Paul Ruvolo
Bryn Mawr College

BRYN MAWR

COLLEGE

ELLA: An Efficient Lifelong Learning Algorithm

Eric Eaton
Bryn Mawr College

Abstract

The problem of learning multiple tasks that arrive sequentially, known as lifelong
learning, is of great importance to the creation of intelligent, general-purpose, and
flexible machines. This paper develops a method for online multitask learning in the
lifelong learning setting. The proposed Efficient Lifelong Learning Algorithm (ELLA)
maintains a sparsely shared basis for all task models, transfers knowledge from the
basis to learn each new task, and refines the basis over time to maximize
performance across all learned tasks. The proposed method has strong connections
to both online dictionary learning for sparse coding and current batch multi-task
learning methods, and provides robust theoretical performance guarantees.
Empirically, ELLA yields nearly identical performance to batch multi-task learning
while learning tasks sequentially in over 1,000x less time.
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Lifelong learning includes elements of

ELLA’s Capabilities: . _
both transfer and multi-task learning

1. Optimized performance over all tasks
2. Efficient learning of each new consecutive task via transfer
3. Equivalent performance to batch MTL with over 1,000x speedup

Base Learning Algorithms
ELLA can support any base learner with a twice-differentiable loss function

Linear Regression: (y(Y) ¢ R™, f(x;0) = 0'x, and L(:) is squared loss)
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Logistic Regression: (y(®) € {—1,+1}", f(x;0) = (1+¢~9*)"", and L(-) is log-loss)

0" is the Iogistic regression fit to X(t), y(t) using a standard solver
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Theory

Assumptions:
1. Tuples (D®W 0W) are drawn i.i.d. from a distribution with compact s(upport

2. The sparse codmg solution is unique and is sensitive to changes in 37) (non-zero
entries of s(): ¥ L, D®, and 6 the smallest eigenvalue of LITD®L, >« > 0

Theorems:
1. The basis L, becomes more stable over time: L7, — L7 = O (%)

2. The penalty for not re-optimizing the s"’s vanishes as T gets large:

gr (L) = \|L|I2 + A3, ¢(L,s®, 60 DY)
gr (L) = Al|L |2:—— % Zle mmsﬁ(L S, 9(t) D(t))

as T — oo, gr(Lr)
3. The basis L converges to a fixed point of the expected loss e

— gr(L7) converges a.s. to 0

Connections to Dictionary Learning for Sparse Coding:
Online dictionary learning for sparse coding (\vairal et al., 2009) is a special case of ELLA
where the 8%)’s are given instead of learned and the D*)’s are identity matrices

Task Structure Model

ELLA’s goal is to fit a parametric model for each task ¢
fOx) = f(x:0") g0 R

The parameter vectors for each function are assumed

to be linear combinations of a shared latent basis L
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We minimize the following objective function to Source

Knowledge
encourage models to utilize few latent basis vectors:
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Efficient Lifelong Learning

Minimizing e, is computationally expensive for two reasons:
1. Evaluating the objective function scales with the number of training instances n,
2. The number of optimization problems grows linearly with the number of tasks 1°

To address (1) we replace the inner summation with the 2nd-order Taylor expansion
around the optimal task-specific model: 8(Y) = arg ming 'n%z?il E(f (a:f;t); 0), yz@)

To address (2) we optimize s<t)only when training on task ¢ and not on other tasks

These simplifications yield the following update equations to learn given ( X () _¢)) .

s') argm(n)aé(Lm, st o) D)

L,,11 « arg IIllIl )\HLHF S Z{(L S(t) g(t) D(t))

where
2
((L,s,0,D) = p||s]|; +[|@ — Ls||p

DW is % the Hessian of the single-task loss evaluated at (%)

Results

Facial Expression Recognition: identify presence of facial action units
(#5 upper lid raiser, #10 upper lip raiser, #12 lip corner pull)

¥
21 Classification Tasks: 45 n
7 subjects /1~ PCA P o
*450-999 images each . -100 features + bias ELLA \Jﬁ ) -é

2,880 Gabor Features

Land Mine Detectlon from radar images

= _.& 29 Classification Tasks:
4 29 regions
&0 <) terrain types

¥ 14,820 instances total

Student Exam Score Prediction

139 Regression Tasks:
*139 schools
*15,362 students total

3 student specific features

ELLA achieves nearly identical accuracy to batch MTL,

Problem Batch MTL ELLA Relative | OMTL Relative | STL Relative
Dataset Type Accuracy Accuracy Accuracy Accuracy
Land Mine | Classification | 0.7802 £ 0.013 (AUC) 99.73 + 0.7% 82.2 + 3.0% 97.97 + 1.5%
Facial Expr. | Classification | 0.6577 £ 0.021 (AUC) 99.37 + 3.1% 97.58 + 3.8% 97.34 + 3.9%
Syn. Data Regression | —1.084 +0.006 (-rMSE) | 97.74 +2.7% N/A 92.91 + 1.5%
London Sch. | Regression |—10.10=+ 0.066 (-rMSE) | 98.90 £ 1.5% N/A 97.20 £+ 0.4%
while learning over 1,000 times faster
Batch ELLA ELLA OMTL OMTL STL STL
Runtime | All Tasks New Task All Tasks | New Task All Tasks New Task
Dataset (seconds) | (speedup) | (speedup) | (speedup)| (speedup) (speedup) (speedup)
Land Mine 231£6.2 | 1,350£58 39,1501+1,682 221+0.88 63825 3,3424409 96,918+11,861
Facial Expr. | 2,.200492 |1,8284100 | 38,40042,100 | 948465 19,900+1,360 | 8,5114+1,107 | 178,719+23,239
Syn. Data | 1,3004£141 | 5,026£685 | 502,600168,500 N/A N/A 156,4894+17,564 | 1.6E641.8E5
London Sch. | 715436 |2,721+£225 |378,219431,275 N/A N/A 36,000+4,800 5.0E6£6.7E5

ELLA also exhibits reverse transfer
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Reverse transfer occurs when earlier tasks improve from
later learning without retraining on the earlier tasks
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ELLA has equivalent accuracy to batch multi-task learning, but is 1,000x faster and can learn online




