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Summary	
  
We	
  developed	
  a	
  lifelong	
  policy	
  gradient	
  learner	
  that	
  operates	
  in	
  an	
  
adversarial	
  se>ng	
  to	
  learn	
  mul?ple	
  tasks	
  online	
  while	
  enforcing	
  safety	
  
constraints	
  on	
  the	
  learned	
  policies.	
  	
  
	
  

•  Fully	
  online	
  learning	
  of	
  mul?ple,	
  consecu?ve	
  RL	
  tasks	
  
•  Ensures	
  “safe”	
  policies	
  by	
  respec?ng	
  safety	
  constraints	
  
•  Exhibits	
  sublinear	
  regret	
  for	
  lifelong	
  policy	
  search	
  
•  Validated	
  on	
  benchmark	
  dynamical	
  systems	
  and	
  quadrotor	
  control	
  

Mo8va8ons	
  
1.	
  	
  Reuse	
  knowledge	
  from	
  previously	
  learned	
  tasks	
  to	
  accelerate	
  the	
  

learning	
  of	
  new	
  control	
  policies	
  
	
  à	
  Lifelong	
  RL	
  to	
  learn	
  mul?ple,	
  consecu?ve	
  tasks	
  online	
  
	
  à	
  Exhibit	
  vanishing	
  regrets	
  

2.	
  	
  Robo?c	
  control	
  policies	
  must	
  obey	
  safety	
  constraints	
  	
  
	
  (e.g.,	
  prevent	
  damage	
  to	
  the	
  robot	
  and	
  	
  
	
  	
  environment,	
  avoid	
  catastrophic	
  failure)	
  
	
  à	
  Incorporate	
  constraints	
  directly	
  	
  
	
  	
  	
  	
  	
  	
  into	
  the	
  op?miza?on	
  

Background:	
  	
  Policy	
  Gradient	
  (PG)	
  Methods	
  
•  Agent	
  interacts	
  with	
  environment,	
  taking	
  consecu?ve	
  ac?ons	
  
•  PG	
  methods	
  support	
  con?nuous	
  state	
  and	
  ac?on	
  spaces	
  
-  Have	
  shown	
  recent	
  success	
  in	
  applica?ons	
  to	
  robo?c	
  control	
  

	
  

	
  

Goal:	
  find	
  policy	
  	
  	
  	
  	
  	
  	
  	
  that	
  minimizes	
  	
  

probability	
  of	
  trajectory	
  	
   cost	
  of	
  trajectory	
  

Trajectories	
  

Policy	
  Gradient	
  
Learner	
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Background:	
  Online	
  Learning	
  &	
  Regret	
  Analysis	
  
Regret	
  Minimiza8on	
  Game:	
  	
  Each	
  round	
  j = 1 ... R,	
  	
  

a.)	
  agent	
  chooses	
  a	
  predic?on	
  	
  	
  	
  	
  	
  ,	
  and	
  	
  	
  	
  	
  	
  
b.)	
  environment	
  (i.e.,	
  the	
  adversary)	
  chooses	
  a	
  loss	
  func?on	
  	
  

	
  

Goal:	
  minimize	
  cumula?ve	
  regret	
  (modified	
  for	
  mul?-­‐task	
  case)	
  
	
  
	
  
	
  

Solve	
  via	
  “Follow	
  the	
  Regularized	
  Leader”:	
  
1.)	
  Find	
  	
  	
  	
  	
  	
  	
  via	
  unconstrained	
  op?miza?on	
  over	
  accumulated	
  losses	
  
2.)	
  Project	
  	
  	
  	
  	
  	
  onto	
  the	
  constraint	
  set	
  via	
  Bregman	
  projec?ons	
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Lifelong	
  Learning	
  Framework	
  
	
  

Lifelong	
  Learning	
  System	
  

1.)	
  Tasks	
  are	
  received	
  	
  
consecu?vely	
  

learned	
  tasks	
  from	
  previous	
  rounds	
   future	
  learning	
  rounds	
  

...	
   ...	
  tj tj-­‐1	
  tj-­‐2	
  tj-­‐3	
   tj+1	
   tj+2	
   tj+3	
  

trajectories	
  
for	
  task	
  tj!

previously	
  learned	
  
knowledge	
  L 

learned	
  policy	
  	
  

2.)	
  Knowledge	
  is	
  	
  
transferred	
  from	
  	
  
previously	
  	
  
learned	
  tasks	
  

3.)	
  New	
  
knowledge	
  	
  
is	
  stored	
  for	
  
future	
  use	
  

4.)	
  Exis?ng	
  
knowledge	
  	
  
is	
  refined	
  

current	
  round	
  j!

⇡↵tj
↵tj = Lstj

Policy	
  parameters	
  

Task-­‐specific	
  coeffi
cients	
  

X = 

Source''
Knowledge'

Co
effi

ci
en

ts
'

✓(t) s(t)L↵tj = Lstj↵tj = Lstj↵tj = Lstj

shared	
  
basis	
  

Each	
  task	
  has	
  associated	
  
safety	
  constraints	
  

Atj↵tj  btj

Safe	
  Lifelong	
  Policy	
  Search	
  
Mul8-­‐task	
  Op8miza8on	
  Problem	
  a]er	
  observing	
  r	
  rounds:	
  
	
  
	
  
	
  
	
  
	
  
Online	
  Formula8on	
  
•  Let	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  be	
  the	
  vector	
  of	
  all	
  parameters	
  
•  The	
  MTL	
  objec?ve	
  can	
  be	
  wri_en	
  online	
  as	
  

	
  	
  	
  	
  	
  	
  where	
  the	
  loss	
  for	
  task	
  tj	
  is	
  the	
  following	
  bilinear	
  product	
  in	
  	
  	
  	
  :	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

Online	
  Solu8on	
  	
  
Step	
  1:	
  	
  Unconstrained	
  policy	
  op?miza?on	
  via	
  alterna?ng	
  op?miza?on	
  

over	
  L	
  and	
  S	
  to	
  yield	
  unconstrained	
  solu?on	
  
Step	
  2:	
  	
  Project	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  to	
  the	
  constraint	
  set	
  via	
  the	
  Bregman	
  divergence	
  

over	
  	
  	
  	
  	
  	
  	
  	
  —	
  involves	
  solving	
  2nd	
  order	
  cone	
  and	
  semi-­‐definite	
  programs	
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Main	
  Theore8cal	
  Result	
  
We	
  prove	
  that	
  the	
  safe	
  lifelong	
  policy	
  search	
  algorithm	
  has	
  sublinear	
  
regret	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  in	
  the	
  total	
  number	
  of	
  rounds	
  R.	
  O(

p
R)
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Algorithm 1 Safe Online Lifelong Policy Search
1: Inputs: Total number of rounds R, weighting factor

⌘ =

1/
p
R, regularization parameters µ

1

and µ
2

, con-
straints p and q, number of latent basis vectors k.

2: S = zeros(k, |T |), L = diagk(⇣) with p  ⇣2  q
3: for j = 1 to R do
4: tj  sampleTask(), and update Ij
5: Compute unconstrained solution ˜

✓j+1

(Sect. 4.1)
6: Fix S and C, and update L (Sect. 4.2.1)
7: Use updated L to derive S and C (Sect. 4.2.2)
8: end for
9: Output: Safety-constrained L and S
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4.2.2. SECOND-ORDER CONE PROGRAM FOR
LEARNING TASK PROJECTIONS

Having determined L, we can acquire S and update C

by solving a second-order cone program (Boyd & Vanden-
berghe, 2004) of the following form:

min
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5. Theoretical Guarantees
This section quantifies the performance of our approach by
providing formal analysis of the regret after R rounds. We
show that the safe lifelong reinforcement learner exhibits
sublinear regret in the total number of rounds. Formally,
we prove the following theorem:
Theorem 1 (Sublinear Regret). After R rounds and choos-
ing 8tj 2 IR ⌘tj = ⌘ =

1p
R

, L
�

�

�

ˆ✓1

= diagk(⇣), with

diagk(·) being a diagonal matrix among the k columns of

L, p  ⇣2  q, and S

�

�

�

ˆ✓1

= 0k⇥|T |, the safe lifelong rein-

forcement learner exhibits sublinear regret of the form:
R
X
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for any u 2 K.

Proof Roadmap: The remainder of this section completes
our proof of Theorem 1; further details are given in Ap-
pendix B. We assume linear losses for all tasks in the con-
strained case in accordance with Sect. 4.2. Although linear

losses for policy search RL are too restrictive given a single
operating point, as discussed previously, we remedy this
problem by generalizing to the case of piece-wise linear
losses, where the linearization operating point is a resultant
of the optimization problem. To bound the regret, we need
to bound the dual Euclidean norm (which is the same as the
Euclidean norm) of the gradient of the loss function, then
prove Theorem 1 by bounding: (1) task tj’s gradient loss
(Sect. 5.1), and (2) linearized losses with respect to L and
S (Sect. 5.2).

5.1. Bounding tj’s Gradient Loss

We start by stating essential lemmas for Theorem 1; due to
space constraints, proofs for all lemmas are available in the
supplementary material. Here, we bound the gradient of a
loss function ltj (✓) at round r under Gaussian policies3.
Assumption 1. We assume that the policy for a task tj is
Gaussian, the action set U is bounded by u

max

, and the
feature set is upper-bounded by �

max

.
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5.2. Bounding Linearized Losses

As discussed previously, we linearize the loss of task tr
around the constraint solution of the previous round ˆ

✓r. To
acquire the regret bounds in Theorem 1, the next step is to

bound the dual norm,
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3Please note that derivations for other forms of log-concave
policy distributions could be derived in similar manner. In this
work, we focus on Gaussian policies since they cover a broad
spectrum of real-world applications.

Acknowledgements	
  
This	
  research	
  was	
  supported	
  by	
  ONR	
  grant	
  #N00014-­‐11-­‐1-­‐0139	
  and	
  
AFRL	
  grant	
  #FA8750-­‐14-­‐1-­‐0069.	
  	
  
We	
  thank	
  Ali	
  Jadbabaie	
  for	
  assistance	
  with	
  the	
  op?miza?on	
  solu?on,	
  
and	
  the	
  anonymous	
  reviewers	
  for	
  their	
  helpful	
  feedback.	
  

Experimental	
  Results	
  
	
  

Learn	
  policies	
  for	
  consecu?ve	
  control	
  tasks	
  on	
  three	
  types	
  of	
  systems	
  
	
  
	
  
	
  
	
  
	
  
Superior	
  Performance	
  over	
  standard	
  PG	
  and	
  the	
  lifelong	
  learner	
  PG-­‐ELLA	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
Enforces	
  the	
  Given	
  Safety	
  Constraints,	
  unlike	
  alterna?ve	
  methods	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

•  Note	
  that	
  our	
  approach	
  immediately	
  projects	
  policies	
  to	
  safe	
  regions	
  
even	
  during	
  the	
  policy	
  search	
  process,	
  unlike	
  other	
  methods	
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6. Experimental Validation
To validate the empirical performance of our method, we
applied our safe online PG algorithm to learn multiple con-
secutive control tasks on three dynamical systems (Fig-
ure 1). To generate multiple tasks, we varied the parameter-
ization of each system, yielding a set of control tasks from
each domain with varying dynamics. The optimal control
policies for these systems vary widely with only minor
changes in the system parameters, providing substantial di-
versity among the tasks within a single domain.

Figure 1. Dynamical systems used in the experiments: a) simple
mass system (left), b) cart-pole (middle), and c) quadrotor un-
manned aerial vehicle (right).

Simple Mass Spring Damper: The simple mass (SM)
system is characterized by three parameters: the spring con-
stant k in N/m, the damping constant d in Ns/m and the
mass m in kg. The system’s state is given by the position x

and ˙

x of the mass, which varies according to a linear force
F . The goal is to train a policy for controlling the mass in
a specific state gref = hxref, ˙xrefi.
Cart Pole: The cart-pole (CP) has been used extensively
as a benchmark for evaluating RL methods (Busoniu et al.,
2010). CP dynamics are characterized by the cart’s mass
mc in kg, the pole’s mass mp in kg, the pole’s length in
meters, and a damping parameter d in Ns/m. The state is
given by the cart’s position x and velocity ˙

x, as well as the
pole’s angle ✓ and angular velocity ˙

✓. The goal is to train a
policy that controls the pole in an upright position.

6.1. Experimental Protocol
We generated 10 tasks for each domain by varying the sys-
tem parameters to ensure a variety of tasks with diverse op-

timal policies, including those with highly chaotic dynam-
ics that are difficult to control. We ran each experiment for
a total of R rounds, varying from 150 for the simple mass
to 10, 000 for the quadrotor to train L and S, as well as
for updating the PG-ELLA and PG models. At each round
j, the learner observed a task tj through 50 trajectories of
150 steps and updated L and stj . The dimensionality k of
the latent space was chosen independently for each domain
via cross-validation over 3 tasks, and the learning step size
for each task domain was determined by a line search after
gathering 10 trajectories of length 150. We used eNAC, a
standard PG algorithm, as the base learner.

We compared our approach to both standard PG (i.e.,
eNAC) and PG-ELLA (Bou Ammar et al., 2014), examin-
ing both the constrained and unconstrained variants of our
algorithm. We also varied the number of iterations in our al-
ternating optimization from 10 to 100 to evaluate the effect
of these inner iterations on the performance, as shown in
Figures 2 and 3. For the two MTL algorithms (our approach
and PG-ELLA), the policy parameters for each task tj were
initialized using the learned basis (i.e., ↵tj = Lstj ). We
configured PG-ELLA as described by Bou Ammar et al.
(2014), ensuring a fair comparison. For the standard PG
learner, we provided additional trajectories in order to en-
sure a fair comparison, as described below.

For the experiments with policy constraints, we generated
a set of constraints (At, bt) for each task that restricted the
policy parameters to pre-specified “safe” regions, as shown
in Figures 2(c) and 2(d). We also tested different values for
the constraints on L, varying p and q between 0.1 to 10;
our approach showed robustness against this broad range,
yielding similar average cost performance.

6.2. Results on Benchmark Systems
Figure 2 reports our results on the benchmark simple mass
and cart-pole systems. Figures 2(a) and 2(b) depicts the
performance of the learned policy in a lifelong learning set-
ting over consecutive unconstrained tasks, averaged over
all 10 systems over 100 different initial conditions. These
results demonstrate that our approach is capable of outper-
forming both standard PG (which was provided with 50
additional trajectories each iteration to ensure a more fair
comparison) and PG-ELLA, both in terms of initial perfor-
mance and learning speed. These figures also show that the
performance of our method increases as it is given more
alternating iterations per-round for fitting L and S.

We evaluated the ability of these methods to respect safety
constraints, as shown in Figures 2(c) and 2(d). The thicker
black lines in each figure depict the allowable “safe” region
of the policy space. To enable online learning per-task, the
same task tj was observed on each round and the shared
basis L and coefficients stj were updated using alternating
optimization. We then plotted the change in the policy pa-
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Figure 2. Results on benchmark simple mass and cart-pole systems. Figures (a) and (b) depict performance in lifelong learning scenarios
over consecutive unconstrained tasks, showing that our approach outperforms standard PG and PG-ELLA. Figures (c) and (d) examine
the ability of these method to abide by safety constraints on sample constrained tasks, depicting two dimensions of the policy space (↵1

vs ↵2) and demonstrating that our approach abides by the constraints (the dashed black region).

rameter vectors per iterations (i.e., ↵tj = Lstj ) for each
method, demonstrating that our approach abides by the
safety constraints, while standard PG and PG-ELLA can
violate them (since they only solve an unconstrained opti-
mization problem). In addition, these figures show that in-
creasing the number of alternating iterations in our method
causes it to take a more direct path to the optimal solution.

6.3. Application to Quadrotor Control

We also applied our approach to the more challenging do-
main of quadrotor control. The dynamics of the quadro-
tor system (Figure 1) are influenced by inertial constants
around e

1,B , e
2,B , and e

3,B , thrust factors influencing how
the rotor’s speed affects the overall variation of the system’s
state, and the lengths of the rods supporting the rotors. Al-
though the overall state of the system can be described by
a 12-dimensional vector, we focus on stability and so con-
sider only six of these state-variables. The quadrotor sys-
tem has a high-dimensional action space, where the goal is
to control the four rotational velocities {wi}4i=1

of the ro-
tors to stabilize the system. To ensure realistic dynamics,
we used the simulated model described by (Bouabdallah,
2007; Voos & Bou Ammar, 2010), which has been verified
and used in the control of physical quadrotors.

We generated 10 different quadrotor systems by varying
the inertia around the x, y and z-axes. We used a linear
quadratic regulator, as described by Bouabdallah (2007),
to initialize the policies in both the learning and testing
phases. We followed a similar experimental procedure to
that discussed above to update the models.

Figure 3 shows the performance of the unconstrained solu-
tion as compared to standard PG and PG-ELLA. Again, our
approach clearly outperforms standard PG and PG-ELLA
in both the initial performance and learning speed. We
also evaluated constrained tasks in a similar manner, again
showing that our approach is capable of respecting con-
straints. Since the policy space is higher dimensional, we
cannot visualize it as well as the benchmark systems, and so
instead report the number of iterations it takes our approach
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Figure 4. Average number of task observations before acquiring
policy parameters that abide by the constraints, showing that our
approach immediately projects policies to safe regions.

to project the policy into the safe region. Figure 4 shows
that our approach requires only one observation of the task
to acquire safe policies, which is substantially lower then
standard PG or PG-ELLA (e.g., which require 545 and 510
observations, respectively, in the quadrotor scenario).

7. Conclusion
We described the first lifelong PG learner that provides sub-
linear regret O(

p
R) with R total rounds. In addition, our

approach supports safety constraints on the learned policy,
which are essential for robust learning in real applications.
Our framework formalizes lifelong learning as online MTL
with limited resources, and enables safe transfer by sharing
policy parameters through a latent knowledge base that is
efficiently updated over time.
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Figure 2. Results on benchmark simple mass and cart-pole systems. Figures (a) and (b) depict performance in lifelong learning scenarios
over consecutive unconstrained tasks, showing that our approach outperforms standard PG and PG-ELLA. Figures (c) and (d) examine
the ability of these method to abide by safety constraints on sample constrained tasks, depicting two dimensions of the policy space (↵1

vs ↵2) and demonstrating that our approach abides by the constraints (the dashed black region).

rameter vectors per iterations (i.e., ↵tj = Lstj ) for each
method, demonstrating that our approach abides by the
safety constraints, while standard PG and PG-ELLA can
violate them (since they only solve an unconstrained opti-
mization problem). In addition, these figures show that in-
creasing the number of alternating iterations in our method
causes it to take a more direct path to the optimal solution.

6.3. Application to Quadrotor Control

We also applied our approach to the more challenging do-
main of quadrotor control. The dynamics of the quadro-
tor system (Figure 1) are influenced by inertial constants
around e

1,B , e
2,B , and e

3,B , thrust factors influencing how
the rotor’s speed affects the overall variation of the system’s
state, and the lengths of the rods supporting the rotors. Al-
though the overall state of the system can be described by
a 12-dimensional vector, we focus on stability and so con-
sider only six of these state-variables. The quadrotor sys-
tem has a high-dimensional action space, where the goal is
to control the four rotational velocities {wi}4i=1

of the ro-
tors to stabilize the system. To ensure realistic dynamics,
we used the simulated model described by (Bouabdallah,
2007; Voos & Bou Ammar, 2010), which has been verified
and used in the control of physical quadrotors.

We generated 10 different quadrotor systems by varying
the inertia around the x, y and z-axes. We used a linear
quadratic regulator, as described by Bouabdallah (2007),
to initialize the policies in both the learning and testing
phases. We followed a similar experimental procedure to
that discussed above to update the models.

Figure 3 shows the performance of the unconstrained solu-
tion as compared to standard PG and PG-ELLA. Again, our
approach clearly outperforms standard PG and PG-ELLA
in both the initial performance and learning speed. We
also evaluated constrained tasks in a similar manner, again
showing that our approach is capable of respecting con-
straints. Since the policy space is higher dimensional, we
cannot visualize it as well as the benchmark systems, and so
instead report the number of iterations it takes our approach
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Figure 4. Average number of task observations before acquiring
policy parameters that abide by the constraints, showing that our
approach immediately projects policies to safe regions.

to project the policy into the safe region. Figure 4 shows
that our approach requires only one observation of the task
to acquire safe policies, which is substantially lower then
standard PG or PG-ELLA (e.g., which require 545 and 510
observations, respectively, in the quadrotor scenario).

7. Conclusion
We described the first lifelong PG learner that provides sub-
linear regret O(

p
R) with R total rounds. In addition, our

approach supports safety constraints on the learned policy,
which are essential for robust learning in real applications.
Our framework formalizes lifelong learning as online MTL
with limited resources, and enables safe transfer by sharing
policy parameters through a latent knowledge base that is
efficiently updated over time.
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Figure 2. Results on benchmark simple mass and cart-pole systems. Figures (a) and (b) depict performance in lifelong learning scenarios
over consecutive unconstrained tasks, showing that our approach outperforms standard PG and PG-ELLA. Figures (c) and (d) examine
the ability of these method to abide by safety constraints on sample constrained tasks, depicting two dimensions of the policy space (↵1

vs ↵2) and demonstrating that our approach abides by the constraints (the dashed black region).

rameter vectors per iterations (i.e., ↵tj = Lstj ) for each
method, demonstrating that our approach abides by the
safety constraints, while standard PG and PG-ELLA can
violate them (since they only solve an unconstrained opti-
mization problem). In addition, these figures show that in-
creasing the number of alternating iterations in our method
causes it to take a more direct path to the optimal solution.

6.3. Application to Quadrotor Control

We also applied our approach to the more challenging do-
main of quadrotor control. The dynamics of the quadro-
tor system (Figure 1) are influenced by inertial constants
around e

1,B , e
2,B , and e

3,B , thrust factors influencing how
the rotor’s speed affects the overall variation of the system’s
state, and the lengths of the rods supporting the rotors. Al-
though the overall state of the system can be described by
a 12-dimensional vector, we focus on stability and so con-
sider only six of these state-variables. The quadrotor sys-
tem has a high-dimensional action space, where the goal is
to control the four rotational velocities {wi}4i=1

of the ro-
tors to stabilize the system. To ensure realistic dynamics,
we used the simulated model described by (Bouabdallah,
2007; Voos & Bou Ammar, 2010), which has been verified
and used in the control of physical quadrotors.

We generated 10 different quadrotor systems by varying
the inertia around the x, y and z-axes. We used a linear
quadratic regulator, as described by Bouabdallah (2007),
to initialize the policies in both the learning and testing
phases. We followed a similar experimental procedure to
that discussed above to update the models.

Figure 3 shows the performance of the unconstrained solu-
tion as compared to standard PG and PG-ELLA. Again, our
approach clearly outperforms standard PG and PG-ELLA
in both the initial performance and learning speed. We
also evaluated constrained tasks in a similar manner, again
showing that our approach is capable of respecting con-
straints. Since the policy space is higher dimensional, we
cannot visualize it as well as the benchmark systems, and so
instead report the number of iterations it takes our approach
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Figure 4. Average number of task observations before acquiring
policy parameters that abide by the constraints, showing that our
approach immediately projects policies to safe regions.

to project the policy into the safe region. Figure 4 shows
that our approach requires only one observation of the task
to acquire safe policies, which is substantially lower then
standard PG or PG-ELLA (e.g., which require 545 and 510
observations, respectively, in the quadrotor scenario).

7. Conclusion
We described the first lifelong PG learner that provides sub-
linear regret O(

p
R) with R total rounds. In addition, our

approach supports safety constraints on the learned policy,
which are essential for robust learning in real applications.
Our framework formalizes lifelong learning as online MTL
with limited resources, and enables safe transfer by sharing
policy parameters through a latent knowledge base that is
efficiently updated over time.
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Figure 2. Results on benchmark simple mass and cart-pole systems. Figures (a) and (b) depict performance in lifelong learning scenarios
over consecutive unconstrained tasks, showing that our approach outperforms standard PG and PG-ELLA. Figures (c) and (d) examine
the ability of these method to abide by safety constraints on sample constrained tasks, depicting two dimensions of the policy space (↵1

vs ↵2) and demonstrating that our approach abides by the constraints (the dashed black region).

rameter vectors per iterations (i.e., ↵tj = Lstj ) for each
method, demonstrating that our approach abides by the
safety constraints, while standard PG and PG-ELLA can
violate them (since they only solve an unconstrained opti-
mization problem). In addition, these figures show that in-
creasing the number of alternating iterations in our method
causes it to take a more direct path to the optimal solution.

6.3. Application to Quadrotor Control

We also applied our approach to the more challenging do-
main of quadrotor control. The dynamics of the quadro-
tor system (Figure 1) are influenced by inertial constants
around e

1,B , e
2,B , and e

3,B , thrust factors influencing how
the rotor’s speed affects the overall variation of the system’s
state, and the lengths of the rods supporting the rotors. Al-
though the overall state of the system can be described by
a 12-dimensional vector, we focus on stability and so con-
sider only six of these state-variables. The quadrotor sys-
tem has a high-dimensional action space, where the goal is
to control the four rotational velocities {wi}4i=1

of the ro-
tors to stabilize the system. To ensure realistic dynamics,
we used the simulated model described by (Bouabdallah,
2007; Voos & Bou Ammar, 2010), which has been verified
and used in the control of physical quadrotors.

We generated 10 different quadrotor systems by varying
the inertia around the x, y and z-axes. We used a linear
quadratic regulator, as described by Bouabdallah (2007),
to initialize the policies in both the learning and testing
phases. We followed a similar experimental procedure to
that discussed above to update the models.

Figure 3 shows the performance of the unconstrained solu-
tion as compared to standard PG and PG-ELLA. Again, our
approach clearly outperforms standard PG and PG-ELLA
in both the initial performance and learning speed. We
also evaluated constrained tasks in a similar manner, again
showing that our approach is capable of respecting con-
straints. Since the policy space is higher dimensional, we
cannot visualize it as well as the benchmark systems, and so
instead report the number of iterations it takes our approach
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Figure 4. Average number of task observations before acquiring
policy parameters that abide by the constraints, showing that our
approach immediately projects policies to safe regions.

to project the policy into the safe region. Figure 4 shows
that our approach requires only one observation of the task
to acquire safe policies, which is substantially lower then
standard PG or PG-ELLA (e.g., which require 545 and 510
observations, respectively, in the quadrotor scenario).

7. Conclusion
We described the first lifelong PG learner that provides sub-
linear regret O(

p
R) with R total rounds. In addition, our

approach supports safety constraints on the learned policy,
which are essential for robust learning in real applications.
Our framework formalizes lifelong learning as online MTL
with limited resources, and enables safe transfer by sharing
policy parameters through a latent knowledge base that is
efficiently updated over time.
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Figure 2. Results on benchmark simple mass and cart-pole systems. Figures (a) and (b) depict performance in lifelong learning scenarios
over consecutive unconstrained tasks, showing that our approach outperforms standard PG and PG-ELLA. Figures (c) and (d) examine
the ability of these method to abide by safety constraints on sample constrained tasks, depicting two dimensions of the policy space (↵1

vs ↵2) and demonstrating that our approach abides by the constraints (the dashed black region).

rameter vectors per iterations (i.e., ↵tj = Lstj ) for each
method, demonstrating that our approach abides by the
safety constraints, while standard PG and PG-ELLA can
violate them (since they only solve an unconstrained opti-
mization problem). In addition, these figures show that in-
creasing the number of alternating iterations in our method
causes it to take a more direct path to the optimal solution.

6.3. Application to Quadrotor Control

We also applied our approach to the more challenging do-
main of quadrotor control. The dynamics of the quadro-
tor system (Figure 1) are influenced by inertial constants
around e

1,B , e
2,B , and e

3,B , thrust factors influencing how
the rotor’s speed affects the overall variation of the system’s
state, and the lengths of the rods supporting the rotors. Al-
though the overall state of the system can be described by
a 12-dimensional vector, we focus on stability and so con-
sider only six of these state-variables. The quadrotor sys-
tem has a high-dimensional action space, where the goal is
to control the four rotational velocities {wi}4i=1

of the ro-
tors to stabilize the system. To ensure realistic dynamics,
we used the simulated model described by (Bouabdallah,
2007; Voos & Bou Ammar, 2010), which has been verified
and used in the control of physical quadrotors.

We generated 10 different quadrotor systems by varying
the inertia around the x, y and z-axes. We used a linear
quadratic regulator, as described by Bouabdallah (2007),
to initialize the policies in both the learning and testing
phases. We followed a similar experimental procedure to
that discussed above to update the models.

Figure 3 shows the performance of the unconstrained solu-
tion as compared to standard PG and PG-ELLA. Again, our
approach clearly outperforms standard PG and PG-ELLA
in both the initial performance and learning speed. We
also evaluated constrained tasks in a similar manner, again
showing that our approach is capable of respecting con-
straints. Since the policy space is higher dimensional, we
cannot visualize it as well as the benchmark systems, and so
instead report the number of iterations it takes our approach
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Figure 4. Average number of task observations before acquiring
policy parameters that abide by the constraints, showing that our
approach immediately projects policies to safe regions.

to project the policy into the safe region. Figure 4 shows
that our approach requires only one observation of the task
to acquire safe policies, which is substantially lower then
standard PG or PG-ELLA (e.g., which require 545 and 510
observations, respectively, in the quadrotor scenario).

7. Conclusion
We described the first lifelong PG learner that provides sub-
linear regret O(

p
R) with R total rounds. In addition, our

approach supports safety constraints on the learned policy,
which are essential for robust learning in real applications.
Our framework formalizes lifelong learning as online MTL
with limited resources, and enables safe transfer by sharing
policy parameters through a latent knowledge base that is
efficiently updated over time.
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