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This document presents the proofs of the generalization bounds of the instance weighting approach to
transfer learning. In Section 1, we present the notions and definitions used throughout the proofs.
For the sake of readability and self-containedness, we then recall the theoretical results in Section 2,
and their proofs are presented in Section 3. Finally, additional experimental results are reported in
Section 4.

1 Preliminaries

Definition 1 (Uniform stability). Let hS ∈ H be the hypothesis returned by a learning algorithmA
when trained on sample S. A is said to have β-uniform stability, with β ∈ R+, if the following holds:

sup
z∼D
|`(hS(x), y)− `(hS′(x), y)| ≤ β ∀S, S′ ,

where S′ is the training sample S with a single example z replaced by an i.i.d. example z′. The
smallest such β satisfying the inequality is the stability coefficient of A.
Definition 2 (Rademacher complexity). Let H be a hypothesis class defined over a set X drawn
from a distribution D, and S = {xi}Ni=1 a fixed sample of size N with elements in X . Then, the
Rademacher complexity ofH is defined as:

RD(H) = E sup
h∈H

1

N

N∑
i=1

σih(xi) ,

where σi, . . . , σN are are independent uniform random variables taking values in {−1,+1}.
Definition 3 (ρ-Lipschitz continuity). A loss function ` (h(x), y) is ρ-Lipschitz continuous with
respect to the hypothesis classH for some ρ ∈ R+, if, for any two hypotheses h, h′ ∈ H and for any
(x, y) ∈ X × Y , we have:

|` (h(x), y)− ` (h′(x), y)| ≤ ρ |h(x)− h′(x)| .

Another notion used to upper bound the stability coefficient is that of Bregman divergence [13].
Definition 4 (Bregman divergence). Let F : Ω → R be a strictly convex function defined on a
closed convex set Ω. The Bregman divergence associated with F for f, g ∈ Ω is defined as

dF (f, g) = F (f)− F (g)− 〈f − g, δF (g)〉 ,
where δF (g) is an arbitrary element of the subgradient of F at g.
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Definition 5 (Discrepancy [11]). LetH be a hypothesis class mapping X to Y and let ` : Y ×Y →
R+ define a loss function over Y . The discrepancy distance between two distributions D1 and D2

over X is defined by:

dist(D1,D2) = sup
h,h′∈H

|LD1
(h, h′)− LD2

(h, h′)| ,

where we have slightly abused our notation without creating confusion by making LD(h, h′) =
Ex∼D [`(h(x), h′(x))].

Definition 6 (Y-Discrepancy [12]). LetH be a hypothesis class mappingX toY and let ` : Y×Y 7→
R+ define a loss function over Y . The Y-discrepancy distance between two distributions D1 and D2

over X × Y is defined as:

distY(D1,D2) = sup
h∈H
|LD1(h)− LD2(h)| .

Remark 1. It is easy to verify that both discrepancy and Y-discrepancy are symmetric and obey
the triangle inequality for any loss function, that is, d(D1,D2) + d(D2,D3) ≥ d(D1,D3), for
d(·) = dist(·) and d(·) = distY(·).

Definition 7 (Uniform argument stability). Let hS ∈ H be the hypothesis returned by a learning
algorithm A when trained on sample S of size N . An algorithm A has α-uniform argument stability,
with α ∈ R+, if the following holds:

‖hS − hSi‖ ≤ α , ∀S, Si ∀i ∈ {1, . . . , N} .

Remark 2. Uniform argument stability is a stronger notion than uniform stability. If an algorithm
A has uniform argument stability α, and we assume that for all x ∈ X , ‖x‖2 ≤ R, then for any
ρ-Lipschitz continuous loss function, A has β-uniform stability with β = αρR.

The following Lemma shows that the hypothesis output by an argument stable algorithm is concen-
trated around its expectation EhS [7].

Lemma 1. If a learning algorithm A is an α-argument stable algorithm, then, for any δ ∈ (0, 1), we
have:

Pr

(
‖h− EhS‖ ≤ α

√
2N log

2

δ

)
≤ 1− δ.

Lemma 1 implies that an argument stable algorithm essentially defines a hypothesis class centered at
EhS , rather than the entire hypothesis classH.

Definition 8 (Algorithmic hypothesis class). For a fixed sample of size N and a confidence param-
eter δ ∈ (0, 1), the algorithmic hypothesis class of a stable learning algorithm is defined by:

B =

{
h ∈ H | ‖h− EhS‖ ≤ α

√
2N log

2

δ

}
.

The following Lemma shows that the Rademacher complexity of R(B) of an algorithmic hypothesis
class can be upper bounded [7].

Lemma 2. Let S be a training sample of N i.i.d. points drawn from some distribution D, and let
hS be a linear hypothesis that has α-uniform argument stability. Then, for any δ ∈ (0, 1), with
probability at least 1− δ, the weighted Rademacher complexity RΓ

D(B) can be upper bounded by:

RD(B) ≤ αR
√

2 log
2

δ
.

2 Theoretical Results

We study the weight-dependent stability of regularized algorithms based on instance weighting.
Specifically, given a training set S = {zi = (xi, yi)}Ni=1, and their weights Γ = [γ1, . . . , γN ]> such
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that Γ � 0 and ‖Γ‖1 = 1. We analyze the learning algorithm A which aims to solve the following
objective function:

min
h∈H
LΓ
S(h) + λR(h) , (1)

where LΓ
S(h) =

∑N
i=1 γi`(h(xi), yi). As we consider the linear function class, the hypothesis h

has the form of h(x) = 〈h, x〉, where 〈·, ·〉 is the inner product of two vectors, and we study the
regularization functionR(h) = ‖h‖22.
Remark 3. A special case of (1) is to minimize a convex combination of the empirical losses of the
source and target domains [2, 1, 9]:

min
h∈H

γLST (h) + (1− γ)LSS (h) + λR(h) ,

where γ ∈ [0, 1] is a weight parameter that controls the tradeoff between target and source domains.

Problem (1) also accommodates domain adaptation [14], where the only labeled instances are from
the source domain1, giving the following objective function:

min
h∈H
LΓS

SS
(h) + λR(h) .

We present our main theoretical results as follows.2

Theorem A. Let hS be the optimal solution of the transfer learning problem (1). Assume that
‖x‖2 ≤ R,∀x ∈ X , and that the loss function is ρ-Lipschitz continuous and convex. Then, for any
δ ∈ (0, 1), with probability at least 1− δ, we have

LDT (hS) ≤ LΓ
S(hS) + εΓ + ‖ΓS‖1 distY(DT ,DS) , (2)

where

εΓ = min

{
‖Γ‖∞ρ2R2

λ
+

(
ρ2R2(‖Γ‖22 + ‖Γ‖∞)

λ
+ ‖Γ‖∞B(Γ)

)√
N log 1

δ

2
,

2‖Γ‖∞‖Γ‖2ρ2R2

λ

√
2N log

4

δ
+ ‖Γ‖2B(Γ)

√
log 2

δ

2

}
.

Corollary A. Let wS be the optimal solution of the transfer learning problem (1), and h∗ =
arg minh LDT (h) be the minimizer in the target domain. Assume that ‖x‖2 ≤ R,∀x ∈ X , and that
the loss function obeys the triangle inequality and is ρ-Lipschitz and convex. Then, for any δ ∈ (0, 1),
with probability at least 1− δ, we have:

LDT (hS) ≤ LDT (h∗) + ε′Γ + 2‖ΓS‖1 distY(DT ,DS) , (3)

where

ε′Γ = min

{
‖Γ‖∞ρ2R2

λ
+

(
ρ2R2(‖Γ‖22 + ‖Γ‖∞)

λ
+

(
||Γ||2√
N

+ ‖Γ‖∞
)
B(Γ)

)√
N log 4

δ

2
,

2‖Γ‖∞‖Γ‖2ρ2R2

λ

√
2N log

8

δ
+ 2‖Γ‖2B(Γ)

√
log 4

δ

2

}
.

Lemma A. LetD be a distribution over X ×Y and let D̂ be the corresponding empirical distribution
for a sample S = {(xi, yi)}Ni=1. Then, for any δ > 0, with probability at least 1− δ, the following
hold:

distY(DS ,DT ) ≤ distY(D̂S , D̂T ) +
4ρ2R2

λ

(
1

NS
+

1

NT

)√
2 log

4

δ
+B

√ log 4
δ

2NS
+

√
log 4

δ

2NT


1The unlabeled target domain sample can have indirect effects on the learning problem through the instance

weights ΓS , as they are usually learned from both the source and target domains [5, 4].
2We use numerical sequencing for intermediate results, and alphabetical sequencing for main results.
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for ρ-Lipschitz continuous loss, and

distY(DS ,DT ) ≤ distY(D̂S , D̂T ) +
4R

λ

(
1

NS
+

1

NT

)√
2 log

4

δ
+

√ log 4
δ

2NS
+

√
log 4

δ

2NT


for 0-1 loss.

Remark 4. Lemma A shows that the discrepancy distance between two distributions DS and DT
can be estimated from finite samples D̂S and D̂T . However, we still have to find an approach to
compute the empirical Y-discrepancy distY(D̂S , D̂T ), which is given by Lemma B

Lemma B. Let SS = {xSi , ySi }
NS
i=1 and ST = {xTi , yTi }

NT
i=1, respectively, be the training samples of

source and target domains, D̂S and D̂T be their corresponding empirical distributions. Then, we
have

distY(D̂S , D̂T ) =1−min
h∈H

[
1

NT

∑
xT
i :yTi =1

1h(xT
i )=1 +

1

NS

∑
xS
i :ySi =0

1h(xS
i )=1

+
1

NT

∑
xT
i :yTi =0

1h(xT
i )=0 +

1

NS

∑
xS
i :ySi =1

1h(xS
i )=0

]

Remark 5. Lemma B shows that, for 0-1 loss, distY(D̂S , D̂T ) can be computed by constructing a
new classification problem, where the positive target examples and negative source examples are
positively labeled, and the negative target examples and positive source examples are negatively
labeled. Then, distY(D̂S , D̂T ) can by computed by finding the hypothesis that minimizes 0-1 loss of
the new classification problem.

Proposition A. Let f(x) =
∑K
k=1 αkhk(x) be the ensemble of classifiers returned by gapBoost,

with each base learner trained by solving (1). For simplicity, we assume that
∑K
k=1 αk = 1. Then,

for any δ ∈ (0, 1), with probability at least 1− δ, we have

LDT (f) ≤ LST (f) +
2ρ2R2γT

∞
λ

√
2 log 4

δ +B(Γ)

√
log 2

δ

2NT
.

where γT∞ is the largest weight of the target sample over all boosting iterations.

3 Proof of the Results

3.1 Step 1: Bound LDT from LΓ
D

Lemma 3. Let LΓ
D = LΓT

DT
+ LΓS

DS
be the expected weighted loss of LΓ

S , and let h∗ be the optimal
hypothesis that minimizes the error h∗ = arg minh∈H LDT (h) + LDS (h). Then, for any h ∈ H, we
have

LDT (h) ≤ LΓ
D + ‖ΓS‖1 distY(DT ,DS).

Proof.

LDT (h)− LΓ
D(h)

≤
∣∣∣LDT (h)− LΓT

DT
(h)− LΓS

DS
(h)
∣∣∣

= |LDT (h)− (1− γS)LDT (h)− γSLDS (h)| linearity of expectation

= ‖ΓS‖1 |LDT (h)− LDS (h)|
≤ ‖ΓS‖1 distY(DT ,DS) definition of Y-discrepancy distance
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3.2 Step 2: Bound LΓ
D from LΓ

S

To bound LΓ
D(h), we need some auxiliary results. In Section 3.2.1, we bound the generalization per-

formance within the framework of algorithmic stability. In particular, we show that the generalization
loss of weight dependent uniformly stable algorithms can be bounded. In Section 3.2.2, we develop
another bound by leveraging the connection between weighted Rademacher complexity and augment
algorithmic stability [7].

3.2.1 Algorithmic Stability Bound

Definition A (Weight dependent uniform stability). Let hS ∈ H be the hypothesis returned by
a learning algorithm A when trained on sample S weighted by Γ. An algorithm A has weight
dependent uniform stability, with βi ≥ 0, if the following holds:

sup
z∼D
|`(hS(x), y)− `(hSi(x), y)| ≤ βi, ∀S, Si

where Si is the training sample S with the i-th example zi replaced by an i.i.d. example z′i.

Remark 6. By letting β = max{βi}Ni=1, it is trivial to show that weight dependent uniform stability
implies uniform stability.

Next, we bound the generalization error for weight dependent stable algorithms.
Lemma 4. Assume that the loss function is upper bounded by B ≥ 0. Let S be a training sample of
N i.i.d. points drawn from some distribution D, weighted by Γ, and let hS be the hypothesis returned
by a weight dependent stable learning algorithm A. Then, for any δ ∈ (0, 1), with probability at
least 1− δ, the following holds:

LΓ
D(hS) ≤ LΓ

S(hS) + β + (∆ + β + ‖Γ‖∞B)

√
N log 1

δ

2
,

where ∆ =
∑N
i=1 γiβi and ‖Γ‖∞ = max{γi}Ni=1.

Proof. Let ΦΓ(S) = LΓ
D(hS)− LΓ

S(hS). Then, by the definition of ΦΓ, we have

|Φ(S)− Φ(Si)| ≤ |LΓ
D(hS)− LΓ

D(hSi)|+ |LΓ
S(hS) + LΓ

Si(hSi)|

By the stability of the algorithm, we have3

|LΓ
D(hS)− LΓ

D(hSi)| = |Ez∼D[`z(hS)]− Ez∼D[`z(hSi)]| ≤ β,

where β = max{βi}Ni=1. In addition, we also have

|LΓ
S(hS)− LΓ

Si(hSi)| =

∣∣∣∣∣∣
∑
j 6=i

γj(`zj (hS)− `zj (hSi)) + γi(`zi(hS)− `z′i(hSi))

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
j 6=i

γj
∣∣`zj (hS)− `zj (hSi)

∣∣+ γi
∣∣`zi(hS)− `z′i(hSi)

∣∣∣∣∣∣∣∣
≤
∑
j 6=i

γjβj + γiB

≤ ∆ + ‖Γ‖∞B

Consequently, ΦΓ satisfies |ΦΓ(S)−ΦΓ(Si)| ≤
∑N
i=1 γiβi+β+‖Γ‖∞B. By applying McDiarmid’s

inequality, we have

Pr [Φ(S) ≥ ε+ E[Φ(S)]] ≤ exp

(
−2ε2

N (∆ + β + ‖Γ‖∞B)
2

)
. (4)

3We write ` (h(x), y) as `z(h) for simplicity.
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By setting δ = exp
(

−2ε2

N(∆+β+‖Γ‖∞B)2

)
, we obtain ε = (∆ + β + ‖Γ‖∞B)

√
N log 1

δ

2 . Plugging ε
back to (4) and rearranging terms, with probability 1− δ, we have

Φ(S) ≤ E[Φ(S)] + (∆ + β + ‖Γ‖∞B)

√
N log 1

δ

2
. (5)

By the linearity of expectation, we have E[Φ(S)] = ES∼DN [LΓ
D(hS)]− ES∼DN [LΓ

S(hS)]. By the
definition of the generalization error, we have

ES∼DN [LΓ
D(hS)] = ES,z∼DN+1 [`z(hS)].

On the other hand, by the linearity of expectation, we have

ES∼DN [LΓ
S(hS)] = ES∼DN

[
N∑
i=1

γi`zi(hS)

]
= ES,z∼DN+1 [`z(hS′)] ,

where S′ is a sample of N data points containing z drawn from the data set {S, z}. Therefore, we
have

E[Φ(S)] ≤
∣∣ES,z∼DN+1 [`z(hS)]− ES,z∼DN+1 [`z(hS′)]

∣∣
≤ ES,z∼DN+1 [|`z(hS)− `z(hS′)|] Jensen’s inequality
≤ β.

Replacing E[Φ(S)] by β in Eq. 5 completes the proof.

Lemma 5 shows that the algorithm solving (1) has weight dependent stability.
Lemma 5. The learning algorithm (1) with a ρ-Lipschitz continuous loss function and the regularizer
R(w) = ‖w‖22 has weight dependent uniform stability, with

βi ≤
γiρ

2R2

λ
.

Proof. Let VS(w) = LΓ
S(w) + λR(w). By the definition of Bregman divergence, we have

dVSi
(
wS , wSi

)
+ dVS

(
wSi , wS

)
= LΓ

Si

(
wS
)
− LΓ

Si

(
wSi

)
+ LΓ

S

(
wSi

)
− LΓ

S

(
wS
)

= γi (`(〈wS , x′i〉, y′i)− `(〈wSi , x′i〉, y′i) + `(〈wSi , xi〉, yi)− `(〈wS , xi〉, yi))
≤ γi (ρ |〈wS − wSi , x′i〉|+ |ρ〈wS − wSi , xi〉|)
≤ 2γiρR ||wS − wSi ||2

where wS and wSi are, respectively, the optimal solutions of VS and VSi . The first equality holds
because of the first-order optimality condition [3] of VS and VSi , and the last two inequalities are,
respectively, due to the Lipschitz continuity of loss function ` and the Cauchy-Schwarz inequality.

Since dλR(wS , wSi) = dλR(wSi , wS) = λ‖wS−wSi‖22, by the non-negative and additive properties
of Bregman divergence, we have

λ‖wS − wSi‖22 ≤ γiρR ||wS − wSi ||2 ,

which gives

‖wS − wSi‖2 ≤
γiρR

λ
.

Consequently, by the Lipschitz continuity of ` and the Cauchy-Schwarz inequality, we have

βi ≤
γiρ

2R2

λ
.

Combining Lemma 4 and Lemma 5, we immediately obtain obtained the generalization bound of the
learning algorithms solving (1).
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Theorem 1. Assume that the loss function is ρ-Lipschitz continuous and upper bounded by B ≥ 0.
Let S be a training sample of N i.i.d. points drawn from some distribution D, weighted by Γ, and
let wS be the hypothesis returned by a learning algorithm A that minimizes (1) with the regularizer
R(w) = ‖w‖22. Then, for any δ ∈ (0, 1), with probability at least 1− δ, the following holds:

LΓ
D(wS) ≤ LΓ

S(wS) +
‖Γ‖∞ρ2R2

λ
+

(
ρ2R2(‖Γ‖22 + ‖Γ‖∞)

λ
+ ‖Γ‖∞B

)√
N log 1

δ

2
, (6)

Remark 7. If γi = 1
N ,∀i = {1, . . . , N}, we recover the standard stability bound from (6) [13]. In

addition, ‖Γ‖∞ and ‖Γ‖22 in (6) also imply that one should assign equal weights to all the instances.
In Section 3.3, we will show that in the setting of instance weighting for transfer learning, the model
complexity (hence the loss function) can also be upper bounded as a function of Γ, and therefore,
γi = 1

N may not be an optimal weighting scheme for transfer learning.

3.2.2 Rademacher Complexity Bound

In this section, we develop the Rademacher complexity bound for the learning algorithm (1).

Definition B (Weighted Rademacher complexity). LetH be a hypothesis class defined over a set
X drawn from a distribution D, S = {xi}Ni=1 a fixed sample of size N with elements in X , and
Γ = {γi}Ni=1 be the weights for sample. Then, the weighted Rademacher complexity ofH is defined
as

RΓ
D(H) = E sup

h∈H

N∑
i=1

σiγih(xi),

where σi, . . . , σN are are independent uniform random variables taking values in {−1,+1}.

Lemma 6. Assume that the loss function is ρ-Lipschitz continuous and upper bounded by B ≥ 0.
Let S be a training sample of N i.i.d. points drawn from some distribution D, weighted by Γ. Then,
for any δ ∈ (0, 1), with probability at least 1− δ, the following holds for any h ∈ H:

LΓ
D(h) ≤ LΓ

S(h) + 2ρRΓ
D(H) +B‖Γ‖2

√
log 1

δ

2
. (7)

Proof. For each hypothesis h ∈ H, let G be a family of functions mapping z ∈ X × Y to some loss
function `z(h):

G = H ◦ ` = {z ∈ X × Y → `z(h) : h ∈ H}.

Let Φ(S) = supg∈G EΓ[g]− ÊΓ
S [g], where ÊΓ

S(g) =
∑N
i=1 γig(zi), and EΓ[g] = ES

[
EΓ[g]

]
. Since

the loss function is bounded by B, we have |Φ(S)−Φ(Si)| ≤ γiB. Then, by applying McDiarmid’s
inequality, for any δ ≥ 0, with probability at least 1− δ, the following holds:

Φ(S) ≤ E[Φ(S)] +B

√
log 1

δ

∑N
i=1 γ

2
i

2

Next, by Talagrand’s Lemma [6] and the similar proof scheme of Theorem 3.1 in [13], we can show
that for a ρ-Lipschitz loss function, we have
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E[Φ(S)] = ES
[
sup
g∈G

EΓ[g]− ÊΓ
S [g]

]
= ES

[
sup
g∈G

ES̃
[
ÊΓ
S̃

[g]− ÊΓ
S [g]

]]
≤ ES,S̃

[
sup
g∈G

ÊΓ
S̃

[g]− ÊΓ
S [g]

]

= ES,S̃

[
sup
g∈G

N∑
i=1

γi (g(z̃i)− g(zi))

]

= ES,S̃,σ

[
sup
g∈G

N∑
i=1

σiγi (g(z̃i)− g(zi))

]

≤ ES̃,σ

[
sup
g∈G

N∑
i=1

σiγig(z̃i)

]
+ ES,σ

[
sup
g∈G

N∑
i=1

−σiγig(zi)

]

= 2ES,σ

[
sup
g∈G

N∑
i=1

σiγig(zi)

]
= 2RΓ

D(G) ≤ 2ρRΓ
D(H)

Therefore, with probability at least 1− δ, the following holds

LΓ
D(h) ≤ LΓ

S(h) + 2ρRΓ
D(H) +B‖Γ‖2

√
log 1

δ

2
.

From the proof of Lemma 5, we can show that the algorithm solving (1) has uniform augment
stability.

Corollary 1. The learning algorithm (1) with a ρ-Lipschitz continuous loss function and the regular-
izer R(w) = ‖w‖22 has uniform argument stability, with

α ≤ ‖Γ‖∞ρR
λ

Next, we show that the weighted Rademacher complexity RΓ
D(B) of an algorithmic hypothesis class

can be upper bounded.

Lemma 7. Let S be a training sample ofN i.i.d. points drawn from some distributionD, weighted by
Γ, and let hS be the linear hypothesis that has α-uniform argument stability. Then, for any δ ∈ (0, 1),
with probability at least 1− δ, the weighted Rademacher complexity RΓ

D(B) can be upper bounded
by

RΓ
D(B) ≤ αR‖Γ‖2

√
2N log

2

δ
. (8)
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Proof. We follow the similar proof scheme of Theorem 1 in [7]

RΓ
D(B) = E sup

h∈B

N∑
i=1

σiγi〈h, xi〉

= E sup
h∈B

N∑
i=1

(σiγi〈h, xi〉 − σiγi〈EhS , xi〉) EhS is a constant

= E sup
h∈B

N∑
i=1

σiγi〈h− EhS , xi〉

≤ E sup
h∈B
‖h− EhS‖

∣∣∣∣∣
∣∣∣∣∣
N∑
i=1

σiγixi

∣∣∣∣∣
∣∣∣∣∣ Cauchy-Schwarz inequality

≤ α
√

2N log
2

δ

(
N∑
i=1

‖γixi‖22

) 1
2

Lemma 1

≤ α
√

2N log
2

δ

(
R2

N∑
i=1

γ2
i

) 1
2

= αR‖Γ‖2

√
2N log

2

δ

Combining Lemma 6, Corollary 1, and Lemma 7, we obtain another generalization bound of the
learning algorithm solving (1).
Theorem 2. Assume that the loss function is ρ-Lipschitz continuous and upper bounded by B ≥ 0.
Let S be a training sample of N i.i.d. points drawn from some distribution D, weighted by Γ, and let
wS be the hypothesis returned by a β-stable learning algorithm A. Then, for any δ ∈ (0, 1), with
probability at least 1− δ, we have

LΓ
D(wS) ≤ LΓ

S(wS) +
2‖Γ‖∞‖Γ‖2ρ2R2

λ

√
2N log

4

δ
+B‖Γ‖2

√
log 2

δ

2
. (9)

Remark 8. If γi = 1
N ,∀i = {1, . . . , N}, we recover the standard argument stability bound from

(9) [7]. Similar to Theorem 1, Theorem 2 also suggests assigning equal weights to the instances. If
‖Γ‖∞ (hence ‖Γ‖22) is of order O( 1

n ), both Theorem 1 and Theorem 2 lead to a convergence rate of
the generalization bound is of order O( 1√

n
). In the setting of transfer learning, it is usually the case

that NT � NS . Consequently, we may have ‖Γ‖∞ � 1
NT

, which implies the benefits of transfer
learning compared to single task learning.

By combining Lemma 3 with Theorems 1 – 2, we immediately obtain Theorem A.

3.3 Step 3: Bound B

Definition C (Performance gap). Let VS(h) = LΓS
SS (h) + ηλR(h) and VT (h) = LΓT

ST (h) + ηλR(h),
respectively, be the objective functions in the source and target domains, where η ∈ (0, 1

2 ), and let
their minimizers, respectively, be hSS and hST . The performance gap between the source and target
domains is defined as

∇ = ∇T +∇S ,

where∇S = LΓS

SS
(hST )− LΓS

SS
(hSS ) and∇T = LΓT

ST
(hSS )− LΓT

ST
(hST ).

The following lemma shows that the model complexity of the transfer learning algorithm (1) can be
upper bounded in terms of the performance∇.

9



Lemma C. Let hS be the optimal solution of the instance weighting transfer learning problem (1).
Then, we have:

‖hS‖2 ≤

√
∇

2λ(1− 2η)
+
‖hSS‖22 + ‖hST ‖22

2
.

Proof. By the definition of wST , wSS , and wS , we have

VS(wSS ) ≤ VS(wS), and VT (wST ) ≤ VT (wS),

which gives

VS(wSS ) + VT (wST ) ≤ V(wS) + (2η − 1)λR(wS). (10)

On the other hand, we also have

V(wS) ≤ V(wSS ), (11)

and

V(wS) ≤ V(wST ). (12)

From (10) and (11), we have

λ(1− 2η)R(wS) ≤ V(wS)− VS(wSS )− VT (wST ) (13)
≤ V(wSS )− VS(wSS )− VT (wST )

= ∇T + λ(1− η)R(wSS )− ηλR(wST ).

Similarly, from (10) and (12), we also have

λ(1− 2η)R(wS) ≤ ∇S + λ(1− η)R(wST )− ηλR(wSS ) (14)

Combining (13) and (14) gives

R(wS) ≤ ∇
2λ(1− 2η)

+
1

2
(R(wSS ) +R(wST )) .

SubstitutingR(w) = ‖w‖22 concludes the proof.

Substituting the hinge loss for classification into the loss function, we immediately obtain the
following corollary.

Corollary 2. The hinge loss function of the transfer learning algorithm (1) for classification with the
regularizerR(w) = ‖w‖22 can be upper bounded by

B ≤ 1 +R

√
∇

2λ(1− 2η)
+

1

2

(
‖wS‖22 + ‖wT ‖22

)
.

Similarly, Corollary 2 bounds the `q loss for robust regression.

Corollary 3. Assume that |y| ≤ Y,∀y ∈ Y . Then, the `q loss function of the transfer learning
algorithm (1) for regression with the regularizerR(w) = ‖w‖22 can be upper bounded by

B ≤

(
Y +R

√
∇

2λ(1− 2η)
+

1

2
(‖wS‖22 + ‖wT ‖22)

)q
.

3.4 Proof of Corollary A

Lemma 8 (Weighted Hoeffding’s inequality). Let {Xi}Ni=1 be independent random variables with
ai ≤ Xi ≤ bi. Then, for any ε ≥ 0, the following inequality holds for S =

∑N
i=1 γiXi:

Pr [|S − E[S]| ≥ ε] ≤ 2e−2ε2/
∑N
i=1 γ

2
i (bi−ai)2 .

10



Proof.

Pr [S − E[S] ≥ ε] ≤ etεE
[
et(S−E[S])

]
=

N∏
i=1

etεE
[
etγi(Xi−E[Xi])

]
≤

N∏
i=1

etεet
2γ2
i (bi−ai)2/8

= etεet
2

e
∑N
i=1 γ

2
i (bi−ai)2/8

≤ e−2ε2/
∑N
i=1 γ

2
i (bi−ai)2 ,

where we have chosen t = 4ε∑N
i=1 γ

2
i (bi−ai)2

as the minimizer. Similarly, we can also show that

Pr [S − E[S] ≤ −ε] ≤ e−2ε2/
∑N
i=1 γ

2
i (bi−ai)2 ,

Given Lemma 8, we can bound the the difference between LΓ
D(h) and LΓ

S(h) for any given hypothesis
h ∈ H.
Corollary 4. Assume that the loss function is upper bounded by B ≥ 0. Then, for a fixed hypothesis
h ∈ H, δ ∈ (0, 1), with probability at least 1− δ, we have

LΓ
S(h) ≤ LΓ

D(h) +B‖Γ‖2

√
log 2

δ

2
.

Proof of Corollary A. Combining Theorem A with Lemma A and Corollary 4, we can show that for
any δ ∈ (0, 1), with probability at least 1− δ, the followings hold:

LDT (wS) ≤ LΓ
S(wS) +

‖Γ‖∞ρ2R2

λ
+

(
ρ2R2(‖Γ‖22 + ‖Γ‖∞)

λ
+ ‖Γ‖∞B(Γ)

)√
N log 1

δ

2
+ ‖ΓS‖1 distY(DT ,DS)

≤ LΓ
S(w∗) +

‖Γ‖∞ρ2R2

λ
+

(
ρ2R2(‖Γ‖22 + ‖Γ‖∞)

λ
+ ‖Γ‖∞B(Γ)

)√
N log 1

δ

2
+ ‖ΓS‖1 distY(DT ,DS)

≤ LΓ
D(w∗) + ‖Γ‖2B(Γ)

√
log 4

δ

2
+
‖Γ‖∞ρ2R2

λ

+

(
ρ2R2(‖Γ‖22 + ‖Γ‖∞)

λ
+ ‖Γ‖∞B(Γ)

)√
N log 2

δ

2
+ ‖ΓS‖1 distY(DT ,DS)

≤ LDT (w∗) + ‖Γ‖2B(Γ)

√
log 4

δ

2
+
‖Γ‖∞ρ2R2

λ

+

(
ρ2R2(‖Γ‖22 + ‖Γ‖∞)

λ
+ ‖Γ‖∞B(Γ)

)√
N log 2

δ

2
+ 2‖ΓS‖1 distY(DT ,DS),

and

LDT (wS) ≤ LΓ
S(wS) +

2‖Γ‖∞‖Γ‖2ρ2R2

λ

√
2N log

4

δ
+ ‖Γ‖2B(Γ)

√
log 2

δ

2
+ ‖ΓS‖1 distY(DT ,DS)

≤ LΓ
D(w∗) +

2‖Γ‖∞‖Γ‖2ρ2R2

λ

√
2N log

8

δ
+ 2‖Γ‖2B(Γ)

√
log 4

δ

2
+ ‖ΓS‖1 distY(DT ,DS)

≤ LDT (w∗) +
2‖Γ‖∞‖Γ‖2ρ2R2

λ

√
2N log

8

δ
+ 2‖Γ‖2B(Γ)

√
log 4

δ

2
+ 2‖ΓS‖1 distY(DT ,DS).
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3.5 Bound distY(DT ,DS)

Given a hypothesis classH, the following propositions show that the discrepancy distance between a
distributionD and its empirical distribution D̂ can be bounded in terms of the Rademacher complexity
ofH.

Proposition 1. Assume that the loss function is upper bounded by B ≥ 0, and is ρ-Lipschitz. Let
D be a distribution over X × Y and let D̂ be the corresponding empirical distribution for a sample
S = {(xi, yi)}Ni=1. Then, for any δ > 0, with probability at least 1− δ, the following holds:

distY(D, D̂) ≤ 2ρRD(H) + 3B

√
log 1

δ

2N

Proposition 2. LetH be a hypothesis class mapping X to {−1, 1}, and let `01 be the 0-1 loss.4 Let
D be a distribution over X × Y and let D̂ be the corresponding empirical distribution for a sample
S = {(xi, yi)}Ni=1. Then, for any δ > 0, with probability at least 1− δ, the following holds:

distY(D, D̂) ≤ 4RD(H) + 3

√
log 1

δ

2N

The proof of Propositions 1 and 2 follows the standard techniques as described in [10], and therefore
is omitted here.

Proof of Lemma A. Combining Propositions 1, 2, and Rademacher complexity bound of an argument
stable algorithm (Theorem 1 in [7]), and by the triangle inequality property of T -discrepancy, we
immediately obtain Lemma A.

Proof of Lemma B. We show that for any hypothesis h, the following holds:

1−

 1

NT

∑
xT
i :yTi =1

1h(xT
i )=1 +

1

NS

∑
xS
i :ySi =0

1h(xS
i )=1 +

1

NT

∑
xT
i :yTi =0

1h(xT
i )=0 +

1

NS

∑
xS
i :ySi =1

1h(xS
i )=0


=

1

2NT

 ∑
xT
i :yTi =1

1h(xT
i )=1 +

∑
xT
i :yTi =0

1h(xT
i )=1 +

∑
xT
i :yTi =1

1h(xT
i )=0 +

∑
xT
i :yTi =0

1h(xT
i )=0


+

1

2NS

 ∑
xS
i :ySi =1

1h(xS
i )=1 +

∑
xS
i :ySi =0

1h(xS
i )=1 +

∑
xS
i :ySi =1

1h(xS
i )=0 +

∑
xS
i :ySi =0

1h(xT
i )=0


−

 1

NT

∑
xT
i :yTi =1

1h(xT
i )=1 +

1

NS

∑
xS
i :ySi =0

1h(xS
i )=1 +

1

NT

∑
xT
i :yTi =0

1h(xT
i )=0 +

1

NS

∑
xS
i :ySi =1

1h(xS
i )=0


=

1

2NT

− ∑
xT
i :yTi =1

1h(xT
i )=1 +

∑
xT
i :yTi =0

1h(xT
i )=1 +

∑
xT
i :yTi =1

1h(xT
i )=0 −

∑
xT
i :yTi =0

1h(xT
i )=0


+

1

2NS

 ∑
xS
i :ySi =1

1h(xS
i )=1 −

∑
xS
i :ySi =0

1h(xS
i )=1 −

∑
xS
i :ySi =1

1h(xS
i )=0 +

∑
xS
i :ySi =0

1h(xT
i )=0


=

1

2
(2LD̂T

(h)− 1) +
1

2
(1− 2LD̂T

(h))

= LD̂T
(h)− LD̂S

(h)

40-1 loss is not ρ-Lipschitz, but it can be upper bounded by hinge loss, which is 1-Lipschitz. Therefore, the
generalization bound still holds by slightly modifying it.
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3.6 Proof of Proposition A

Lemma 9. Let H be a hypothesis class of real-valued functions returned by the transfer learning
algorithm (1) with a ρ-Lipschitz continuous loss function. The convex hull ofH is defined as

F =

{
K∑
k=1

µkhk(x) :

K∑
k=1

µk = 1, µk ≥ 0, hk ∈ H,∀k = {1, . . . ,K}

}
.

Define Γ = [Γ1, . . . ,ΓK ] ∈ RN×K , where for any k ∈ 1, . . . ,K, Γk = [ΓTk ; ΓSk ] =
[γT1,k, . . . , γ

T
NT ,k

; γS1,k, . . . , γ
S
NS ,k

]> ∈ RN are the weights for the k-th base learner. Then, for
any δ ∈ (0, 1), we probability at least 1− δ, we have

RDT (F) ≤ γT∞ρR
2

λ

√
2N log

2

δ

where γT∞ = maxk{‖ΓTk ‖∞}Kk=1 is the largest weight of the target sample over all the boosting
iterations.

Proof. We derive the generalization bound from the unweighted target training sample, treating
source domain sample can be treated as a regularizer [9, 8]. Then, follow the similar proof schema as
in Theorem 6.2 of [13], we have

RDT (F) =
1

NT
E sup
h1∈H1,...,hK∈H
µk≥0,

∑K
k=1 µk≤1

NT∑
i=1

σi

K∑
k=1

µkhk(xi)

=
1

NT
E sup
h1∈H1,...,hK∈H
µk≥0,

∑K
k=1 µk≤1

K∑
k=1

µk

(
NT∑
i=1

σihk(xi)

)

=
1

NT
E sup
h1∈H1,...,hK∈H

max
k∈{1,...,K}

NT∑
i=1

σi〈hk − Ehk,S , xi〉

≤ 1

NT
E max
k∈{1,...,K}

sup
h1∈H1,...,hK∈H

‖hk − Ehk,S‖

∣∣∣∣∣
∣∣∣∣∣
NT∑
i=1

σixi

∣∣∣∣∣
∣∣∣∣∣
2

Cauchy-Schwarz inequality

≤ 1

NT
max

k∈{1,...,K}

{
‖ΓTk ‖∞ρR

λ

√
2NT log

2

δ

}
E

∣∣∣∣∣
∣∣∣∣∣
NT∑
i=1

σiγ
k
i xi

∣∣∣∣∣
∣∣∣∣∣
2

≤ γT∞ρR

NT λ

√
2NT log

2

δ
R
√
NT =

γT∞ρR
2

λ

√
2 log

2

δ

Note that compared with Theorem 6.2 of [13], the main difference in our proof is that for each base
learner, its hypothesis class defined by learning algorithm (1) is different from others.

Proof of Proposition A. Given Lemma 9, by following the standard proof schema as in [13], we
immediately obtain Proposition A.

4 Additional Experimental Results

In this section, we report more detailed results on the 20 Newsgroup data set.

4.1 Learning Curves with Different Amount of Target Examples

We set the ratio of target samples as [0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8], and the
results are shown in Figure 1.
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4.2 Sensitivity of the Parameters ρS

We fixed ρT = 0 and varied exp(ρS) in the range [0.1, . . . , 0.9]. Figure 2 shows the results averaged
over all transfer problems on the 20Newsgroups data set, showing that as the size of the target sample
increases, the influence of the hyper-parameter on performance decreases.
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Figure 1: Test error rates (%) with different sizes of target sample on different tasks and on average
across all tasks. gapBoost
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Figure 2: Test error rates (%) averaged across all tasks with respect to the values of the hyper-
parameter ρS for varying sample sizes. Rightmost graphic shows results averaged over all sample
sizes. Our algorithm, gapBoost becomes less sensitive to the choice of ρS as the target sample grows
larger. In all cases, there is a range of ρS that outperforms all baselines. Error bars represent standard
error.
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