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Abstract

The problem of learning multiple consecu-
tive tasks, known as lifelong learning, is of
great importance to the creation of intelli-
gent, general-purpose, and flexible machines.
In this paper, we develop a method for on-
line multi-task learning in the lifelong learn-
ing setting. The proposed Efficient Life-
long Learning Algorithm (ELLA) maintains
a sparsely shared basis for all task models,
transfers knowledge from the basis to learn
each new task, and refines the basis over time
to maximize performance across all tasks.
We show that ELLA has strong connections
to both online dictionary learning for sparse
coding and state-of-the-art batch multi-task
learning methods, and provide robust the-
oretical performance guarantees. We show
empirically that ELLA yields nearly identi-
cal performance to batch multi-task learning
while learning tasks sequentially in three or-
ders of magnitude (over 1,000x) less time.

1. Introduction

Versatile learning systems must be capable of effi-
ciently and continually acquiring knowledge over a se-
ries of prediction tasks. In such a lifelong learning
setting, the agent receives tasks sequentially. At any
time, the agent may be asked to solve a problem from
any previous task, and so must maximize its perfor-
mance across all learned tasks at each step. When
the solutions to these tasks are related through some
underlying structure, the agent may share knowledge
between tasks to improve learning performance, as ex-
plored in both transfer and multi-task learning.

Despite this commonality, current algorithms for
transfer and multi-task learning are insufficient for life-
long learning. Transfer learning focuses on efficiently
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modeling a new target task by leveraging solutions to
previously learned source tasks, without considering
potential improvements to the source task models. In
contrast, multi-task learning (MTL) focuses on max-
imizing performance across all tasks through shared
knowledge, at potentially high computational cost.
Lifelong learning includes elements of both paradigms,
focusing on efficiently learning each consecutive task
by building upon previous knowledge while optimiz-
ing performance across all tasks. In particular, lifelong
learning incorporates the notion of reverse transfer, in
which learning subsequent tasks can improve the per-
formance of previously learned task models. Lifelong
learning could also be considered as online MTL.

In this paper, we develop an Efficient Lifelong Learn-
ing Algorithm (ELLA) that incorporates aspects of
both transfer and multi-task learning. ELLA learns
and maintains a library of latent model components as
a shared basis for all task models, supporting soft task
grouping and overlap (Kumar & Daumé III, 2012).
As each new task arrives, ELLA transfers knowledge
through the shared basis to learn the new model, and
refines the basis with knowledge from the new task.
By refining the basis over time, newly acquired knowl-
edge is integrated into existing basis vectors, thereby
improving previously learned task models. This pro-
cess is computationally efficient, and we provide robust
theoretical guarantees on ELLA’s performance and
convergence. We evaluate ELLA on three challeng-
ing multi-task data sets: land mine detection, facial
expression recognition, and student exam score pre-
diction. Our results show that ELLA achieves nearly
identical performance to batch MTL with three orders
of magnitude (over 1,000x) speedup in learning time.
We also compare ELLA to a current method for online
MTL (Saha et al., 2011), and find that ELLA has both
lower computational cost and higher performance.

2. Related Work

Early work on lifelong learning focused on shar-
ing distance metrics using task clustering (Thrun &
O’Sullivan, 1996), and transferring invariances in neu-
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ral networks (Thrun, 1996). Lifelong learning has also
been explored for reinforcement learning (Ring, 1997;
Sutton et al., 2007) and learning by reading (Carlson
et al., 2010). In contrast, ELLA is a general algorithm
that supports different base learners to learn continu-
ally, framed in the context of current MTL methods.

Recently, MTL research has considered the use of a
shared basis for all task models to improve learn-
ing over a set of tasks. Several formulations of this
idea have been proposed, including a probabilistic
framework (Zhang et al., 2008) and a non-parametric
Bayesian method that automatically selects the num-
ber of bases (Rai & Daumé III, 2010). These meth-
ods assume that each model is represented as a pa-
rameter vector that is a linear combination of these
bases. By using a common basis, these approaches
share information between learning tasks and account
for task relatedness as the models are learned in tan-
dem with the basis. The GO-MTL algorithm (Kumar
& Daumé III, 2012) also uses a sparsely shared basis
for multi-task learning, with the advantage that it au-
tomatically learns (potentially) overlapping groups of
tasks to maximize knowledge transfer. We employ this
rich model of underlying task structure as the starting
point for developing ELLA.

Few papers have focused on the development of very
computationally efficient methods for MTL. Simm
et al. (2011) present a model for learning multiple tasks
that is efficient in the case when the number of tasks is
very large. However, their approach suffers from signif-
icant drawbacks in comparison with ELLA: (1) their
approach is not an online algorithm, limiting its use
in the lifelong learning setting, and (2) their underly-
ing model of shared task structure is significantly less
flexible than our model. Another approach, OMTL
by Saha et al. (2011), is designed to provide efficient
performance when instances and new tasks arrive in-
crementally. However, OMTL is only applicable to
classification tasks (not regression) and relies on per-
ceptron learning, which we found to perform poorly in
comparison to other base learners (see Section 4).

3. Approach

We begin by describing the lifelong learning problem
and why lifelong learning algorithms must be able to
efficiently learn new tasks and incorporate new train-
ing data from previous tasks. Then, we introduce
ELLA, which efficiently handles both of these opera-
tions through a two-stage optimization procedure. We
show that ELLA encompasses the problem of online
dictionary learning for sparse coding as a special case,
and finish by proving robust convergence guarantees.
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Figure 1. An illustration of the lifelong learning process.

This paper uses the following conventions: matrices
are denoted by bold uppercase letters, vectors are de-
noted by bold lowercase letters, scalars are denoted by
normal lowercase letters, and sets are denoted using
script typeface (e.g., A). Parenthetical superscripts
denote quantities related to a particular task (e.g., ma-
trix A(t) and vector v(t) are related to task t).

3.1. The Lifelong Learning Problem

A lifelong learning agent (Figure 1) faces a series of su-
pervised learning tasks Z(1),Z(2), . . . ,Z(Tmax), where
each task Z(t) =

(
f̂ (t),X(t),y(t)

)
is defined by a (hid-

den) mapping f̂ (t) : X (t) 7→ Y(t) from an instance
space X (t) ⊆ Rd to a set of labels Y(t) (typically Y(t) =
{−1,+1} for classification tasks and Y(t) = R for re-
gression tasks). Each task t has nt training instances
X(t) ∈ Rd×nt with corresponding labels y(t) ∈ Y(t)nt

given by f̂ (t). We assume that a priori the learner
does not know the total number of tasks Tmax, the
distribution of these tasks, or their order.

Each time step, the agent receives a batch of labeled
training data for some task t, either a new task or a
previously learned task. Let T denote the number of
tasks encountered so far. After receiving each batch of
data, the agent may be asked to make predictions on
instances of any previous task. Its goal is to construct
task models f (1), . . . , f (T ) where each f (t) : Rd 7→ Y(t)

such that: (1) each f (t) will approximate f̂ (t) to en-
able the accurate prediction of labels for new instances,
(2) each f (t) can be rapidly updated as the agent en-
counters additional training data for known tasks, and
(3) new f (t)’s can be added efficiently as the agent en-
counters new tasks. We assume that the total num-
bers of tasks Tmax and data instances

∑Tmax

t=1 nt will be
large, and so a lifelong learning algorithm must have a
computational complexity to update the models that
scales favorably with both quantities.
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3.2. Task Structure Model for ELLA

ELLA takes a parametric approach to lifelong learning
in which the prediction function f (t)(x) = f(x;θ(t))
for each task t is governed by the task-specific param-
eter vector θ(t) ∈ Rd. To model the relationships be-
tween tasks, we assume that the parameter vectors can
be represented using a linear combination of shared la-
tent model components from a knowledge repository.
Many recent MTL methods employ this same tech-
nique of using a shared basis as a means to transfer
knowledge between learning problems (see Section 2).

Our model of latent task structure is based on the GO-
MTL model proposed by Kumar & Daumé III (2012).
ELLA maintains a library of k latent model compo-
nents L ∈ Rd×k shared between tasks. Each task pa-
rameter vector θ(t) can be represented as a linear com-
bination of the columns of L according to the weight
vector s(t) ∈ Rk (i.e., θ(t) = Ls(t)). We encourage the
s(t)’s to be sparse (i.e., use few latent components) in
order to ensure that each learned model component
captures a maximal reusable chunk of knowledge.

Given the labeled training data for each task, we opti-
mize the models to minimize the predictive loss over all
tasks while encouraging the models to share structure.
This problem is realized by the objective function:

eT (L) =
1

T

T∑
t=1

min
s(t)

{
1

nt

nt∑
i=1

L
(
f
(
x
(t)
i ; Ls(t)

)
, y

(t)
i

)
+ µ‖s(t)‖1

}
+ λ‖L‖2F , (1)

where (x
(t)
i , y

(t)
i ) is the ith labeled training instance for

task t, L is a known loss function, and the L1 norm
of s(t) is used as a convex approximation to the true
vector sparsity. This is similar to the model used in
GO-MTL, with the modification that we average the
model losses on the training data across tasks (giving
rise to the 1

T term). This modification is crucial for
obtaining the convergence guarantees in Section 3.6.

Since Equation 1 is not jointly convex in L and the
s(t)’s, our goal will be to develop a procedure to ar-
rive at a local optimum of the objective function. A
common approach for computing a local optimum for
objective functions of this type is to alternately per-
form two convex optimization steps: one in which L is
optimized while holding the s(t)’s fixed, and another in
which the s(t)’s are optimized while holding L fixed.
These two steps are then repeated until convergence
(this is the approach employed for model optimization
in GO-MTL). Next, we discuss two reasons why this
approach is inefficient and thus inapplicable to lifelong
learning with many tasks and data instances.

The first inefficiency arises due to the explicit de-
pendence of Equation 1 on all of the previous
training data (through the inner summation). We
remove this inefficiency by approximating Equa-
tion 1 using the second-order Taylor expansion of
1
nt

∑nt

i=1 L
(
f
(
x
(t)
i ;θ

)
, y

(t)
i

)
around θ = θ(t), where

θ(t) = arg minθ
1
nt

∑nt

i=1 L
(
f
(
x
(t)
i ;θ, y

(t)
i

))
(that is,

θ(t) is an optimal predictor learned on only the train-
ing data for task t). Plugging the second-order Taylor
expansion into Equation 1 yields:

gT (L) =
1

T

T∑
t=1

min
s(t)

{
1

nt
‖θ(t) − Ls(t)‖2D(t)

+ µ‖s(t)‖1
}

+ λ‖L‖2F

(2)

where

D(t) =
1

2
∇2

θ,θ

1

nt

nt∑
i=1

L
(
f
(
x
(t)
i ;θ

)
, y

(t)
i

) ∣∣∣∣
θ=θ(t)

θ(t) = arg min
θ

1

nt

nt∑
i=1

L
(
f
(
x
(t)
i ;θ

)
, y

(t)
i

)
,

and ‖v‖2A = v>Av. In Equation 2, we have sup-
pressed the constant term of the Taylor expansion
(since it does not affect the minimum) and there is no
linear term (since by construction θ(t) is a minimizer).
Crucially, we have removed the dependence of the op-
timization on the number of data instances n1 . . . nT
in each task. The approximation is exact in an im-
portant special case: when the model is linear and the
loss function is squared loss (see Section 3.4.1).

The second inefficiency of Equation 1 is that in order to
evaluate a single candidate L, an optimization prob-
lem must be solved to recompute the value of each
of the s(t)’s (which will become increasingly expen-
sive as the number of tasks learned T increases). To
overcome this problem, we modify the formulation in
Equation 2 to remove the minimization over s(t). We
accomplish this by computing each of the s(t)’s when
the training data for task t is last encountered, and
not updating them when training on other tasks. At
first glance this might seem to prevent the ability for
previously learned tasks to benefit from training on
later tasks (which we call reverse transfer); however,
these tasks can benefit by subsequent modifications
to L. Later in Section 3.6, we show that this choice
to update s(t) only when we encounter training data
for the respective task does not significantly affect the
quality of model fit to the data as the number of tasks
grows large. Using the previously computed values of
s(t) gives rise to the following optimization procedure
(where we use the notation Lm to refer to the value of
the latent components at the start of the mth itera-
tion, and t is assumed to correspond to the particular
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Algorithm 1 ELLA (k, d, λ, µ)

T ← 0, A← zerosk×d,k×d,
b← zerosk×d,1, L← zerosd,k
while isMoreTrainingDataAvailable() do

(Xnew,ynew, t)← getNextTrainingData()
if isNewTask(t) then
T ← T + 1
X(t) ← Xnew, y(t) ← ynew

else
A← A−

(
s(t)s(t)

>)⊗D(t)

b← b− vec
(
s(t)
> ⊗

(
θ(t)
>

D(t)
))

X(t) ←
[
X(t) Xnew

]
, y(t) ←

[
y(t); ynew

]
end if(
θ(t),D(t)

)
← singleTaskLearner(X(t),y(t))

L← reinitializeAllZeroColumns(L)
s(t) ← Equation 3

A← A +
(
s(t)s(t)

>)⊗D(t)

b← b + vec
(
s(t)
> ⊗

(
θ(t)
>

D(t)
))

L← mat
((

1
T A + λIk×d,k×d

)−1 1
T b
)

end while

task for which we just received training data):

s(t) ← arg min
s(t)

`(Lm, s
(t),θ(t),D(t)) (3)

Lm+1 ← arg min
L
ĝm(L) (4)

ĝm(L) = λ‖L‖2F +
1

T

T∑
t=1

`
(
L, s(t),θ(t),D(t)

)
(5)

where

` (L, s,θ,D) = µ ‖s‖1 + ‖θ − Ls‖2D . (6)

Next, we present the specific steps needed to perform
the updates in the preceding equations.

3.3. Model Update for ELLA

Suppose that at the mth iteration we receive training
data for task t. We must perform two steps to update
our model: compute s(t) and update L. In order to
compute s(t), we first compute an optimal model θ(t)

using only the data from task t. The details of this
step will depend on the form of the model and loss
function under consideration, and thus here we treat it
as a black box. If the training data for a particular task
arrive interleaved with other tasks and not in a single
batch, it may be important to use an online single-task
learning algorithm to achieve maximum scalability.

Once θ(t) has been computed, we next compute D(t)

(which is model-dependent) and re-initialize (either
randomly or to one of the θ(t)’s) any columns of L that
are all-zero (which will occur if a particular latent com-

ponent is currently unused). We then compute s(t) us-
ing the current basis Lm by solving an L1-regularized
regression problem—an instance of the Lasso.

To update L, we null the gradient of Equation 5 and
solve for L. This procedure yields the updated column-
wise vectorization of L as A−1b, where:

A = λId×k,d×k +
1

T

T∑
t=1

(
s(t)s(t)

>)
⊗D(t) (7)

b =
1

T

T∑
t=1

vec
(
s(t)
>
⊗
(
θ(t)
>

D(t)
))

. (8)

To avoid having to sum over all tasks to compute A
and b at each step, we construct A incrementally as
new tasks arrive (see Algorithm 1 for details).

Computational Complexity : Each update begins by
running a single-task learner to compute θ(t) and D(t);
we assume that this step has complexity O(ξ(d, nt)).
Next, to update s(t) requires solving an instance of the
Lasso, which has complexity O(ndmin(n, d)), where d
is the dimensionality and n is the number of data in-
stances. Equation 3 can be seen as an instance of the
Lasso in k dimensions with d data instances, for a to-
tal complexity of O(dk2). However, to formulate the
Lasso problem requires computing the eigendecompo-
sition of D(t), which takes O(d3), and multiplying the
matrix square root of D(t) by L, which takes O(kd2).
Therefore, updating s(t) takes time O(d3 +kd2 +dk2).
A straightforward algorithm for updating L involves
inverting a (d× k)-by-(d× k) matrix, which has com-
plexity O(d3k3). However, we can exploit the fact that
the updates to A are low-rank to derive a more effi-
cient algorithm with complexity O(d3k2) based on a
recursive method (Yu, 1991) for updating the eigende-
composition of A (see Online Appendix). Therefore,
using this more advanced approach, the overall com-
plexity of each ELLA update is O(k2d3 + ξ(d, nt)).

3.4. Base Learning Algorithms

Next, we show how two popular single-task learning
algorithms can be used as the base learner for ELLA.

3.4.1. Linear Regression

In this setting y(t) ∈ Rnt , f(x;θ) = θ>x, and L is the
squared-loss function. To apply ELLA, we compute
the optimal single-task model θ(t), which is available

in closed form as θ(t) =
(
X(t)X(t)>

)−1
X(t)y(t) (as-

suming that X(t)X(t)> is full-rank). D(t) is also avail-

able in closed form as D(t) = 1
2nt

X(t)X(t)>. Given

θ(t) and D(t), we simply follow Algorithm 1 to fill in
the model-independent details.
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3.4.2. Logistic Regression

In this setting y(t) ∈ {−1,+1}nt , f(x;θ) =
1/
(
1+e−θ>x

)
, and L is the log-loss function. To ap-

ply ELLA, we first use a single-task learner for logistic
regression (of which there are many free and robust
implementations) to compute the value of θ(t). D(t) is
then given as:

D(t) =
1

2nt

nt∑
i=1

σ
(t)
i (1− σ(t)

i )x
(t)
i x

(t)
i

>

σ
(t)
i =

1

1 + e−θ
(t)>x

(t)
i

.

Given these formulas for θ(t) and D(t), we follow Al-
gorithm 1 to fill in the model-independent details.

3.5. Connection to Dictionary Learning for
Sparse Coding

ELLA is closely connected to the problem of learning
a dictionary online for sparse coding a set of input vec-
tors. In fact, this problem is a special case of ELLA in
which the θ(t)’s are given as input instead of learned
from training data and the D(t)’s are equal to the iden-
tity matrix. These simplifications yield the following
objective function:

β(L) = λ‖L‖2F +
1

T

T∑
t=1

‖θ(t) − Ls(t)‖22 (9)

s(t) = arg min
s

{
µ‖s‖1 + ‖θ(t) − Lts‖22

}
.

Equation 9 is identical to the equation used for effi-
cient online dictionary learning by Mairal et al. (2009)
with the one difference that we use a soft constraint on
the magnitude of the entries of L (L2 regularization),
whereas Mairal et al. use a hard length constraint on
each column of L.

3.6. Convergence Guarantees

Here, we provide proof sketches for three results; com-
plete proofs are available in the Online Appendix. For
simplicity of exposition, our analysis is performed in
the setting where ELLA receives training data for a
new task at each iteration. Therefore, the number of
tasks learned T is always equal to the iteration num-
ber m. Extending our analysis to the more general
case outlined in Algorithm 1 is straightforward. Our
convergence proof is closely modeled on the analysis
by Mairal et al. (2009).

We define the expected cost of a particular L as

g(L) = ED(t),θ(t)

[
mins`(L, s,θ

(t),D(t))
]
,

where we use a subscript on the expectation operator

to denote which part of the expression is a random
variable. The expected cost represents how well a par-
ticular set of latent components can be used to repre-
sent a randomly selected task given that the knowledge
repository L is not modified.

We show three results on the convergence of ELLA,
given respectively as Propositions 1–3:

1. The latent model component matrix, LT , becomes
increasingly stable as T increases.

2. The value of the surrogate cost function, ĝT (LT ),
and the value of the true empirical cost function,
gT (LT ), converge almost surely (a.s.) as T →∞.

3. LT converges asymptotically to a stationary point
of the expected loss g.

These results are based on the following assumptions:

A. The tuples
(
D(t),θ(t)

)
are drawn i.i.d. from a dis-

tribution with compact support.
B. For all L, D(t), and θ(t), the smallest eigenvalue

of L>γ D(t)Lγ is at least κ (with κ > 0), where
γ is the set of non-zero indices of the vector
s(t) = arg mins ‖θ(t) − Ls‖2

D(t) . The non-zero ele-

ments of the unique minimizing s(t) are given by:

s(t)γ =
(
L>γ D(t)Lγ

)−1 (
L>γ D(t)θ(t) − µεγ

)
, where

the vector εγ contains the signs of the non-zero
entries of s(t).

Proposition 1: LT+1 − LT = O
(
1
T

)
.

Proof sketch: First, we show that the L2 regular-
ization term bounds the maximum magnitude of each
entry of L, and that the L1 regularization term bounds
the maximum magnitude of each entry of s(t). Next,
we show that ĝT − ĝT−1 is Lipschitz with constant
O
(
1
T

)
. This result and the facts that LT−1 minimizes

ĝT−1 and the L2 regularization term ensures that the
minimum eigenvalue of the Hessian of ĝT−1 is lower
bounded by 2λ allow us to complete the proof. �

Before stating our next proposition, we define:

α(L,θ(t),D(t)) = arg min
s

`(L, s,θ(t),D(t)) , (10)

and introduce the following lemma:

Lemma 1:

A. mins `(L, s,θ
(t),D(t)) is continuously differ-

entiable in L with ∇L mins `(L, s,θ
(t),D(t)) =

−2D(t)
(
θ(t) − Lα(L,θ(t),D(t))

)
α(L,θ(t),D(t))>.

B. g is continuously differentiable with ∇g(L) =
2λI + Eθ(t),D(t)

[
∇L mins `(L, s,θ

(t),D(t))
]
.

C. ∇Lg(L) is Lipschitz on the space of latent model
components L.

Proof sketch: Part (A) can be easily shown using the
fact that α is continuous and by applying a corollary of
Theorem 4.1 as stated by Bonnans & Shapiro (1998)
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(originally shown by Danskin (1967)). Part (B) fol-
lows directly since the tuple

(
D(t),θ(t)

)
is drawn from

a distribution with compact support. Part (C) of the
lemma crucially relies on Assumption (B), which en-
sures that the optimal sparse coding solution is unique.
This fact, in combination with some properties that
the optimal sparse coding solution must satisfy, allows
us to prove that α is Lipschitz, which implies that ∇Lg
is Lipschitz due to the form of the gradient established
in Parts (A) and (B). �

Proposition 2:

A. ĝT (LT ) converges a.s.
B. ĝT (LT )− gT (LT ) converges a.s. to 0.
C. ĝT (LT )− g(LT ) converges a.s. to 0.
D. g(LT ) converges a.s.

Proof sketch: First, we show that the sum of the pos-
itive variations of the stochastic process uT = ĝT (LT )
are bounded by invoking a corollary of the Donsker
theorem ((Van der Vaart, 2000) Chapter 19.2, lemma
19.36, ex. 19.7). Given this result, we apply a theorem
from (Fisk, 1965) to show that ut is a quasi-martingale
that converges almost surely. The fact that ut is a
quasi-martingale along with a simple theorem of posi-
tive sequences allows us to prove part (B) of the propo-
sition. The final two parts (C & D) can be shown due
to the equivalence of g and gT as T →∞. �

Proposition 3: The distance between LT and the set of
g’s stationary points converges a.s. to 0 as T →∞.

Proof sketch: We employ the fact that both the sur-
rogate ĝT and the expected cost g each have gradi-
ents that are Lipschitz with constant independent of
T . This fact, in combination with the fact that ĝT and
g converge a.s. as T →∞, completes the proof. �

4. Evaluation

We evaluate ELLA against three other approaches:
(1) GO-MTL (Kumar & Daumé III, 2012), a batch
MTL algorithm, (2) a perceptron-based approach to
online multi-task learning (OMTL) (Saha et al., 2011),
and (3) independent single-task learning (STL). GO-
MTL provides a reasonable upper-bound on the ac-
curacy of the models learned by ELLA (since it is a
batch algorithm that optimizes all task models simul-
taneously). We are chiefly interested in understanding
the tradeoff in accuracy between models learned with
ELLA and GO-MTL, and the computational cost of
learning these models. The comparison to OMTL al-
lows us to understand how the performance of ELLA
compares with another approach designed to learn ef-
ficiently in the lifelong learning setting.

4.1. Data Sets

We tested each algorithm on four multi-task data sets:
(1) synthetic regression tasks, (2) land mine detection
from radar images, (3) identification of three different
facial movements from photographs of a subject, and
(4) predicting student exam scores. Data sets (2) and
(4) are benchmark data sets for MTL. We introduce
data set (3) as an MTL problem for the first time.

Synthetic Regression Tasks We created a set
of Tmax = 100 random tasks with d = 13 features
and nt = 100 instances per task. The task parameter
vectors θ(t) were generated as a linear combination of
k = 6 randomly generated latent components in R12.
The vectors s(t) had a sparsity level of 0.5 (i.e., half the
latent components were used to construct each θ(t)).
The training data X(t) was generated from a standard
normal distribution. The training labels were given

as y(t) = X(t)>θ(t) + ε, where each element of ε is
independent univariate Gaussian noise. A bias term
was added as the 13th feature prior to learning.

Land Mine Detection In the land mine data
set (Xue et al., 2007), the goal is to detect whether
or not a land mine is present in an area based on
radar images. The input features are automatically
extracted from radar data and consist of four-moment
based features, three correlation-based features, one
energy-ratio feature, one spatial variance feature, and
a bias term; see (Xue et al., 2007) for more details. The
data set consists of a total of 14,820 data instances di-
vided into 29 different geographical regions. We treat
each geographical region as a different task.

Facial Expression Recognition This data set is
from a recent facial expression recognition challenge
(Valstar et al., 2011). The goal is to detect the pres-
ence or absence of three different facial action units
(#5: upper lid raiser, #10: upper lip raiser, and #12:
lip corner pull) from an image of a subject’s face. We
chose this combination of action units to be a chal-
lenge, since two of the action units involve the lower
face, suggesting a high potential for transfer, while the
other is an upper face action unit, suggesting a low
potential for transfer. Each task involves recognizing
one of the three action units for one of seven subjects,
yielding a total of 21 tasks, each with 450–999 images.
To represent the images, we utilized a Gabor pyramid
with a frequency bandwidth of 0.7 octaves, orienta-
tion bandwidth of 120 degrees, four orientations, 576
locations, and two spatial scales, yielding a total of
2,880 Gabor features for each image. We reduced the
raw Gabor outputs to 100 dimensions using PCA, and
added a bias term to produce the input features.
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London School Data The London Schools data set
consists of examination scores from 15,362 students in
139 schools from the Inner London Education Author-
ity. We treat the data from each school as a separate
task. The goal is to predict the examination score
of each student. We use the same feature encoding
as used by Kumar & Daumé III (2012), where four
school-specific categorical variables along with three
student-specific categorical variables are encoded as a
collection of binary features. In addition, we use the
examination year and a bias term as additional fea-
tures, giving each data instance d = 27 features.

4.2. Evaluation Procedure

Each data set was evaluated using 10 randomly gen-
erated 50/50 splits of the data between a training and
hold-out test set. The particular splits were stan-
dardized across algorithms. For the online algorithms
(ELLA and OMTL), we evaluated 100 randomized
presentation orders of the tasks.

The parameter values of k and λ for ELLA and GO-
MTL were selected independently for each algorithm
and data set using a gridsearch over values of k from
1 to either 10 or 1

4Tmax (whichever was smaller) and
values of λ from the set {e−5, e−2, e1, e4}. For ELLA,
we selected the parameter values based on the train-
ing data alone. For a given training/test split, we
further subdivided each training set into 10 random
50/50 sub-training/sub-validation sets and then chose
parameter values that maximized the average perfor-
mance on each of these 10 sub-validation sets. For
GO-MTL, OMTL, and STL, the particular parameter
values were selected to maximize test performance on
the hold-out data averaged across all 10 random splits.
Note that this procedure of choosing parameter values
to maximize test performance provides ELLA with a
disadvantage relative to the other algorithms.

The two parameters (burn-in time and learning
rate) for OMTL were optimized using a grid-
search. The burn-in time was optimized over the set
{50, 100, 150, . . . , 400} and the learning rate was op-
timized over the set {e−30, e−29, . . . , e0}. We report
results using the LogDet update rule for OMTL, and
found that the results did not vary greatly when other
rules were employed; see (Saha et al., 2011) for more
details on OMTL. For STL, the ridge term for either
logistic or linear regression was selected by performing
a gridsearch over the set {e−5, e−4, . . . , e5}.

Each task was presented sequentially to ELLA and
OMTL, following the lifelong learning framework (Sec-
tion 3.1). ELLA learned each new task from a sin-
gle batch of data that contained all training instances

of that task. For OMTL, which learns one instance
at a time, we performed five passes over the training
data for each task. We also tried using more than five
passes, but the OMTL model accuracy did not increase
further. GO-MTL was considered to have converged
when either its objective function value decreased by
less than 10−3 or 2,000 iterations were executed.

We measured predictive performance on the classifi-
cation problems using the area under the ROC curve
(AUC). This particular performance metric was cho-
sen since both classification data sets had highly bi-
ased class distributions, and therefore other metrics
like misclassification rate would only be informative
for specific applications with well-specified tradeoffs
between true and false positives. For regression prob-
lems, the performance was evaluated using the neg-
ative root mean-squared error (-rMSE) metric (with
-rMSE, higher numbers indicate better performance).
Recall that OMTL does not support regression, and
so we do not evaluate it on the regression tasks.

The computational cost of each algorithm was mea-
sured using wall-clock time on a Mac Pro computer
with 8GB RAM and two 6-core 2.67GHz Intel Xeon
processors. We report the running time for the batch
GO-MTL algorithm, and the speedup that ELLA,
STL, and OMTL obtain relative to the batch algo-
rithm both for learning all tasks and for learning each
consecutive new task. We optimized the implementa-
tions of all algorithms to ensure a fair comparison.

4.3. Results

For classification problems, ELLA achieves nearly
identical performance to GO-MTL (Table 1) while reg-
istering speedups of at least 1,350 times for learning
all tasks and 38,400 times for learning each new task
(Table 2). In addition, OMTL, which is specifically
designed for learning efficiently online, achieved sig-
nificantly worse accuracy on land mine detection and
moderately worse accuracy on facial expression recog-
nition. While OMTL did run much faster than GO-
MTL, its speed did not match ELLA’s. STL was the
fastest approach (ELLA is necessarily slower than STL
since STL is used as a subroutine inside ELLA), but
had lower accuracy than ELLA.

We find similar results for the regression problems,
with ELLA achieving nearly identical accuracy to GO-
MTL (within 1.1% for real data and 2.3% for syn-
thetic data; see Table 1), while achieving dramatically
shorter learning times when learning all tasks (mini-
mum speedup of 2,721 times) and each new task (min-
imum speedup of 378,219 times). STL was again the
fastest of all approaches, but had lower accuracy.
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Table 1. The accuracy of ELLA, OMTL, and STL relative to batch multi-task learning (GO-MTL), showing that ELLA
achieves nearly equal accuracy to batch MTL and better accuracy than OMTL. The N/A’s indicate that OMTL does not
handle regression problems. The standard deviation of a value is given after the ± symbol.

Problem Batch MTL ELLA Relative OMTL Relative STL Relative
Dataset Type Accuracy Accuracy Accuracy Accuracy
Land Mine Classification 0.7802 ± 0.013 (AUC) 99.73 ± 0.7% 82.2 ± 3.0% 97.97 ± 1.5%
Facial Expr. Classification 0.6577 ± 0.021 (AUC) 99.37 ± 3.1% 97.58 ± 3.8% 97.34 ± 3.9%
Syn. Data Regression −1.084 ± 0.006 (-rMSE) 97.74 ± 2.7% N/A 92.91 ± 1.5%
London Sch. Regression −10.10 ± 0.066 (-rMSE) 98.90 ± 1.5% N/A 97.20 ± 0.4%

Table 2. The running time of ELLA, OMTL, and STL as compared to batch multi-task learning (GO-MTL), showing that
ELLA achieves three orders of magnitude speedup in learning all tasks, and four-to-five orders of magnitude speedup in
learning each consecutive new task. The N/A’s indicate that OMTL does not handle regression. Speedup was measured
relative to the batch method using optimized implementations. The standard deviation of a value is given after the ±.

Batch ELLA ELLA OMTL OMTL STL STL
Runtime All Tasks New Task All Tasks New Task All Tasks New Task

Dataset (seconds) (speedup) (speedup) (speedup) (speedup) (speedup) (speedup)
Land Mine 231±6.2 1,350±58 39,150±1,682 22±0.88 638±25 3,342±409 96,918±11,861
Facial Expr. 2,200±92 1,828±100 38,400±2,100 948±65 19,900±1,360 8,511±1,107 178,719±23,239
Syn. Data 1,300±141 5,026±685 502,600±68,500 N/A N/A 156,489±17,564 1.6E6±1.8E5
London Sch. 715±36 2,721±225 378,219±31,275 N/A N/A 36,000±4,800 5.0E6±6.7E5

Recall that ELLA does not re-optimize the value of s(t)

unless it receives new training data for task t. There-
fore, in each experiment, the value of s(t) is set when
the training data for that task is presented and never
readjusted. Although the values of s(t) are not up-
dated, it is still possible that previously learned task
models can benefit from training on subsequent tasks
through modifications to L.

To assess whether this phenomenon of reverse transfer
occurred, we computed the change in accuracy from
when a task was first learned until after all tasks had
been learned. A positive change in accuracy for a task
indicates that reverse transfer did occur. Figure 2
shows this change in accuracy as a function of posi-
tion in the task sequence, revealing that reverse trans-
fer occurred reliably in all data sets and that reverse
transfer is most beneficial for tasks that were learned
early (when the total amount of training data seen was
low). Most importantly, these results show that, with
few exceptions, subsequent learning did not reduce the
performance of models that were learned early.

5. Conclusion

We have presented an efficient algorithm for lifelong
learning (ELLA) that provides nearly identical accu-
racy to batch MTL, while requiring three orders of
magnitude less runtime. Also, ELLA is more flexible,
faster, and achieves better accuracy than a competing
method for online MTL. We have shown that ELLA
works well on synthetic data as well as three multi-task
problems. Additionally, we discussed ELLA’s connec-
tions to online dictionary learning for sparse coding,
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Figure 2. The change in accuracy from when a task is first
learned until all tasks have been learned, as a function of
position in the task sequence. Plotted lines are the best
fitting exponential curve.

and presented theoretical guarantees that illuminate
the reasons for ELLA’s strong performance. Our fu-
ture work will include extending ELLA to settings be-
sides linear and logistic models and automatically ad-
justing the basis size k as it learns more tasks.
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A. Online Appendix

This appendix details the recursive update of L and
theoretical guarantees described in the main paper:

Paul Ruvolo and Eric Eaton. ELLA: An Ef-
ficient Lifelong Learning Algorithm. In Pro-
ceedings of the 30th International Conference
on Machine Learning, Atlanta, GA, 2013.

A.1. Recursive Update of L

A näıve algorithm for updating the latent model com-
ponent matrix L whenever new data are received is
to invert the matrix 1

T A + λI. The computational
complexity of this update is O(d3k3). However, it is
possible to speedup the computation by exploiting the
fact that the matrix A is only updated by adding or
subtracting a low-rank matrix. The updates to A at
each iteration have the form:

A ← A−
(
s(t)s(t)

>)
⊗D(t)

= A−
(
s(t) ⊗D(t)

1
2

)(
s(t) ⊗D(t)

1
2

)>
A ← A +

(
s(t)
′
s(t)
′>)
⊗D(t)′

= A +
(
s(t)
′
⊗D(t)

′ 1
2

)(
s(t)
′
⊗D(t)

′ 1
2

)>
,

where we use tick marks to denote the updated ver-
sions of D(t) and s(t) after receiving the new train-

ing data, and D(t)
1
2 is the matrix square-root of D(t).

The updates to A consist of adding or subtracting an
outer-product of a matrix of size (d × k)-by-d, which
implies that each update has rank at most d. If we
have already computed the eigenvalue decomposition
of the old A, we can compute the eigenvalue decom-
position of the updated value of A in O(d3k2) using
the recursive decomposition algorithm proposed by Yu
(1991). Given the eigenvalue decomposition of the up-
dated value of A = UΣU>, we can compute the new
value of L by considering the resulting linear system
in canonical form:

vec (L) = Uψ (11)

ψi =

(
1
T U>b

)
i

λ+ 1
T σi,i

. (12)

Computing the vector ψ requires multiplying a (d×k)-
by-(d×k) matrix by a vector of size (d×k) for a com-
plexity of O(d2k2). To complete the computation of L
requires another matrix multiplication with the same
size input matrices yielding another O(d2k2). Com-
bining the recursive computation of the eigenvalue de-
composition and the computation of L yields a compu-
tational complexity of O(d3k2) for the update step —
a factor of k speedup from the näıve implementation.

A.2. Convergence Proof

In this section, we present complete proofs for the
three results on the convergence of ELLA (previously
described in Section 3.6 of the main paper):

1. The latent model component matrix, LT , becomes
increasingly stable as the number of tasks T in-
creases.

2. The value of the surrogate cost function, ĝT (LT ),
and the value of the true empirical cost function,
gT (LT ), converge almost surely (a.s.) as the num-
ber of tasks learned goes to infinity.

3. LT converges asymptotically to a stationary point
of the expected loss g.

These three convergence results are given below as
Propositions 1–3.

These results are based on the following assumptions:

A. The tuples
(
D(t),θ(t)

)
are drawn i.i.d. from a dis-

tribution with compact support (bounding the en-
tries of D(t) and θ(t)).

B. For all L, D(t), and θ(t), the smallest eigenvalue
of L>γ D(t)Lγ is at least κ (with κ > 0), where γ is

the subset of non-zero indices of the vector s(t) =
arg mins ‖θ(t)−Ls‖2

D(t) . In this case, the non-zero

elements of the unique minimizing s(t) are given

by: s(t)γ =
(
L>γ D(t)Lγ

)−1 (
L>γ D(t)θ(t) − µεγ

)
,

where εγ is a vector containing the signs of the
non-zero entries of s(t).

Claim 1: ∃ c1 ∈ R such that no element of LT has
magnitude greater than c1, ∀ T ∈ {1 . . .∞}.

Proof: Consider the solution LT = 0. Since each θ(t)

and D(t) are both bounded by Assumption (A), the
loss incurred on Equation 5 for the tth task when LT =

0 is θ(t)
>

D(t)θ(t), which is bounded by Assumption
(A). The part of Equation 5 consisting of the average
loss over tasks can be no larger than the maximum loss
on a single task (which as we just showed is bounded).
Therefore, ĝT (0) must be bounded by some constant
independent of T . Provided λ > 0, there must exist
a constant c1 to bound the maximum entry in LT or
else the regularization term would necessarily cause
ĝT (LT ) to exceed ĝT (0). �

Claim 2: ∃ c2 ∈ R such that the maximum magnitude
of the entries of s(t) is bounded by c2, ∀ T ∈ {1 . . .∞}.

Proof: The value of s(t) is given by the solution to
Equation 3. We can use a similar argument as we did
in Claim 1 to show that the magnitude of the entries
of s(t) must be bounded (i.e., by considering s(t) = 0
and showing the loss of this solution is bounded by
Assumption (A)). �
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Proposition 1: LT − LT−1 = O
(
1
T

)
.

Proof: First, we show that ĝT−ĝT−1 is Lipschitz with
constant O

(
1
T

)
:

ĝT (L)− ĝT−1(L) =
1

T
`(L, s(T ),θ(T ),D(T ))

+
1

T

T−1∑
t=1

`(L, s(t),θ(t),D(t))

− 1

T − 1

T−1∑
t=1

`(L, s(t),θ(t),D(t))

=
1

T
`(L, s(T ),θ(T ),D(t))

− 1

T (T−1)

T−1∑
t=1

`(L, s(t),θ(t),D(t))

If ` is Lipschitz in its first argument with a constant
independent of T , then ĝT − ĝT−1 has a Lipschitz con-
stant O

(
1
T

)
. This is true since ĝT − ĝT−1 is equal to

the difference of two terms: the first of which is ` di-
vided by T , and the second is an average over T − 1
terms (which can have Lipschitz constant no greater
than the largest Lipschitz constant of the functions
being averaged) which is then normalized by T . We
can easily see that ` is Lipschitz with constant O(1)
since it is a quadratic function over a compact region
with all coefficients bounded. Therefore, ĝT − ĝT−1 is
Lipschitz with constant O

(
1
T

)
.

Let ξT be the Lipschitz constant of ĝT − ĝT−1. We
have:

ĝT−1(LT )− ĝT−1(LT−1) = ĝT−1(LT )− ĝT (LT )

+ ĝT (LT )− ĝT (LT−1)

+ ĝT (LT−1)− ĝT−1(LT−1)

≤ ĝT−1(LT )− ĝT (LT )

+ ĝT (LT−1)− ĝT−1(LT−1)

≤ ξT ‖LT − LT−1‖F . (13)

Additionally, since LT−1 minimizes ĝT−1 and the L2

regularization term ensures that the minimum eigen-
value of the Hessian of ĝT−1 is lower-bounded by 2λ,
we have that ĝT−1(LT ) − ĝT−1(LT−1) ≥ 2λ‖LT −
LT−1‖2F. Combining these two inequalities, we have:

‖LT − LT−1‖F ≤ ξT
2λ

= O

(
1

T

)
.

Therefore, LT − LT−1 = O
(
1
T

)
. �

Before stating our next proposition, we define the func-
tion:

α(L,θ(t),D(t)) = arg min
s

`(L, s,θ(t),D(t)) . (14)

For brevity we will also use the notation αL,θ(t),D(t) =

α(L,θ(t),D(t)). We define the following lemma to sup-

port the proof of the next proposition:

Lemma 1:

A. mins `(L, s,θ
(t),D(t)) is continuously differ-

entiable in L with ∇L mins `(L, s,θ
(t),D(t)) =

−2D(t)
(
θ(t) − Lα(L,θ(t),D(t))

)
α(L,θ(t),D(t))>.

B. g is continuously differentiable with ∇g(L) =
2λI + Eθ(t),D(t)

[
∇L mins `(L, s

(t),θ(t),D(t))
]
.

C. ∇Lg(L) is Lipschitz on the space of latent com-
ponents L that obey Claim (1).

Proof: To prove Part (A), we apply a corollary
to Theorem 4.1 as stated in (Bonnans & Shapiro,
1998) (originally shown in (Danskin, 1967)). As ap-
plied to our problem, this corollary states that if `
is continuously differentiable in L (which it clearly
is) and has a unique minimizer s(t) regardless of
θ(t) and D(t) (which is guaranteed by Assumption
(B)), then∇L mins `(L, s,θ

(t),D(t)) exists and is equal
to ∇L`(L, α(L,θ(t),D(t)),θ(t),D(t)). Following some
simple algebra, we arrive at the specific form of
the gradient listed as Part (A). Part (B) can be
proven immediately since by Assumption (A) the tuple(
D(t),θ(t)

)
is drawn from a distribution with compact

support.

To prove Part (C), we first show that α(L,θ(t),D(t))
is Lipschitz in L with constant independent of θ(t) and
D(t). Part (C) will follow once α has been shown
to be Lipschitz due to the form of the gradient of
g with respect to L. The function α is continuous
in its arguments since ` is continuous in its argu-
ments and by Assumption (B) has a unique minimizer.
Next, we define the function ρ(L,D(t),θ(t), j) =(
D(t)lj

)>(
θ(t)−LαL,θ(t),D(t)

)
, where lj represents the

jth column of L, and state the following facts about
ρ(L,D(t),θ(t), j):∣∣∣ρ(L,D(t),θ(t), j)

∣∣∣= µ, iff
(
αL,θ(t),D(t)

)
j
6=0∣∣∣ρ(L,D(t),θ(t), j)

∣∣∣< µ, iff
(
αL,θ(t),D(t)

)
j
=0 . (15)

Let γ be the set of indices j such that∣∣ρ(L,D(t),θ(t), j)
∣∣ = µ. Since ρ(L,D(t),θ(t), j)

is continuous in L, D(t), and θ(t), there must exist
an open neighborhood around

(
L,D(t),θ(t)

)
called

V such that for all
(
L′,D(t)′,θ(t)

′) ∈ V and j /∈ γ,∣∣∣ρ(L′,D(t)′,θ(t)
′
, j)
∣∣∣ < µ. By Equation 15, we can

conclude that
(
αL′,θ(t)′,D(t)′

)
j

= 0, ∀ j /∈ γ.

Next, we define a new loss function:

`(Lγ , sγ ,θ,D) = ‖θ − Lγsγ‖2D + µ‖sγ‖1 .

By Assumption (B) we are guaranteed that ` is strictly
convex with a Hessian lower-bounded by κ. Based on
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this, we can conclude that:

`(Lγ ,αL′,θ(t)′,D(t)′
γ
,θ(t),D(t))

− `(Lγ ,αL,θ(t),D(t)
γ
,θ(t),D(t))

≥ κ‖αL′,θ(t)′,D(t)′
γ
−αL,θ(t),D(t)

γ
‖22 . (16)

By Assumption (A) and Claim (1), ` is Lipschitz in its
second argument, sγ , with constant equal to

e1‖Lγ − L′γ‖F + e2‖θ′ − θ‖2 + e3‖D′ −D‖F

(where e1, e2, e3 are all constants independent of
Lγ ,L

′
γ ,θ,θ

′,D, and D′). Combining this fact with
Equation 16, we obtain:

‖αL′,θ(t)′,D(t)′ −αL,θ(t),D(t)‖ =∥∥∥(αL′,θ(t)′,D(t)′
)
γ
−
(
αL,θ(t),D(t)

)
γ

∥∥∥
≤
e1‖L′γ − Lγ‖F

κ

+
e2‖θ(t)

′ − θ(t)‖2
κ

+
e3‖D(t)′ −D(t)‖F

κ
.

Therefore, α is locally-Lipschitz. Additionally, since
the domain of α is compact by Assumption (A) and
Claim (1), this implies that α is uniformly Lipschitz,
and we can conclude that ∇g is Lipschitz as well. �

Proposition 2:

1. ĝT (LT ) converges a.s.
2. ĝT (LT )− gT (LT ) converges a.s. to 0
3. ĝT (LT )− g(LT ) converges a.s. to 0
4. g(LT ) converges a.s.

Proof: We begin by defining the stochastic process:

uT = ĝT (L) .

The basic proof outline is to show that this stochastic
positive process (since the loss can never be negative)
is a quasi-martingale and by a theorem in (Fisk, 1965)
the stochastic process converges almost surely.

uT+1 − uT = ĝT+1(LT+1)− ĝT (LT )

= ĝT+1(LT+1)− ĝT+1(LT )

+ ĝT+1(LT )− ĝT (LT )

= ĝT+1(LT+1)− ĝT+1(LT )

+
mins(T+1) `(LT , s

(T+1),θ(T+1),D(T+1))

T + 1

− gT (LT )

T + 1

+
gT (LT )− ĝT (LT )

T + 1
, (17)

where we made use of the fact that:

ĝT+1(LT ) =
1

T + 1
min
s(T+1)

`(LT , s
(T+1),θ(T+1),D(T+1))

+
T

T + 1
ĝT (LT ) .

We now need to show that the sum of the positive
variations in Equation 17 from T = 1 to T = ∞ is
bounded. Note that the term on the first line of Equa-
tion 17 is guaranteed to be negative since LT+1 min-
imizes ĝT+1. Additionally, since ĝT is always at least
as large as gT , the term on the last line is also guar-
anteed to be negative. Therefore, if we are interested
in bounding the positive variations, we focus on the
terms on the middle two lines.

E[uT+1 − uT |GT ] ≤
E[mins(T+1) `(LT , s

(T+1),θ(T+1),D(T+1))|IT ]

T + 1

− gT (LT )

T + 1

=
g(LT )− gT (LT )

T + 1

≤ ‖g − gT ‖∞
T + 1

, (18)

where IT represents all of the information up to time T
(i.e. all the previous θ(t)’s and D(t)’s) and ‖·‖∞ is the
infinity norm of a function (e.g. the maximum of the
absolute value of the function). If we are able to show

that
∑∞
t=1

‖g−gt‖∞
t+1 <∞ then we will have proven that

the stochastic process uT is a quasi-martingale that
converges almost surely. In order to prove this, we
apply the following corollary of the Donsker theorem
((Van der Vaart, 2000) Chapter 19.2, lemma 19.36,
example 19.7):

Let G = {gθ : X → R,θ ∈ Θ} be a set of
measurable functions indexed by a bounded
subset Θ of Rd. Suppose that there exists a
constant K such that:

|gθ1
(x)− gθ2

(x)| ≤ K‖θ1 − θ2‖2
for every θ1,θ2 ∈ Θ and x ∈ X . Then, G is
P-Donsker and for any g ∈ G, we define Png,
Pg, and Gng as:

Png =
1

n

n∑
i=1

g(Xi)

Pg = EX [g(X)]

Gng =
√
n(Png − Pg) .

If Pg2 ≤ δ2 and ‖g‖∞ < M and the random
elements are Borel measurable, then:

E[sup
g∈G
|Gng|] = O(1) .
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In order to apply this lemma to our analysis, consider
a set of functions H indexed by possible latent compo-
nent matrices, L. Consider the domain of each of the
functions inH to be all possible tuples

(
D(t),θ(t)

)
. We

define hL(D(t),θ(t)) = mins `(L, s,θ
(t),D(t)). First,

the expected value of h2 is bounded for all h ∈ H
since the value of ` is bounded on the set of L that
conform to Claim (1). Second, ‖h‖∞ again is bounded
given Claim (1) and Assumption (A). Therefore, we
can state that:

E

[
√
T

∥∥∥∥
(

1

T

T∑
t=1

min
s
`
(
L, s,θ(t),D(t)

))

− E
[
min
s
`
(
L, s,θ(t),D(t)

)] ∥∥∥∥
∞

]
= O(1)

=⇒ E [‖gT (L)− g(L)‖∞] = O

(
1√
T

)
.

Therefore, ∃ c3 ∈ R such that E [‖gT − g‖∞] < c3√
T

:

∞∑
t=1

E
[
E [ut+1 − ut|It]+

]
≤

∞∑
t=1

E [‖gt − g‖∞]

t+ 1

<

∞∑
t=1

c3

t
3
2

= O(1) ,

where a superscripted + takes on value 0 for nega-
tive numbers and the value of the number otherwise.
Therefore, the sum of the positive variations of uT is
bounded. By applying a theorem due to (Fisk, 1965)
this implies that uT is a quasi-martingale and con-
verges almost surely. This proves the first part of
Proposition 2.

Next, we show that uT being a quasi-martingale im-
plies the almost sure convergence of the fourth line of
Equation 17. To see this we note that since uT is a
quasi-martingale and the sum of its negative variations
is bounded, and since the term on the fourth line of

Equation 17, gT (LT )−ĝT (LT )
T+1 , is guaranteed to be neg-

ative, the sum of that term from 1 to infinity must be
bounded:

∞∑
t=1

ĝt(Lt)− gt(Lt)
t+ 1

<∞ . (19)

To complete the proof of Part (B) of Proposition
2, consider the following lemma: Let an, bn be two
real sequences such that for all n, an ≥ 0, bn ≥
0,
∑∞
n=1 an =∞,

∑∞
n=1 anbn <∞,∃K > 0 s.t.|bn+1 −

bn| < Kan. Then, limn→+∞ bn = 0.

If we define at = 1
t+1 and bt = ĝt(Lt) −

gt(Lt), then clearly these are both positive se-
quences, and

∑∞
t=1 at = ∞. We just showed

that
∑∞
t=1

ĝt(Lt)−gt(Lt)
t+1 < ∞ which is equivalent to

∑∞
t=1 anbn < ∞. Since gT and ĝT are bounded

and Lipschitz with constant independent of T , and
LT+1 − LT = O

(
1
T

)
we have all of the assumptions

verified, which implies that:

lim
T→∞

ĝT (LT )− gT (LT )→ 0, a.s.

Now we have established Part (B) of this proposition
that gT (LT ) and ĝT (LT ) converge almost surely to the
same limit. Additionally, by the Glivenko-Cantelli the-
orem we have that limT→∞ ‖g − gT ‖∞ = 0, which
implies that g must converge almost surely. By tran-
sitivity, limT→∞ ĝT (LT ) − g(LT ) = 0. We have now
shown Parts (C) and (D) of Proposition 2. �

Proposition 3: The distance between LT and the set of
all stationary points of g converges a.s. to 0 as t→∞.

Proof: Before proceeding, we show that ∇LĝT is Lip-
schitz with constant independent of T . Since ĝT is
quadratic its gradient is linear which implies that it
is Lipschitz. Additionally, since s(t), D(t), and θ(t)

are all bounded and the summation over task losses
is normalized by T , it follows that ĝT has a Lipschitz
constant independent of T .

Next, we define an arbitrary non-zero matrix U of the
same dimensionality as L. Since ĝT upper-bounds gT ,
we have:

ĝT (LT + U) ≥ gT (LT + U)

lim
T→∞

ĝT (LT + U) ≥ lim
T→∞

g(LT + U) ,

where to get the second inequality we took the limit of
both sides and replaced gT with g (which are equiva-
lent as T →∞). Let hT > 0 be a sequence of positive
real numbers that converges to 0. If we take the first-
order Taylor expansion on both sides of the inequality
and use the fact that ∇g and ∇ĝ are both Lipschitz
with constant independent of T , we get:

lim
T→∞

{
ĝT (LT ) + Tr

(
hTU>∇ĝT (LT )

)
+O(hTU)

}
≥

lim
T→∞

{
g(LT ) + Tr

(
hTU>∇g(LT )

)
+O(hTU)

}
.

Since limT→∞ ĝT (LT ) − g(LT ) = 0 a.s. and
limT→∞ hT = 0, we have:

lim
T→∞

Tr

(
1

‖U‖F
U>∇ĝT (LT )

)
≥

lim
T→∞

Tr

(
1

‖U‖F
U>∇g(LT )

)
.

Since this inequality has to hold for every U, we
require that limT→∞∇ĝT (LT ) = limT→∞∇g(LT ).
Since LT minimizes ĝT , we require that ∇ĝT (LT ) = 0,
where 0 is the zero-vector of appropriate dimension-
ality. This implies that ∇g(LT ) = 0, which is a first-
order condition for LT to be a stationary point of g. �


