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Abstract

The recently developed Efficient Lifelong Learning
Algorithm (ELLA) acquires knowledge incrementally
over a sequence of tasks, learning a repository of la-
tent model components that are sparsely shared between
models. ELLA shows strong performance in compari-
son to other multi-task learning algorithms, achieving
nearly identical performance to batch multi-task learn-
ing methods while learning tasks sequentially in three
orders of magnitude (over 1,000x) less time. In this
paper, we evaluate several curriculum selection meth-
ods that allow ELLA to actively select the next task for
learning in order to maximize performance on future
learning tasks. Through experiments with three real and
one synthetic data set, we demonstrate that active cur-
riculum selection allows an agent to learn up to 50%
more efficiently than when the agent has no control over
the task order.

Introduction
Current multi-task learning algorithms improve perfor-
mance by sharing learned knowledge between multiple task
models. With few exceptions, multi-task learning has fo-
cused primarily on learning in a batch framework, where all
tasks are given at once. However, versatile learning agents
need to be able to learn tasks consecutively, continually
building upon their knowledge over a lifetime of experience.

In this lifelong learning framework, tasks arrive sequen-
tially and the learning agent’s goal is to maximize its per-
formance across all tasks. We recently developed the Effi-
cient Lifelong Learning Algorithm (ELLA) to solve this on-
line multi-task learning problem (Ruvolo and Eaton 2013).
ELLA learns and maintains a repository of latent model
components that are shared between task models. Given a
new learning task, ELLA transfers knowledge from these
latent model components when training the new task model,
and then refines the components with knowledge learned
from the new task. This refinement process allows newly
acquired knowledge to improve existing model components,
thereby improving previously learned task models that de-
pend on these components. The computational efficiency
of ELLA is supported by rigorous theoretical guarantees
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on performance and convergence. Empirically, we have
shown that ELLA yields nearly identical performance to
batch multi-task learning while learning all tasks in three
orders of magnitude (over 1,000x) less time.

In this paper, we explore the use of active curriculum se-
lection to improve ELLA’s scalability for learning over a
long sequence of tasks. Specifically, we focus on a setting
in which a lifelong learner can choose the next task to learn
from a pool of candidate tasks in order to maximize per-
formance. In its original evaluation, ELLA had no control
over the order in which tasks were presented. We show that
active curriculum selection enables ELLA to achieve large
gains in learning efficiency compared to when the task order
is outside the agent’s control, thereby reducing the number
of tasks required to achieve a particular level of performance
and improving scalability.

After surveying related work, we describe ELLA in detail
and summarize its empirical performance. Then, we formal-
ize the active curriculum selection problem, describe several
mechanisms for active task selection, and finally compare
these mechanisms in lifelong learning scenarios.

Related Work
The model framework used in ELLA is closely related
to a number of current multi-task learning (MTL) algo-
rithms (Rai and Daumé III 2010; Zhang, Ghahramani, and
Yang 2008; Kumar and Daumé III 2012) that represent each
individual task’s model as a linear combination of a common
shared basis L. In most cases, the basis is learned in tan-
dem with all task models in an expensive batch training pro-
cess. Adding even a single task may require re-optimization
of all models, making these batch MTL approaches unsuit-
able for lifelong learning. Saha et al. (2011) proposed an
algorithm for online multi-task classification, OMTL, that
is based on perceptron learning and supports incremental
learning. However, OMTL exhibits worse performance than
ELLA, both in terms of accuracy and speed.

Task selection is closely related to both active learning
and (passive) curriculum learning (Bengio et al. 2009) meth-
ods, which order training instances in an attempt to maxi-
mize learning performance. Active learning has been eval-
uated in a number of MTL algorithms (Saha et al. 2010;
Zhang 2010; Saha et al. 2011), and has been shown to gener-
ally reduce the amount of training data necessary to achieve



a particular level of performance. This paper builds on this
earlier work by extending these ideas to lifelong learning,
and introducing an efficient and highly effective mechanism
for selecting the next task to learn: the diversity heuristic. In
contrast to these active MTL methods, which focus primar-
ily on optimizing model performance, we focus on learning
the basis L efficiently, which will provide maximal benefit
to learning future tasks.

The Lifelong Learning Problem
This paper uses the following notational conventions: ma-
trices are denoted by bold uppercase letters, vectors are de-
noted by bold lowercase letters, scalars are denoted by low-
ercase letters in normal typeface, and sets are denoted using
script typeface (e.g., A). Quantities related to a particular
task are denoted using parenthetical superscripts (e.g., ma-
trix A(t) and vector v(t) are each related to task t). We
use the shorthand A(1:t) to refer to the list of variables
A(1), . . . ,A(t).

We employ a lifelong learning framework in which
the agent faces a series of supervised learning tasks
Z(1),Z(2), . . . ,Z(Tmax). Each learning task Z(t) =(
f̂ (t),X(t),y(t)

)
is specified by a (hidden) function f̂ (t) :

X (t) 7→ Y(t) from an instance space X (t) ⊆ Rd to a set
of labels Y(t) (typically Y(t) = {−1,+1} for classification
tasks and Y(t) = R for regression tasks). To learn f̂ (t), the
agent is given nt training instances X(t) ∈ Rd×nt with cor-
responding labels y(t) ∈ Y(t)nt given by f̂ (t). For brevity,
we use (x

(t)
i , y

(t)
i ) to represent the ith labeled training in-

stance for task t. The agent does not know a priori the total
number of tasks Tmax, their order, or their distribution.

Each time step, the agent receives a batch of labeled train-
ing data for some task t, either a new task or as additional
data for a previous task. Let T denote the number of tasks
the agent has encountered so far. At any time, the agent
may be asked to make predictions on data from any previ-
ous task. Its goal is to construct task models f (1), . . . , f (T ),
where each f (t) : Rd 7→ Y(t), such that each f (t) will ap-
proximate f̂ (t) to enable the accurate labeling of new data.
Additionally, the agent must be able to rapidly update each
model f (t) in response to new training data for a previously
learned task, and efficiently add f (t)’s to model new tasks.
Figure 1 illustrates the lifelong learning process.

Efficient Lifelong Learning Algorithm
This section provides an overview of the Efficient Lifelong
Learning Algorithm (ELLA) (Ruvolo and Eaton 2013) that
forms the foundation for our proposed enhancements. For
further details on ELLA, see the original paper.

ELLA learns and maintains a repository of k latent
model components L ∈ Rd×k, which forms a basis for
all task models and serves as the mechanism for knowl-
edge transfer between tasks. For each task t, ELLA learns
a model f (t)(x) = f(x;θ(t)) that is parameterized by a d-
dimensional task-specific vector θ(t) = Ls(t) represented
as a sparse linear combination of the columns of L using the
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Figure 1: An illustration of the lifelong learning process.

weight vector s(t) ∈ Rk. The specific form of f (t)(x) is
dependent on the base learning algorithm, as described later.

Given the labeled training data for each task, ELLA opti-
mizes the predictive loss of each model while encouraging
shared structure through L by minimizing:

eT (L) =
1

T

T∑
t=1

min
s(t)

{
1

nt

nt∑
i=1

L
(
f
(
x
(t)
i ; Ls(t)

)
, y

(t)
i

)
+ µ‖s(t)‖1

}
+ λ‖L‖2F , (1)

where L is a known loss function for fitting the base learn-
ing algorithm (e.g., squared loss, etc.). The form of this op-
timization problem is closely related to a number of batch
MTL algorithms, such as GO-MTL (Kumar and Daumé III
2012). Equation 1 is not jointly convex in L and the s(t)’s,
and so most batch MTL methods (e.g., GO-MTL) yield a
local optimum using an alternating optimization procedure.
This alternating optimization procedure over all tasks is ex-
pensive, preventing its use in a lifelong learning setting.

To enable its efficient solution, ELLA approximates
Equation 1 using two simplifications:

1. To eliminate the explicit dependence on all of the previous
training data through the inner summation, ELLA approx-
imates Equation 1 using the second-order Taylor expan-
sion of 1

nt

∑nt

i=1 L
(
f
(
x
(t)
i ;θ

)
, y

(t)
i

)
around θ = θ(t),

where θ(t) = arg minθ
1
nt

∑nt

i=1 L
(
f
(
x
(t)
i ;θ

)
, y

(t)
i

)
is an optimal predictor learned on only the training data
on task t. Crucially, this step removes the optimization’s
dependence on the number of data instances n1 . . . nT in
each task.

2. To eliminate the need to recompute each of the s(t)’s in
response to any changes in L, ELLA computes each s(t)

only when training on task t, and does not update them
when training on other tasks. While computationally ef-



Algorithm 1 ELLA (k, d, λ, µ)

T ← 0, A← zerosk×d,k×d,
b← zerosk×d,1, L← zerosd,k
while isMoreTrainingDataAvailable() do

(Xnew,ynew, t)← getNextTrainingData()
if isNewTask(t) then
T ← T + 1
X(t) ← Xnew, y(t) ← ynew

else
A← A−

(
s(t)s(t)

>)⊗D(t)

b← b− vec
(
s(t)
> ⊗

(
θ(t)>D(t)

))
X(t) ←

[
X(t) Xnew

]
, y(t) ←

[
y(t); ynew

]
end if(
θ(t),D(t)

)
← singleTaskLearner(X(t),y(t))

L← reinitializeAllZeroColumns(L)
s(t) ← arg mins(t) `(Lm, s

(t),θ(t),D(t))

A← A +
(
s(t)s(t)

>)⊗D(t)

b← b + vec
(
s(t)
> ⊗

(
θ(t)>D(t)

))
L← mat

((
1
T A + λIk×d,k×d

)−1 1
T b
)

end while

ficient, this choice forces all subsequent effects on previ-
ously learned models from future learning to occur only
through changes in L (instead of altering s(t)), but em-
pirically does not significantly affect performance. As
the number of tasks grows large, the performance penalty
for this simplification becomes vanishingly small (Ruvolo
and Eaton 2013).

These simplifications yield the following efficient update
equations that approximate the result of Equation 1:

s(t) ← arg min
s(t)

`(Lm, s
(t),θ(t),D(t)) (2)

Lm+1 ← arg min
L
ĝm(L) (3)

ĝm(L) = λ‖L‖2F +
1

T

T∑
t=1

`
(
L, s(t),θ(t),D(t)

)
(4)

where ` (L, s,θ,D) = µ ‖s‖1 + ‖θ − Ls‖2D , (5)

Lm refers to the value of the latent model components at
the start of the mth iteration, D(t) is the Hessian of the loss
function L evaluated at θ(t) multiplied by 1/2, and t is as-
sumed to correspond to the specific task for which ELLA
just received training data.

Given a new task t, ELLA first computes an optimal
model θ(t) using only the data from task t. Once θ(t)

has been computed, we compute D(t). The form of this
step depends on the base learning algorithm. For exam-
ple, in the regression setting, where y(t) ∈ Rnt , f(x;θ) =
θ>x, and L is the squared-loss function, the optimal single-

task model θ(t) =
(
X(t)X(t)>

)−1
X(t)y(t) and D(t) =

1
2nt

X(t)X(t)>. Using logistic regression for classification,

where y(t) ∈ {−1,+1}nt , f(x;θ) = 1/
(
1+e−θ>x

)
and L

is the log-loss function, ELLA first optimizes θ(t) by solv-
ing the standard single-task logistic regression problem, and
then computes D(t) as:

D(t) =
1

2nt

nt∑
i=1

f(x
(t)
i ,θ(t))

(
1− f(x

(t)
i ,θ(t))

)
x
(t)
i x

(t)
i

>
.

To compute s(t), ELLA first re-initializes (either ran-
domly or to one of the θ(t)’s) any columns of L that are
all-zero (due to their being unused in any model), and then
computes s(t) using the current basis Lm by solving Equa-
tion 2. Once task t has been modeled, ELLA updates L to
incorporate new knowledge by nulling the gradient of Equa-
tion 4 and solving for L as A−1b, where:

A = λId×k,d×k +
1

T

T∑
t=1

(
s(t)s(t)

>)
⊗D(t) (6)

b =
1

T

T∑
t=1

vec
(
s(t)
>
⊗
(
θ(t)>D(t)

))
. (7)

The matrix A is built up incrementally as new tasks arrive
for efficiency. The complete ELLA is given as Algorithm 1.

Ruvolo and Eaton (2013) show that ELLA can be viewed
as a more general case of online dictionary learning for
sparse coding, and provide a variety of theoretical guar-
antees on ELLA’s performance and convergence. These
guarantees are supported by empirical results showing that
ELLA achieves nearly identical performance to batch multi-
task optimization of Equation 1 (98.9–99.7% accuracy of
batch GO-MTL on real data; 97.7% on synthetic data) while
learning all tasks in three orders of magnitude (1,350x–
5,026x) less time. Since ELLA can efficiently learn new
tasks, it can acquire a single new model in four to five orders
of magnitude (38,400x–502,600x) less time than it takes to
re-optimize Equation 1. In comparison, the most recently
developed competing algorithm, online MTL (Saha et al.
2011), only works on classification problems and achieves
82.2%–97.6% accuracy of batch GO-MTL with a speedup
of only 22x–948x to learn all tasks.

Active Curriculum Selection
In the formulation of lifelong learning depicted in Figure 1,
the learning agent has no control over which task is pre-
sented next in sequence. However, in situations where a life-
long learning agent can choose the task order, the agent can
actively select the next task to learn in order to maximize
performance over all tasks.

We formalize the problem of active curriculum selection
in the following manner. Consider a learning agent that
has access to training data from a pool of unlearned tasks
X(T+1), . . . ,X(Tpool), where T + 1 ≤ Tpool ≤ Tmax and
only a subset of the training instances for each of these tasks
is labeled. Let

(
X̂(t), ŷ(t)

)
denote this subset of initially la-

beled data for task t. The agent must select the index of the



next task to learn tnext ∈ {T + 1, . . . , Tpool}.1 The value of
Tpool could be a fixed value or it could be set dynamically
during learning (for example, we could set Tpool = T +z so
that the agent has knowledge of the next z upcoming tasks).
Once the agent decides to learn a particular task, all of the
training labels y(tnext) are revealed to the agent, allowing it
to learn the new task model.

What strategy should an agent employ in selecting tnext?
Ideally, the agent should choose to learn a task that maxi-
mizes its learning performance across future tasks that it is
likely to encounter. We can evaluate the quality of a task
selection criterion by its ability to learn a knowledge repos-
itory L that can efficiently and accurately model new tasks.
The more effective a task selection criterion is, the less tasks
it will need to learn in order to achieve a specified perfor-
mance threshold on future tasks.

We consider three potential approaches for choosing the
next task to learn:
• choose tnext to maximize the information gain on L,
• choose tnext as the task with the worst performance given

the current L, encouraging L to support diverse tasks, and
• choose tnext randomly (this corresponds to the original

lifelong learning setting in which the curriculum order is
not under the learner’s control).

Next, we describe these approaches for active curriculum
selection, and then, in the Evaluation section, compare their
performance in a lifelong learning setting. We also evaluated
a fourth approach that chooses to learn the task with the best
performance given the current L, but found that this method
performed significantly worse than choosing tnext randomly
in all cases and so do not consider it further.

Information Maximization Heuristic

Here, we develop a heuristic for choosing the task to learn
next that maximizes our information (or equivalently mini-
mizes our uncertainty) about the “true” latent model compo-
nent repository L. The intuition behind this choice is that the
less ambiguity we have about the value of L, the better our
latent component repository will be for efficiently and accu-
rately learning new tasks. Therefore, if our ultimate goal is
to learn a good component repository using the fewest num-
ber of learned tasks, we should choose the task to learn at
each iteration that maximizes our expected information gain
about the true value of L.

Suppose we are trying to infer the value of a random vec-
tor h that cannot be directly observed. We assume that we
are able to observe the values of random vectors that in turn
allow us to infer the value of h. Let Xj be a set of random
vectors that the learner can choose to observe at iteration
j. Here, we use a myopic information maximization (Info-
Max) approach in which the learner chooses to observe the
random vector from the set Xj that gives the most expected

1Note that after the index is chosen, T ← T + 1 and the tasks
are reordered such that the remaining unlearned tasks in the pool
are given as Z(T+1), . . . ,Z(Tpool).

information about h:

tnext = arg max
x∈Xj

I(h; x|Ij)

= arg max
x∈Xj

H [h|Ij ]−H [h|x, Ij ]

= arg min
x∈Xj

H [h|x, Ij ]

= arg min
x∈Xj

∫
p(x = v|Ij)H [h|x = v, Ij ] dv ,

where I is the mutual information operator, H is the differ-
ential entropy operator, Ij represents all of the information
available at iteration j, x is a random vector, and x = v is
the event that the random vector x takes on value v.

To apply the InfoMax heuristic to the problem of ac-
tive curriculum selection, we choose tnext such that when
we observe θ(tnext) and D(tnext), we have the highest ex-
pected gain in information about the latent task matrix L.
However, the original ELLA is not formulated probabilis-
tically and thus we have no way to compute the differen-
tial entropy of L given the previously learned tasks. To
overcome this limitation of the original model, we use
the LaPlace approximation to construct a Gaussian distri-
bution for L about a mode of Equation 4. Specifically,
given L?, which is the column-wise vectorized version of
a mode of Equation 1, we apply LaPlace’s approximation
to derive a Gaussian approximation to the column-wise
vectorized version of L that has mean L? and covariance
Σ? = 1

2

(
λI + 1

T

∑T
t=1

1
nt

(
s(t)s(t)

>)⊗D(t)
)−1

. Com-
puting the expected conditional entropy after observing the
tuple

(
θ(t),D(t)

)
under the LaPlace approximation yields:∫∫

p
(
θ(t) = u,D(t) = V|D(1:T ),θ(1:T )

)
(8)

×H
[
L|θ(t) = u,D(t) = V,D(1:T ),θ(1:T )

]
du dV ,

where

H
[
L|θ(t) = u,D(t) = V,D(1:T ),θ(1:T )

]
(9)

= −1

2
log2 det

(
Σ−1j +

(
s
(t)

θ(t),D(t)s
(t)>
θ(t),D(t)

)
⊗D(t)

)
+ c ,

s
(t)>
θ(t),D(t) = arg min

s
`
(
Lj , s,θ

(t),D(t)
)
, (10)

and c is a constant. Unfortunately, computing the dou-
ble integral over all possible values of θ(t) and D(t) is in-
tractable in the general case. Here, we use the portion of
labeled training data for training task t to estimate the val-
ues of θ(t) and D(t) as θ(t)? and D(t)?. Next, we replace
the integral over all possible values of θ(t) and D(t) with
H
[
L|θ(t)?,D(t)?,D(1:T ),θ(1:T )

]
. Once we apply this ap-

proximation, we can select

tnext = arg min
t∈{T+1,...,Tpool}

H
[
L|θ(t)?,D(t)?,θ(1:T ),D(1:T )

]
. (11)

In the case where the distribution over L is Gaussian, the in-
formation maximization criterion above is equivalent to the



D-optimality criterion from the Bayesian Experimental De-
sign literature (Chaloner and Verdinelli 1995). In addition
to this criterion, we tested another commonly used criterion
from Bayesian Experimental Design called A-optimality
(Chaloner and Verdinelli 1995) which corresponds to select-
ing the task that minimizes:

trace
((

Σ−1j +
(
s
(t)

θ(t),D(t)s
(t)>
θ(t),D(t)

)
⊗D(t)

)−1)
. (12)

This equation corresponds to minimizing the average vari-
ance of the distribution over the entries of L.

Diversity Heuristic (Worst Performing Task)
Next, we propose a heuristic that encourages L to serve as
an effective basis for a wide variety of tasks, enabling ELLA
to be able to rapidly learn any new task. To encourage di-
versity, ELLA should select the next task as the one that the
current basis L is doing the worst job solving, relative to
how well that particular task could be solved using a single
task learning model:

tnext = arg max
t∈{T+1,...,Tpool}

min
s
`
(
Lj , s,θ

(t)?,D(t)?
)
, (13)

where θ(t)? and D(t)? are computed based on the subset of
labeled data for task t, as in the previous section. Effec-
tively, Equation 13 focuses on selecting tasks that are poorly
encoded with the current basis (i.e. it is unlike anything that
the learner has seen so far), thereby encouraging diversity.

Diversity++ Heuristic
Part of our inspiration for developing the diversity heuristic
was the work by Arthur and Vassilvitskii (2007) on choosing
points to initialize the k-means algorithm. This algorithm,
k-means++, has been shown to perform very well in a wide
variety of applications (Arthur and Vassilvitskii 2007). The
k-means++ algorithm begins by selecting a random data in-
stance to serve as a cluster centroid. At each stage of the
algorithm, a new data instance is added as a cluster center
with probability proportional to the square of the distance
between the candidate instance and the closest currently se-
lected center. This selection rule encourages instances to be
selected as centers that are poorly represented by the cur-
rent set of centers. We view this strategy as analogous to
the diversity heuristic in the sense that we measure squared
distance based on the error of the current basis on coding
the training data for a candidate task. The other key differ-
ence between the two approaches is that the diversity heuris-
tic is deterministic (i.e. it always selects the worst fit task)
whereas k-means++ is stochastic (i.e. it selects instances
proportional to the squared distance). In order to test if this
detail crucially affects performance, we tested an additional
active task selection method called the diversity++ heuris-
tic in which the probability of selecting a particular task for
learning is:

p(tnext = t) =

(
mins `

(
Lj , s,θ

(t)?,D(t)?
))2∑

t′

(
mins `

(
Lj , s,θ(t′)?,D(t′)?

))2 . (14)

The diversity++ heuristic is a softer and stochastic version
of the diversity heuristic; in fact, the diversity heuristic is
equivalent to argt max p(tnext = t).

Evaluation
We evaluated both InfoMax heuristics (A-optimality and
D-optimality), the diversity heuristic, and the diversity++
heuristic against random task selection. Evaluations were
performed on one synthetic and three real learning problems.

Data Sets
We tested each method of task selection on four data sets:
(1) a set of synthetic regression tasks, (2) student exami-
nation score prediction, (3) land mine detection from radar
imaging, and (4) identification of three different facial move-
ments from photographs of a subject’s face.

Synthetic Regression Tasks We created a set of Tmax =
100 random tasks with d = 13 features and nt = 100 in-
stances per task. The task parameter vectors θ(t) were gen-
erated using a linear combination of k = 6 randomly gen-
erated latent components in R12. The vectors s(t) had a
sparsity level of 0.5 (i.e., only half the latent components
were used to construct each θ(t)). Each element of the in-
put training data X(t) was generated from a standard normal
distribution. The training labels for each task were given as
y(t) = X(t)>θ(t) + ε, where each element of ε is indepen-
dent univariate Gaussian noise. A bias term was added as
the 13th feature prior to learning.
London School Data The London Schools data set con-
sists of examination scores from 15,362 students in 139
schools from the Inner London Education Authority. We
treat the data from each school as a separate task. The goal
is to predict the examination score of each student. We use
the same feature encoding as used by Kumar and Daumé
III (2012), where four school-specific categorical variables
along with three student-specific categorical variables are
encoded as a collection of binary features. In addition, we
use the exam year and a bias term as additional features, giv-
ing each data instance d = 27 features total.
Land Mine Detection In the land mine data set (Xue et
al. 2007), the goal is to detect whether or not a land mine
is present in an area based on radar images. The 10 input
features (plus a bias term) are automatically extracted from
radar data; see (Xue et al. 2007) for more details. The data
set consists a total of 14,820 data instances divided into 29
different geographical regions. We treat each geographical
region as a different task.
Facial Expression Recognition This data set is from a re-
cent facial expression recognition challenge (Valstar et al.
2011). The goal is to detect the presence or absence of three
different facial action units (#5: upper lid raiser, #10: upper
lip raiser, and #12: lip corner pull) from an image of a sub-
ject’s face. We chose this combination of action units to be
a challenge, since two of the action units involve the lower
face, suggesting a high potential for transfer, while the other
is an upper face action unit, suggesting a low potential for



transfer. Each task involves recognizing one of the three ac-
tion units for one of seven subjects, yielding a total of 21
tasks, each with 450–999 images. To represent the images,
we utilized a Gabor pyramid with a frequency bandwidth of
0.7 octaves, orientation bandwidth of 120 degrees, four ori-
entations, 576 locations, and two spatial scales, yielding a
total of 2,880 Gabor features for each image. We reduced
the raw Gabor outputs to 100 dimensions using PCA, and
added a bias term to produce the input features.

Evaluation Procedure
For each task, we created random 50%/50% splits between
training and hold-out test data. Additionally, we divided the
set of tasks into two approximately equally sized subsets:
one set of training tasks that serves as the pool for active
learning and is used to learn L, and one set of evaluation
tasks on which we measure the performance of the learned
L. Therefore, Tpool ≈ 1

2Tmax in these experiments. The
agent never has access to the evaluation tasks, and so must
select the curriculum order from the training tasks alone. For
each training task, 25% of its training data was revealed as
the initial sample of labeled data (recall that each task se-
lection heuristic requires a small amount of labeled data to
measure the utility of learning a particular task). Each ex-
periment was repeated 1,000 times to smooth out variability
due to the factors discussed above. The evaluation of a par-
ticular task selection method on each trial is as follows:

1. Begin with no tasks learned; L is initialized randomly.
2. Select the next training task to learn using some method.
3. Learn the new task using Equations 2–4 to arrive at a new

set of latent components L.
4. Compute models for each evaluation task using Equa-

tion 2 for the current L (no modification of L is allowed).
5. Record the performance of the evaluation task models on

the hold-out test data, yielding an estimate of how well
the current L captures knowledge for novel tasks.

6. Go to step 2 while additional training tasks remain.
The values of the parameters k and λ for ELLA were se-

lected using a grid-search over the values k ∈ {1 . . . 10}
and λ ∈ {e−5, e−2, e1, e4} to maximize performance on
the evaluation tasks averaged over each of the task selection
methods. The value of µ was set to 1.

We are primarily concerned with the level of performance
achieved by each task selection method as a function of the
number of tasks learned. Specifically, we compute the fol-
lowing metrics:

1. Performance: the average performance level (across
tasks) achieved by a particular heuristic as a function of
the number of tasks learned. Performance is measured
using area under the ROC for classification tasks (which
was chosen due to the heavily biased class distribution for
the data sets used in the experiments), and negative root
mean-squared error (-rMSE) for regression tasks.

2. % Less Tasks Required: this number quantifies how
many less tasks (expressed as a percentage) are required
for the active task selection method to achieve and main-
tain a particular performance level compared to the num-
ber of tasks required for random task selection to achieve
and maintain that same performance level. A score of 0

indicates that a particular active task selection method is
no more efficient than random selection, a negative score
indicates that it is less efficient, and a positive score indi-
cates that it is more efficient. If a particular run did not
achieve a specific level of performance, then the number
of tasks required to achieve that level of performance was
set to one plus the total number of training tasks.

Results
Figure 2 depicts our results, showing that selecting tasks ac-
tively is almost always more efficient than random selec-
tion. Most encouragingly, the diversity heuristic achieves
large gains in efficiency over random selection on all data
sets. In some cases, the diversity heuristic achieves equiv-
alent performance to random selection using approximately
one-half the number of tasks—a large gain in efficiency.

The InfoMax methods, A-optimality and D-optimality,
also show strong gains in efficiency over random selection.
The results for these methods are not as consistent as those
for the diversity heuristic, since they can lead to inefficient
task selection in some cases on the two classification data
sets. However, D-optimality achieves the best efficiency of
all approaches on the London Schools data set.

Recall that the diversity++ heuristic is a stochastic version
of the diversity heuristic. Consequently, it does not always
select the task with the worst performance to learn next, as
does the diversity heuristic. The results show that the di-
versity++ heuristic was dominated in three of the four data
sets by the diversity heuristic, affirming the benefits of se-
lecting the task with the worst performance to learn next.
However, both diversity++ and D-optimality perform better
than the diversity heuristic on the London Schools data set.
In contrast to the other data sets, the London Schools data
is sparse (containing ∼70% zero entries). Further investiga-
tion is needed to determine whether particular characteris-
tics of the data set, such as the degree of sparsity of its input
features, are important for determining when each heuristic
should be used.

Conclusion
We have extended ELLA by considering the setting of active
curriculum selection in which a learner can select which task
to learn next in order to maximize performance across future
learning tasks. One of our proposed mechanisms for active
curriculum selection, the InfoMax heuristic, did not achieve
superior performance to random selection on one of four
data sets, and it exceeded its performance on three. More
work is needed to pinpoint the precise cause of these mixed
results for this heuristic. In contrast, our proposed diversity
heuristic is efficient to compute and performs well across all
data sets investigated, achieving significant reductions in the
number of tasks (up to 50%) required to obtained a particu-
lar performance level when compared to random selection.
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Figure 2: The results of active task selection on four different lifelong learning problems. Each plot shows the accuracy achieved
by each method versus the relative efficiency (in number of tasks) as compared to random task selection. The efficiency is
measured by the point at which the models’ accuracy exceeds and never returns below the particular performance level.
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