Learning User Preferences for Sets of Objects

Marie desJardins
Eric Eaton

MARIEDJ@CS.UMBC.EDU
EEATON1QCS.UMBC.EDU

University of Maryland Baltimore County, Computer Science and Electrical Engineering Department, 1000

Hilltop Circle, Baltimore, MD 21250 USA
Kiri L. Wagstaff

KIRI.WAGSTAFFQJPL.NASA.GOV

Machine Learning and Instrument Autonomy Group, Jet Propulsion Laboratory, California Institute of Tech-

nology, 4800 Oak Grove Drive, Pasadena, CA 91109 USA

Abstract

Most work on preference learning has focused
on pairwise preferences or rankings over in-
dividual items. In this paper, we present a
method for learning preferences over sets of
items. Our learning method takes as input a
collection of positive examples—that is, one
or more sets that have been identified by a
user as desirable. Kernel density estimation
is used to estimate the value function for indi-
vidual items, and the desired set diversity is
estimated from the average set diversity ob-
served in the collection. Since this is a new
learning problem, we introduce a new eval-
uation methodology and evaluate the learn-
ing method on two data collections: synthetic
blocks-world data and a new real-world music
data collection that we have gathered.

1. Introduction

Many interactions between humans and computers in-
volve a search for information or items. For example,
a World Wide Web search engine can produce a list
of webpages that are ranked by their relevance to a
specified search query. The underlying assumption is
that the user is searching for a specific piece of infor-
mation, and that the pages can be ranked in terms of
their likelihood of containing the desired information.

In contrast, there are many applications in which the
user instead wishes to obtain an optimal set of items.
Examples include building a music playlist or select-
ing a sports team from this year’s draft picks. The
obvious approach of ranking all items and then pick-

Appearing in Proceedings of the 23" International Con-
ference on Machine Learning, Pittsburgh, PA, 2006. Copy-
right 2006 by the author(s)/owner(s).

ing the top k does not, as it turns out, always yield
the optimal subset. Items in a set can interact in ways
that increase (via complementarity), or decrease (via
redundancy or incompatibility), the overall valuation®
of a set. For example, while a user may have a favorite
music artist, he or she may not want a party music
playlist composed solely of that artist’s work. Like-
wise, some of the top k players available may play the
same position, so they cannot all be selected together.
This phenomenon has been referred to as “the portfolio
effect” (Burke, 2002) or “dependent relevance” (Zhai
et al., 2003).

Recently, we developed a language, DD-PREF, that al-
lows the specification of set-based preferences. We
also proposed a greedy algorithm that accounts for the
portfolio effect while searching for the most satisfying
set (desJardins & Wagstaff, 2005). One problem with
such a language is that it may be difficult for users
to explicitly specify their preferences quantitatively.
The primary contribution of the current paper is a
method for learning set-based user preferences from
example sets that implicitly express those preferences.
Learning these preferences will enable existing subset-
selection methods to automatically identify or gener-
ate additional satisfying subsets, such as novel music
playlists. While several methods have been proposed
for learning to rank individual items (see Section 2), to
our knowledge no methods have yet been devised for
learning set-based preferences. This problem is par-
ticularly challenging, because it involves learning from
positive examples only, often with only a few examples
(possibly just one). We also present a new data set
(classical music playlists from radio station websites)
and the experimental methodology we devised for com-
paring different preference learning approaches.

L«Value” refers to a specific feature value, while “valu-
ation” refers to how highly preferred a set or value is.

Learning User Preferences for Sets of Objects

2. Related Work

The main areas of related research involve preference
specification, satisfaction, and learning.

Preference Specification. Most work in this area
has focused on preferences over individual items, ex-
pressed as judgments about the relative valuation of
two items (Herbrich et al., 1998; Cohen et al., 1999;
Freund et al., 2003). Brafman et al. (2005) allow
users to specify conditional preferences in terms of a
minimum or desired number of objects in the set that
have particular feature values. Our DD-PREF language
permits users to specify set-based preferences on a per-
feature basis (desJardins & Wagstaff, 2005).

There has been a significant amount of work in
the multi-agent systems community on representing
preferences over sets of items in combinatorial auc-
tions and on efficient methods for clearing such auc-
tions (Boutilier, 2002; Cramton et al., 2006). However,
all of this work is essentially propositional: that is, it
assumes that individual items are atomic, not repre-
sented by a set of attributes as in our research. As a
result, preferences cannot be generalized (learned) or
computed over new sets of items.

Preference Satisfaction. Barbera et al. (2004) refer
to the problem of identifying the best subset of size k as
“fixed-cardinality ranking.” They discuss the problem
of computing a ranking over sets, given only pairwise
judgments between items. In general, finding the op-
timal subset is NP-complete (Cohen et al., 1999; Price
& Messinger, 2005), so the most common approach is
to use a greedy heuristic that incrementally adds items
to the subset (Cohen et al., 1999; Zhai et al., 2003; des-
Jardins & Wagstaff, 2005; Price & Messinger, 2005).

The portfolio effect occurs when the valuation of a set
is not equal to the sum of its component item valu-
ations. This can be modeled in various ways, such
as trading off “relevance” against “novelty” for the
subtopic retrieval problem (Zhai et al., 2003) or by
measuring the “marginal relevance” of each new item
to be added to a set of results (Carbonell & Gold-
stein, 1998). DD-PREF accounts for the portfolio effect
by allowing the user to explicitly specify the relative
importance of “diversity” and “depth”.

Price and Messinger (2005) tackle a slightly different
problem, in which the user is assumed to be interested
in one specific item, and the goal is to return the subset
of items most likely to contain the desired item. In
contrast, our focus is on situations in which the user
wishes to obtain a specific kind of subset, where all
of the component items (and their interactions) are
important.

Preference Learning. To our knowledge, no meth-
ods currently exist for learning user preferences over
sets. Methods for learning whether one individual item
is preferred to another include Hedge, an online ensem-
ble approach (Cohen et al., 1999); RankBoost (Fre-
und et al., 2003); RankNet (Burges et al., 2005); and
probabilistic modeling (Chu & Ghahramani, 2005).
RankProp (Caruana et al., 1996) and PRank (Cram-
mer & Singer, 2001) instead use regression to map in-
dividual items to target valuations for direct ranking.

3. Preference Learning

In this section, we review the DD-PREF language and
how to assess the valuation of a given set (that is, how
well the set satisfies the specified preference). Next,
we describe our major contribution, which is a method
for automatically learning these set-based preferences,
given one or more example sets provided by the user.

3.1. Representing Preferences in DD-PREF

Preferences in DD-PREF are represented as tuples: P =
(q,&,«z, a). For feature f with values in the set V7,
qr : Vy — [0,1] is the desired depth (preferred fea-
ture values); dy € [0,1] is the desired diversity (pre-
ferred distribution of values across the desired range);
and wy € [0,1] is the feature preference weight. The
a € [0, 1] parameter specifies the relative importance
of diversity versus depth, across all features.

Depth. The desired depth is specified by a quality
function gy for each feature f, which specifies the val-
uation of each possible feature value for f. For exam-
ple, Figure 1 shows food preferences for three different
users, as a simple illustrative example. The first user,
who prefers healthy food, has a quality function with
a bimodal distribution for protein: some desired items
are high in protein, and some are low. This individual
also prefers foods that are low in fat. In contrast, the
“Atkins” user prefers high-protein and low-carb foods,
and the “junk food” user prefers low-protein and high-
carb (sugar) foods. The depth valuation of a set s is
defined as a weighted sum of the average valuations
for each feature:

Vien(s1P) = 3 <p.wf |i|ZP.qf(xf)>)

f TES

where z7/ is the value for feature f of item x. Highly
weighted features are underlined in Figure 1.

Diversity. The desired diversity for each feature,
dy, is a number between 0 and 1 that specifies how

Learning User Preferences for Sets of Objects

User Sample Subset

(Steak, salad, muffin)

User Preferences

Protein /\/\ Eat Carbs [—]
0.8 0.8 0.5

(Steak and cheese)

Protein Fat @ Carbs
0.1 0.3 0.1

Candy bar and
doughnut

EES S

Protein Eat Carbs
0.1 0.2 0.3

Figure 1. Three examples of user preferences when selecting foods for a meal. Each user’s abstract preference (left) is
specified quantitatively (right). The quality functions (gf) for each feature (protein, fat, and carbohydrates) are shown
as small graphs, with the preferred diversities (ds) below each one. Highly weighted features are underlined.

evenly distributed the values should be. In Fig-
ure 1, the “Atkins” user desires very little diversity
in the amount of protein or carbs present, while the
“healthy” user wants high diversity in the amount of
protein present: the steak is high in protein, but the
salad and muffin are low. In this case (for a feature
with high diversity and a multimodal distribution), the
preference will be best satisfied by a collection of foods
at different peaks in the quality function. For a fea-
ture with a multimodal distribution but low diversity,
such as the “junk food” user’s fat preference, the pref-
erence would be best satisfied by a collection of foods
at any single peak in the quality function. The candy
bar and doughnut are high in fat, but this user would
be equally pleased with jelly beans and soda, which
have none.

The diversity valuation of a set s is a weighted sum
of how closely the observed diversity, div(s), matches

the desired diversity, Pd:

Vaio(s|P) =Y Pwp(1— (Pdy — divs(s))?). (2)
f

The observed diversity divy(s) is a measure of the
“spread” of a set’s values for feature f. We use the def-
inition introduced by desJardins and Wagstaff (2005),
but other definitions are possible.

We define the valuation of a set s with respect to pref-
erence P as a trade-off between diversity and depth,
controlled by the diversity weight parameter, a:

Vp(s) = (1 — P.a) Vaep(s|P) + P.a Vg (s|P) (3)

3.2. Learning DD-PREF Preferences

This work is motivated by the observation is that it
is often much easier for a user to specify examples of
their preferences, rather than trying to convert an ab-
stract concept, such as “healthy” food, into quantita-
tive preferences.

Problem definition: Given a data collection S con-
sisting of one or more training sets s;, learn a prefer-
ence () that approximates the (implicit) preference P
that was used to generate S.

To learn preference) for the data collection § =
{s1,...,8n}, we first estimate the desired depth and
diversity for each feature, and then we estimate the
optimal feature weights. In this work, we do not ad-
dress learning the diversity parameter, . In some ap-
plications, an appropriate @ may already be known. In
the experiments in this paper, we simply set a = 0.5,
evenly weighting diversity and depth.

Learning Depth Preferences, . We treat the
problem of learning the quality functions as a prob-
ability density estimation problem. Specifically, we
assume that the frequency with which a feature value
appears in the training data is proportional to its val-
uation by the user. As with any machine learning ap-
proach, this represents an implicit assumption that the
set of features used to represent the domain is appro-
priate and sufficient.

We estimate the quality functions ¢; using kernel den-
sity estimation (KDE) (Duda et al., 2001), a well es-
tablished method for estimating probability density
functions. KDE models each observed value with a
Gaussian distribution, then sums the Gaussians gen-
erated by all data items to produce a single, smoothed
estimate of the distribution. For this work, we used
the kernel density estimator described by the Analyti-
cal Methods Committee (2001). We obtain g by nor-
malizing the estimated density function Pxpg by the
likelihood of the most likely value:

Prpe(v)
mz}x PKDE (U’) '

g5 (v) = (4)

This estimator automatically selects a value for the
width o of the Gaussian distributions.

Learning User Preferences for Sets of Objects

Learning Diversity Preferences, d. We use the
maximum a posteriori (MAP) estimate of the desired
diversity d; by calculating the average observed di-
versity for feature f over the sets in collection S:

dy = ﬁ Yses divy(si).

Learning Feature Weights, w. As a final step, we
(locally) optimize the feature weights W using BFGS
bounded optimization (Gill et al., 1981; Gill & Mur-
ray, 1976), provided in the Weka machine learning
toolkit (Witten & Frank, 2005). BFGS is a quasi-
Newton algorithm for locally minimizing an objective
function; the bounded-optimization form of the algo-
rithm provided with Weka adds bounds constraints on
the variables. Since the actual valuations Vp of the
training sets s; are unknown, we set their target val-
uations to 1.0, a perfect score. We then use BFGS to
find the weights w that minimize the objective func-
tion:

D We(si) = Vo(si)” = > (1= Vo(si)*.

s, €S 5;€8

4. Data Sets and Metrics
4.1. Data Sets

Artificial Blocks. To test our ability to learn user
preferences in a simple domain, we used a blocks data
set in which each item is represented by four features:
size (a real value from 0 to 100), color (represented as
integers from 0-6), number of sides (an integer value
from 3 to 20), and bin (representing sequential loca-
tions in a storage area; an integer from 0 to 100).

Classical Music. A realistic domain in which sub-
set selection tasks constantly arise is that of music
playlist creation. DJs at radio stations, clubs, and par-
ties must put together playlists that capture the rele-
vant preferences of the audience, radio show theme, or
party attendees. We collected a data set that consists
of 2352 songs from classical music radio stations. Each
song is represented by 28 features:

Feature Type/Units

Composition date Year

Composer birthdate | Year

Duration Minutes

Tempo Beats per minute

Bark spectrum Loudness at 24 frequencies
(Zwicker & Fastl, 1990)

The dates and durations were obtained by looking up
each song in the online “allmusic” database,? and the

*http://wuw.allmusic.com/

tempo and Bark spectrum values were obtained using
BpmDJ.3

4.2. Preferences

Block Preferences. We tested four different pref-
erences for our experiments. In contrast to the sim-
ple preferences we previously evaluated (desJardins &
Wagstaff, 2005), in which g7 could only be specified
as a range of permissible values, [min, maz], we also
experimented with more complicated value functions
with linear or bimodal distributions. A value of 1.0 for
gy means that all values in Vy are equally valuable.

Castle: We want blocks to build a castle. We need
large blocks for structure and small blocks for deco-
ration. We want blocks of similar colors, though we
do not care which color is chosen, and the blocks
should have few sides. Location does not matter.
Thus, we have the following feature preferences Py =

(qr,ds, wy):

RN
Pyize = <maX (101%0 y m) s 10, 100>
Peoror = <10, 0.2, 050>
Psides = <[37 8],].O, 075>

Child: We are choosing blocks for a child. We want a
variety of multi-colored medium-sized blocks for grasp-
ing, with few sides, located fairly close together.

Py.. = (10,50, 1.0, 1.0)
Powr = (10, 1.0, 0.8)
Psides = <[3, 6}7 10, 08>
Py = (10, 02, 0.4)

Mosaic: We want to create a mosaic with the blocks.
We want a variety of blocks of various shapes, with
an emphasis on small simple blocks. We want simi-
lar, but non-identical colors, and the location of the
blocks is not important. The values of size and num-
sides decrease linearly from 1 to 0 across the range of
values. Size is the most important, then color, and
finally number of sides.

— 100—=
Psize - < 100 ’ 080, 10>
Pcolor = <10, 075, 08>
Psz’des = <%§73), 100, 06>

Tower: We want to build a uniform tower. We want
large similar-sided blocks of uniform color with a lim-
ited number of sides; the location of the blocks is not
important.

Psize = <[5O, 100], 01, 10>
Pcolor = <10, 00, 10>

Pyiges = <[4a 8], 007 1O>

3http://bpndj.sourceforge.net/

Learning User Preferences for Sets of Objects

Music Preferences. To test our ability to learn
preferences from example subsets, we collected radio
station playlists from two time periods: 1400 songs
were collected during an 8-week period in Fall 2005,
and another 952 songs were collected during a three-
week period prior to Christmas 2005. This latter col-
lection represents a distinctly different preference from
the other playlists, since it contains primarily holiday
music. We used playlists from three radio stations:

e http://www.allclassical.org/,
All Classical (KBPS)

e http://minnesota.publicradio.org/,
Minnesota Public Radio (MPR)

e http://www.cpr.org/,
Colorado Public Radio (CPR)

Each day’s playlist consists of 17 to 53 songs (depend-
ing on song duration and the amount of on-air time
that day).

4.3. Evaluation Metrics and Methodology

For this new problem of learning preferences over sets,
the metrics and methodology must enable evaluation
of two claims: first, that a learned preference @ closely
approximates the true preference P, when P is known
(akin to recall); and second, that the learned prefer-
ence can be used to distinguish high-valued from low-
valued subsets (akin to precision).

Retrieval Similarity. We use two measures of learn-
ing performance to compare P and Q. First, we iden-
tify sp, the best subset of the test data according to
P, and sg, the best subset according to (). We then
compute Vp(sp) and Vp(sg) to determine how highly
valued the two selected sets are, according to the true
preference P.

Functional Similarity. Second, to determine how
well P and @Q agree with each other, we measure their
functional similarity as follows. Let vp and vig be the
vector of values assigned by P and @, respectively, to
each s in a collection of subsets S. We then compute
the correlation r(vp,vq). For a sufficiently large col-
lection S, the computed correlation provides a good
estimate of preference similarity.

Preference Precision. To assess the precision of @,
or how accurately it assigns low values to sets that
are not preferred, we propose the use of perturbation
studies. In such a study, a highly valued subset sp
is iteratively perturbed by replacing a member of the
set with some other item (either randomly selected,
or drawn from some source other than P). If @ is
selective, then we would expect the values assigned by

Q to these perturbed sets to drop as more items are
replaced.

Methodology. For each trial, we divided the avail-
able data into f disjoint collections (folds) of a uniform
size. Given true preference P, we used the wrapper-
greedy method (desJardins & Wagstaff, 2005) to ex-
tract the best subset of items sp from each fold, yield-
ing f example subsets for P. We used a variation on
leave-one-out cross-validation by training preference @
on f’ subsets (f' € [1, f —1]) and testing on the held-
out subset. We report the average performance across
all held-out subsets.

For each of the blocks world experiments, we created a
data set using uniform sampling in the feature space.
The four preferences we used were described in Sec-
tion 4.2. For the music experiments, the folds were
composed of songs instead of blocks. Rather than
manually defining preference P, we instead inferred it,
for each trial, from a real, randomly selected playlist.

For each experiment, the number of items in the un-
derlying data set (n), number of items in the training
and test sets (k), number of trials (division into folds),
number of folds (f), and fold size are shown in Table 1.

Table 1. Summary of experimental parameters.

Exp. n k #trials f fold size
1 blocks | 2100 10 20 21 100
1 music | 1400 5 20 14 100
2 blocks | 1000 10 100 10 100
2 music | 2352 5 100 1 2352

5. Experimental Results

In this section, we present the results of two exper-
iments that were designed to evaluate our ability to
infer and characterize user preferences over subsets.
Experiment 1 (Section 5.1) evaluates learning perfor-
mance for the blocks and music domains in terms of
objective function values and functional similarity be-
tween true and learned preferences. Experiment 2
(Section 5.2) shows the results of perturbation exper-
iments in both domains.

Although we do not give timing results, the complexity
of the preference learning algorithm is roughly linear
in the number of training sets. The main variability of
the algorithm occurs in the weight estimations, when
minimizing the sum of squared errors over the train-
ing sets. The quasi-Newton BFGS method has very
rapid convergence properties, and we have not noticed
a significant slowdown as the number of training sets
was increased.

Learning User Preferences for Sets of Objects

0.95 - 1.00 T T T T 0.96
Triztor Il ii T
. iasssassssasssaseseyd . , 094
%0'90-77777771*11‘1‘1‘1‘{%'}#8{3- %OAQS %092 I s
T L s erEe s : > > I A A
> D geawdy T > 0.90 L 000 bl -
£ 085 iyl P —o—] £ £ oss -1{15?;[1?}%}%}?8‘3{5@”‘1 ip e
I e Q e = 085 = [N I T T A A O Ay
8 11 gﬂ 8 -8 0.86 |+ O A A A Q -8
ko] T 0.80 T 084 E
o o o
a a o 082
a a 075 a
0.80
0.70 L L L L 0.78 L L L L
0 5 10 15 20 0 5 10 15 20

Number of Training Sets

(a) Castle task, retrieval similarity.

Number of Training Sets

(b) Child task, retrieval similarity.

Number of Training Sets

(c) Mosaic task, retrieval similarity.

0.90 T T T T 2 0.90 0.92 . . .
IIII3ITIITIIIT L 1132 S 085 090 [& g
o 080 FLLITTTITTTTIATY TT7TT (LS o hi
2 RN B A8 £ o080 2 088 4 R
> o0 k17T L R T 075 > 086 - b
SR IR S s e
A LA SRERRRRE P—o— | 2 o I o084t .
g QT = 065 5 os2| .
® 050 | 4 2 060 fx, T 0.80 | | 4
a TITTTTYUYTUITIITIULY S 055 |7 ¥ tower ---x--- & o8t -
8 040 g 07 B e a
® 050 |50 castle x| 0.76 e
E £ Y sogeo. gd mosaic o i T T S A A R
0.30 L L L L 8 045 I L L L 0.74 L
0 5 10 15 20 0 5 10 15 20 0 4 8 12

Number of Training Sets

(d) Tower task, retrieval similarity.

Number of Training Sets

(e) Block tasks, functional similarity (f) Music playlists, retrieval similarity.

Number of Training Sets

over 21 random subsets.

Figure 2. Experiment 1: Learning curves evaluating the similarity between true (P) and learned (Q) preferences.

5.1. Experiment 1: How Accurate are the
Learned Preferences?

In this experiment, we examine the question of
whether we can accurately infer user preferences. In
Figures 2(a)—2(d), we plot the retrieval similarity for P
and @ as a function of training collection size, for the
four blocks world tasks. We also show the valuation R
that P assigns to a random subset as a lower baseline.
(Note that the retrieval similarity of P and R do not
vary with the number of training sets.) The error bars
are placed at one standard deviation from the mean.
For all four tasks, as more training data is used, the
learned preferences () more closely approximate the
valuations obtained by P.

Figure 2(e) shows the functional similarity (correla-
tion) of the true and learned preferences on a collec-
tion of 21 random subsets, as a function of training col-
lection size. The correlations generally increase with
more training data. They show much more dramatic
(though also more variable) improvement as the size
of the training collection increases, compared to the
objective function value increases shown in previous
figures. The correlation plot, since it is evaluated over
a random selection of sets, shows early learning of the
proper valuation of both high-quality and low-quality
subsets.

We conducted a similar experiment with the non-
holiday music playlists. For this experiment, since we

do not have access to the DJ’s true preferences, we
chose one of the real playlists randomly, of length 5,
and learned P from it. We then ran the same experi-
ment as in the blocks world domain.

The learning curve for the music experiment is shown
in Figure 2(f). Learned preference @ gives much bet-
ter results than random; however, more training data
only increases performance very slightly. One possible
explanation is that the underlying song data is very
homogeneous, so that the playlists are all very similar,
and additional playlists do not add much new infor-
mation. Experiment 2, in the next section, gives some
evidence that this may in fact be the case.

5.2. Experiment 2: How Selective are the
Learned Preferences?

Experiment 1 showed that we are able to learn prefer-
ences () that closely match the behavior of the original
preferences P. However, we would also like to know
how selective those preferences are. That is, given a
highly valued subset, how much does the valuation de-
grade if we slightly perturb it?

The learning parameters for Experiment 2 are shown
in Table 1. We used P to find the best subset sp for
each fold, then replaced members of this subset with
blocks from the data set that were not originally in sp.
Figure 3(a) shows Vp as a function of the percentage
of blocks replaced. As expected, the quality drops as

Learning User Preferences for Sets of Objects

1.00 0.95 T
g 00 2 o090
S 080 |4 g
£ 070 £ o085
=) =)

O 0.60 9 o080

s s

& 050 &

a Q 075

O 040 o
0.30 0.70

T T T T 095 F—r—T——T—T—T—T T T T T
0.90 B

0.85 -

0.80

DDPref Obj. Fn. Value

0.75 + MPR —— .

o70 b

0 10 20 30 40 50 60 70 80 90 100
Percentage of Set Replaced

(a) Block tasks.

0 10 20 30 40 50 60 70 80 90 100
Percentage of Set Replaced

0 10 20 30 40 50 60 70 80 90 100
Percentage of Set Replaced

(b) Music domain, preferences learned (c¢) Music domain, preferences learned
from a single playlist.

from ten playlists.

Figure 3. Experiment 2: Preference precision evaluated on increasingly perturbed subsets.

selected blocks are replaced with random blocks.

We performed a similar experiment with the music
data. Figure 3(b) shows the results. For each curve,
a preference () was learned from a single playlist from
the specified radio station, then the playlist was per-
turbed by replacing one song at a time with a ran-
dom song. For these experiments, we used non-holiday
playlists to learn the preferences, but used both hol-
iday and non-holiday music for replacement. Each
curve is averaged over 100 trials. As in the blocks
world perturbation experiment, the valuation of the
set drops as more of the songs are replaced, though
not as dramatically.

In contrast, Figure 3(c) shows the results when each
station’s preference function was learned from ten
playlists. Again, the graph shows valuations for
playlists from that station as the songs are replaced
with random songs. Here, we see very little drop in
valuation as the number of replacements increases. We
can infer that although a single playlist may reflect a
unique distribution, the aggregate playlists from each
of the three stations are very similar. In fact, when the
replacement process uses only non-holiday music, the
valuations do not drop at all. (These results were omit-
ted due to space limitations.) To further explore this
issue, we are currently gathering more specialized and
varied music collections (Mozart festival music from
late January 2006 and rock music from other sources),
to determine whether these contain more readily dis-
tinguishable preferences.

The observation that the radio stations’ playlists are
fairly homogeneous is supported by a correlation anal-
ysis. Table 2(a) shows the functional similarity (cor-
relation) of preferences learned from a single playlist
for the three different radio stations. The correla-
tion across stations is seen to be moderate, averag-
ing around 0.55. In Table 2(b), however, we show
the functional similarity of preferences learned from
10 playlists from each radio station. These are seen to

be very highly correlated, averaging around 0.87.

6. Conclusions and Future Work

We have presented a method for learning set-based
preferences and shown that it is effective at learning a
variety of preferences in synthetic and real-world do-
mains. We are currently extending the music data
set so that we can examine preferences across more
heterogeneous collections. In particular, we plan to
evaluate preference learning on three specialized data
sets: playlists during the 2005 Christmas holiday sea-
son, playlists during Mozart’s birth week in 2006, and
popular rock music. Other future work includes devel-
oping a method for estimating the diversity parameter
« and incorporating background knowledge about the
nature of the quality functions.

Acknowledgments

This work was partly supported by NSF grant
#0325329 and was partly carried out at the Jet
Propulsion Laboratory, California Institute of Tech-
nology, under a contract with the National Aeronau-
tics and Space Administration. Thanks to James Mac-
Glashan and Ryan Carr for gathering the music data
set.

References

Analytical Methods Committee (2001). Represent-
ing data distributions with kernel density estimates
(Technical Report AMC Technical Brief No. 4).
Royal Society of Chemistry.

Barbera, S., Bossert, W., & Pattanaik, P. K. (2004).
Ranking sets of objects. In S. Barbera, P. J. Ham-
mond and C. Seidl (Eds.), Handbook of utility the-
ory, vol. 2: Extensions, chapter 17. Springer.

Boutilier, C. (2002). Solving concisely expressed com-

Learning User Preferences for Sets of Objects

Table 2. Functional similarity (correlation) between preferences learned from different radio stations’ playlists.

(a) One training set.

(b) Ten training sets.

MPR KBPS CPR Random
MPR 1.0000 0.5535 0.5896 0.5565
KBPS 1.0000 0.5527 0.5097
CPR 1.0000 0.5726
Random 1.0000

MPR KBPS CPR Random
MPR 1.0000 0.8739 0.8907 0.8625
KBPS 1.0000 0.8719 0.8524
CPR 1.0000 0.8740
Random 1.0000

binatorial auction problems. Proceedings of the
Eighteenth National Conference on Artificial Intel-
ligence (pp. 359-366).

Brafman, R. I., Domshlak, C., Shimony, S. E., & Sil-
ver, Y. (2005). Preferences over sets. Working Notes
of the IJCAI-05 Workshop on Advances in Prefer-
ence Handling.

Burges, C., Shaked, T., Renshaw, E., Lazier, A.,
Deeds, M., Hamilton, N., & Hullender, G. (2005).
Learning to rank using gradient descent. Proceed-
ings of the Twenty-Second International Conference
on Machine Learning (pp. 89-96).

Burke, R. (2002). Hybrid recommender systems: Sur-
vey and experiments. User Modeling and User-
Adapted Interaction, 12, 331-370.

Carbonell, J., & Goldstein, J. (1998). The use of
MMR, diversity-based reranking for reodering doc-
uments and producing summaries. Proceedings of
the 21st Annual ACM SIGIR Conference on Re-
search and Development in Information Retrieval
(SIGIR’98) (pp. 335-336). ACM Press.

Caruana, R., Baluja, S., & Mitchell, T. (1996). Us-
ing the future to ’sort out’ the present: Rankprop
and multitask learning for medical risk evaluation.

Advances in Neural Information Processing Systems
(Proceedings of NIPS 95) (pp. 959-965). MIT Press.

Chu, W., & Ghahramani, Z. (2005). Preference learn-
ing with Gaussian processes. Proceedings of the
Twenty-Second International Conference on Ma-
chine Learning (pp. 137-144).

Cohen, W. W., Schapire, R. E., & Singer, Y. (1999).
Learning to order things. Journal of Artificial Intel-
ligence Research, 10, 243-270.

Crammer, K., & Singer, Y. (2001). Pranking with
ranking. Proceedings of the Neural Information Pro-
cessing Systems Conference (pp. 641-647).

Cramton, P., Shoham, Y., & Steinberg, R. (Eds.).
(2006). Combinatorial auctions. MIT Press.

desJardins, M., & Wagstaff, K. L. (2005). DD-PREF:
A language for expressing preferences over sets. Pro-
ceedings of the Twentieth National Conference on
Artificial Intelligence (pp. 620-626).

Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pat-
tern classification. Wiley-Interscience. Second edi-
tion.

Freund, Y., Iyer, R., Schapire, R. E.; & Singer, Y.
(2003). An efficient boosting algorithm for combin-
ing preferences. Journal of Machine Learning Re-
search, 4, 933-969.

Gill, P. E., & Murray, W. (1976). Minimization sub-
ject to bounds on the wvariables. National Physical
Laboratory.

Gill, P. E., Murray, W., & Wright, M. H. (1981). Prac-
tical optimization. Academic Press.

Herbrich, R., Graepel, T., Bollmann-Sdorra, P., &
Obermayer, K. (1998). Learning preference rela-
tions for information retrieval. Proceedings of the
Learning for Text Categorization AAAI Workshop
(pp- 83-86).

Price, B., & Messinger, P. R. (2005). Optimal rec-
ommendation sets: Covering uncertainty over user
preferences. Proceedings of the Twentieth National
Conference on Artificial Intelligence (pp. 541-548).

Witten, I. H., & Frank, E. (2005). Data mining: Prac-
tical machine learning tools and techniques. Morgan
Kaufmann. Second edition.

Zhai, C., Cohen, W. W., & Lafferty, J. (2003). Be-
yond independent relevance: Methods and evalua-
tion metrics for subtopic retrieval. Proceedings of
SIGIR’03 (pp. 10-17).

Zwicker, E., & Fastl, H. (1990). Psychoacoustics, facts
and models. Springer-Verlag.

