Safe Policy Search for Lifelong Reinforcement Learning with Sublinear Regret
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Summary

We developed a lifelong policy gradient learner that operates in an
adversarial setting to learn multiple tasks online while enforcing safety
constraints on the learned policies.

* Fully online learning of multiple, consecutive RL tasks

* Ensures “safe” policies by respecting safety constraints

* Exhibits sublinear regret for lifelong policy search

* Validated on benchmark dynamical systems and quadrotor control

Motivations

1. Reuse knowledge from previously learned tasks to accelerate the
learning of new control policies

- Lifelong RL to learn multiple, consecutive tasks online
- Exhibit vanishing regrets

2. Robotic control policies must obey safety constramts e >
(e.g., prevent damage to the robot and _—
environment, avoid catastrophic failure) "ft”‘"' — &

- Incorporate constraints directly
into the optimization

Lifelong Learning Framework
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Main Theoretical Result

We prove that the safe lifelong policy search algorithm has sublinear
regret of O(v/R) in the total number of rounds R.

Theorem 1 (Sublinear Regret). After R rounds and choos-
ingVt; € Igp m, = n = \/Lﬁ, L 5 = diag, (C), with
diag, (-) being a diagonal matrix among the k columns of
L p<(*<gq and S 5 = 05«7 the safe lifelong rein-

forcemem‘ learner exhibits sublinear regret of the form.:
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Background: Policy Gradient (PG) Methods

 Agent interacts with environment, taking consecutive actions
* PG methods support continuous state and action spaces
— Have shown recent success in applications to robotic control
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Background: Online Learning & Regret Analysis

Regret Minimization Game: Eachroundj = 1 ... R,
a.) agent chooses a prediction 6, and
b.) environment (i.e., the adversary) chooses a loss function [;

Goal: minimize cumulative regret (modified for multi-task case)
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Solve via “Follow the Regularized Leader”:
1.) Find 0
2.) Project 9 onto the constraint set via Bregman projections

via unconstrained optimization over accumulated losses

\fortasktjf
Te, E Policy parameters
J
TR 0l kowledge
2.) Knowledge is \ﬂ) ({?y&? ) :<s Stoleggfor s
transferred from learned policy future use _tj —
Ioreviogstly y [ &;
Sl 4.) Existing _g’
(ﬁ)@(@) % L@) Q I .%
& 2 % R f}h Q}) %
\QMO/ :f’ha@},«) shared . 3*
ifelc basis
Safe Lifelong Policy Search
Multi-task Optimization Problem after observing r rounds:
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Online Formulation
* Let 8 = [vec(L) vec(S)]' be the vector of all parameters
* The MTL objective can be written online as
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where the loss for task ¢, is the following bilinear product in 6:
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Online Solution

Step 1: Unconstrained policy optimization via alternating optimization

over LL and S to yield unconstrained solution 0,

Project ér_|_1 to the constraint set via the Bregman divergence
over {2, — involves solving 2" order cone and semi-definite programs

Step 2:

Experimental Results

Learn policies for consecutive control tasks on three types of systems

Simple Mass Cart Pole Quadrotor

Superior Performance over standard PG and the lifelong learner PG-ELLA

" [Fe- gténgfg PG 6000”‘3 ' -B-Sgndard PG 12000 -=-Standard PG
—+-PG- \ _ L —+-PG-ELLA —+-PG-ELLA
2500“\ -o-Safe Online 10 Iterations 5000 o8 -6--Safe Online 10 lterations | 10000+ -6--Safe Online 10 lterations
\ a. Safe Online 50 lterations ‘b\ g\:;q Safe Online 50 lterations : ‘g Safe Online 50 lterations
SN -e-Safe Online 100 Iterations O N, —=-Safe Online 100 lterations % \ -=-Safe Online 100 Iterations
72000 el Tap . | Bao00r \\ 3
o o
&) | O
o> 500T~\ ".‘ $,3000 |
®© o i ©
2 B S “ S
& 1000} *Q\"" 3: 2000 |
Q, \\ \‘Ii‘
500 ™ T T Q 1 1000}
______ -O‘"/‘ . “\ |“ \\‘
0 s AN 0 — i 0
: aC . == : : £ : ' ' '
0 50 100 150 0 1000 2000 3000 0 2000 4000 6000 8000 10000
Rounds Rounds Rounds
Simple Mass Cart Pole Quadrotor

Enforces the Given Safety Constraints, unlike alternative methods
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 Note that our approach immediately projects policies to safe regions
even during the policy search process, unlike other methods
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