn-
thetic regression tasks, for which none of the more-efficient
approaches does as well as the original ELLA).

Conclusion
We explored the use of the K-SVD algorithm (Aharon et
al. 2006) in the lifelong machine learning setting. Adapting
K-SVD to the lifelong learning setting required several key
innovations including: a) replacing the SVD step in the orig-
inal algorithm with a generalized SVD, and b) selectively
updating components of the model as new task data is pre-
sented. We showed that ELLA-SVD performs well on prob-
lems where the input distributions of the data are similar.

For domains where the input distributions are not sim-
ilar, we showed that a hybrid approach (in which we in-
terleave the ELLA-SVD update with another efficient up-
date step called ELLA Incremental) performs robustly. In fu-
ture work, we will conduct experiments to better understand
the tradeoffs between ELLA-SVD and ELLA Incremental.
Additionally, we plan to test our more-efficient versions of
ELLA in settings where applying the original ELLA is com-
putationally intractable (e.g., when k and d are large).

lj , s
(A)
j arg min

lj ,s
(A)
j

TX

t=1

⇣
wtkLs(t) � ✓(t)k2M + µks(t)k0

⌘

wt =
1>D(t)1P

t02Aj
1>D(t0)1

M =
1

|Aj |
X

t02Aj

D(t0)

Per-­‐Task	
 Computa-onal	
 Complexity	

ELLA-­‐SVD:	
 O(base	
 learner	
 +	
 d2k	
 +	
 k2d	
 +	
 qd3	
 +	
 qr2d)	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 q	
 =	
 sparsity	
 of	
 s(t)	
 	
 	
 	
 r	
 =	
 #	
 tasks	
 u5lizing	
 same	
 basis	
 component	
 	

	

ELLA:	
 O(base	
 learner	
 +	
 d3k2)	
 	
 	
 	
 	
 	
 	
 	
 ß	
 significantly	
 less	
 efficient	
 than	
 ELLA-­‐SVD	

