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Introduction Unsupervised Manifold Alignment for Learning the Inter-Task Mapping xs

We developed an autonomous iramework that uses unsupervised Phase I: Learning the inter-task mapping s via unsupervised manifold alignment
manifold alignment to learn inter-task mappings and effectively transfer
samples between different task domains. Our results demonstrate the
success of our approach for transfer between highly dissimilar control
tasks (e.g., from cart-poles to quadrotors), and show that transfer

quality is positively correlated with manifold alignment quality.

1. Sample a.) optimal trajectories from the source task using 71'(*5) and b.) random trajectories from the target task.

2. Flatten all trajectories and construct a k-NN graph to capture the local geometry of the states in both the source and target tasks.

3. Identify a shared representation between the source and target tasks that captures local state transition dynamics by optimizing
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Motivation: — —
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e Transfer learning enables rapid training of a control policy for a
new target task by reusing knowledge from other source tasks.

cross-task connection source task geometry target task geometry

where the W's are the weighted adjacency matrices, s are the states, the a’s are the projections into the shared latent space, and the

e In the case of multiple task domain, an inter-task mapping x is . . . .
superscripts or subscripts of (S) and (1) denote whether these variables correspond to the source or target task, respectively.

needed to map knowledge between tasks.
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— x maps state-action-next-state triplets from the source task 4. The inter-task mapping xs = OO ) .

to the target task, which can be used for policy initialization.
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Phase I: __Target Domain

Learn cross-domain mapping

Phase 1I: Initialize the target task’s policy via transfer
(1) éT).

Background: Reinforcement Learning 1. Sample initial target states s

(T')

Project initial target states sy ° to the source task via xs.

Reinforcement Learning (RL) problems are formalized as Markov Deci- 2.
sion Processes (MDPs): (S, A, Py, P, r), where 3

e S € R? is the state space

. Execute 7T( s) from these projected states, yielding optimal

trajectories 7(g).
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o A c R™ is the action space Transfer optimal source trajectories 7(g) to the target task via X%,

e Py is the initial state distribution yielding target trajectories T(T) -

o P :SxAxS — [0,1] is the
transition probability function

e r: S X AXxS — Ris the reward
function.

Goal: Learn an optimal policy 7*
discounted reward.

Initialize target task policy m(ry from 7(py, yielding ggf})). Qe

Improve 77y using standard policy gradient methods.

Selected Results of Transfer Between Different Dynamical Systems

Cart-Pole to 3-link Cart-Pole

Cart-Pole to Quadrotor

Predicting Success of Cross-Domain Transfer

Background: POlle Gradient RL 05, 0) e Transfer quality (||0: —60*||2) is positive correlated with
/(. 6) \ (6, 02) manifold alignment quality (P
: : .. : ; . N2, 0> y (Procrustes measure).
In Policy Gradient (PG) methods, the policy is parameterized by 8 € R¢ TR, (01, 9:/>/' . ( )
and a vector of state features ®. The goal is to maximize , h | I e e Manifold alignment quality may indicate when our
(X, %)k L Ny B 1 ' approach to cross-domain transfer is likely to succeed.
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Problem: PG suflers from high computational and sample complexities.

lterations Procrustes Measure

enables robust cross-domain transfer between highly dissimilar tasks
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