Online Multi-Task Gradient Temporal-Difference Learning

Vishnu Purushothaman Sreenivasan and Haitham Bou Ammar and Eric Eaton
University of Pennsylvania
Computer and Information Science Department
{visp, haithamb, eeaton} @seas.upenn.edu

Introduction

Reinforcement learning (RL) is an essential tool in design-
ing autonomous systems, yet RL agents often require ex-
tensive experience to achieve optimal behavior. This prob-
lem is compounded when an RL agent is required to learn
policies for different tasks within the same environment or
across multiple environments. In such situations, learning
task models jointly rather than independently can signif-
icantly improve model performance (Wilson et al. 2007;
Lazaric and Ghavamzadeh 2010). While this approach,
known as multi-task learning (MTL), has achieved impres-
sive performance, the performance comes at a high com-
putational cost when learning new tasks or when updating
previously learned models. Recent work (Ruvolo and Eaton
2013) in the supervised setting has shown that online MTL
can achieve nearly identical performance to batch MTL with
large computational speedups. Building upon this approach,
which is known as the Efficient Lifelong Learning Algo-
rithm (ELLA), we develop an online MTL formulation of
model-based gradient temporal-difference (GTD) reinforce-
ment learning (Sutton, Szepesvari, and Maei 2008). We call
the proposed algorithm GTD-ELLA. Our approach enables
an autonomous RL agent to accumulate knowledge over its
lifetime and efficiently share this knowledge between tasks
to accelerate learning. Rather than learning a policy for an
RL task tabula rasa, as in standard GTD, our approach
rapidly learns a high performance policy by building upon
the agent’s previously learned knowledge. Our preliminary
results on controlling different mountain car tasks demon-
strates that GTD-ELLA significantly improves learning over
standard GTD RL.

Reinforcement Learning

In a reinforcement learning problem, an agent must decide
how to sequentially select actions to maximize its expected
return. Such problems are typically formalized as a Markov
decision process (MDP) (X, A, P, R,~), where X is the
(potentially infinite) set of states, A is the set of possible
actions that the agent may execute, P : X X Ax X — [0, 1]
is a state transition probability function describing the task
dynamics, R : X x A x X — R is the reward function
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measuring the performance of the agent, and v € [0, 1) is
the discount factor. A policy 7 : X x A — [0, 1] speci-
fies a probability distribution over state-action pairs, where
m(x, a) represents the probability of selecting action a in
state x. The goal of an RL agent is to find an optimal policy
7* that maximizes the total expected discounted reward.

Gradient Temporal-Difference Learning

In GTD (Sutton, Szepesvari, and Maei 2008), the value
function is approximated by a linear combination of a pa-
rameter vector & € R™ and a set of state basis functions
® : X — R". In the independently and identically dis-
tributed (i.i.d.) formulation, states xj, are assumed to have
been generated according to some distribution. Applying an
action ay, in a state xj generates a corresponding succes-
sor state a:ﬁ€ and a reward Rj. The value function is then
estimated from the set {(®(xy), ®(x}), Ri)},_, o - Let
® = ®(x) and @’ = @ (). GTD minimizes the L, norm
of the temporal-difference error:

J(0) =E[®]" E 5] (1)
by following the gradient of the objective function:
VoJ(0) = —2E [®(@ —1@)T] E[6®] , (@)

where § = Ry, + 70T ®(x}) — 0T ®(zy).

Problem Definition

We focus on the online MTL setting in which the agent
is required to learn a series of RL tasks Z(1), ... Z(Tmax)
over its lifetime. Each task ¢ is an MDP Z®) =
(x® A0 pt) RM® ~®) The agent learns the tasks con-
secutively, acquiring multiple trajectories within each task
before moving to the next. The tasks may be interleaved,
providing the agent the opportunity to revisit earlier tasks
for further experience, but the agent has no control over the
task order. We assume that a priori the agent does not know
the total number of tasks 7},., their distribution, or the task
order. The goal is to learn a set of optimal value functions
V* ={V5u .- Vi With corresponding parameters
oM ..., eTmax) 1

'In this work, we consider the model-based RL setting. Ex-
tending GTD-ELLA to the model-free scenario is fairly straight-
forward, and we leave this to future work.



Approach

Our approach maintains a library of £ latent components
L € RY* which is shared among all tasks and forms a
basis for the task models. The parameter vectors can then be
represented as 0(Y) = Ls(!), where s(*) € R* are the coeffi-
cients over the basis L for task ¢. The s()’s are encouraged
to be sparse to ensure that each basis component represents a
cohesive chunk of knowledge. Given T tasks, we can repre-
sent the MTL problem via the following objective function:
T

er(D) = 2.3 min [7(69) + 8O, ] £ AILIE . &)

t=1

where the L; norm of s(*) is used to approximate the true
vector sparsity. Solving Equation 3 is computationally ex-
pensive due to two inefficiencies: a) the explicit dependence
of Equation 3 on all available trajectories, and b) the ex-
haustive evaluation of a single candidate L that requires the
optimization of all s(*)’s.

Eliminating Dependence On All Trajectories

As in ELLA, to eliminate the inefficiency related to the de-
pendence on all available trajectories, we approximate Equa-
tion 3 by performing a second-order Taylor expansion of
J (0®) around the optimal single-task solution ac®:

1 T
or) = 3 - 20, ]
1

+ LR
where
o) — argmoinj(e(t)) T® — Ve<t>,9<t>j(9(t)) )

Solving arg ming J (O(t)) is typically difficult in RL set-
tings, requiring a substantial amount of experience. We rem-
edy this problem by following the gradient of .7 (6()). Cru-
cially, we have removed the dependence of the optimization
on all trajectories.

Eliminating the Reoptimization of Other Tasks

The second inefficiency arises from the need to reoptimize
all learned models by recomputing the s(*)’s when learning
each new task. We modify Equation 3 to eliminate this mini-
mization over all s(*)’s by optimizing each task-specific pro-
jection only when training on task ¢, without updating them
when training on other tasks. This leads to the following up-
date equations for learning the model for each new task ¢,
which approximates the result of Equation 3:

s arg m(igl l (Lm, s(t), a(t), I‘(t)) 4@
s t

T
1
; ®) o® 7®) 2
Lm+1<—argn}%nTtE_ll(L,s Lot T )—|—/\||L||F 5)

where [ (L, s, o, T®) = p||s||; + ||a — Ls||} and
L,, corresponds to the value of the latent basis at the m!"
iteration. This formulation can be solved efficiently (Ruvolo

and Eaton 2013), and together, Equations 4 and 5 constitute
the core of GTD-ELLA.

Preliminary Results

We evaluated GTD-ELLA on multiple tasks from the moun-
tain car (MC) domain. In MC, the state is given by the posi-
tion and the velocity of the car, which was represented by 6
radial basis functions that were linearly spaced across both
dimensions. The position was bounded between —1.2 and
0.6, while the velocity was bounded between —0.07 and
0.07. Rewards of —1 were given in all states, with excep-
tion of the goal which gave a reward of 0. We generated 75
tasks by randomizing the valley’s slope, resulting in a shift
in the valley’s position. These shifts were critical to ensure
that the optimal solution for one task is suboptimal in an-
other. We trained GTD-ELLA on different numbers of tasks
to learn L, observing either 10, 30, or 50 tasks to learn the la-
tent bases. Evaluation was then conducted on 25 unobserved
MC tasks using either GTD-ELLA or standard GTD(0).
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Figure 1: Comparison of GTD-ELLA versus standard
GTD(0), showing that GTD-ELLA attains significantly
lower average loss over 25 test tasks. The left graph zooms
in on the cluttered region of the graph on the right.

Figure 1 shows that GTD-ELLA significantly improves
RL performance when training on new tasks. Further, as the
agent learns more tasks, its overall performance improves.
Although successful, this work is still in progress. In the fu-
ture, we plan to extend the approach to model-free RL, as
well as allow for more differences between the tasks.
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