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Abstract

Knowledge transfer between tasks can improve the performance of learned models, but
requires an accurate estimate of inter-task relationships to identify the relevant knowledge
to transfer. These inter-task relationships are typically estimated based on training data
for each task, which is inefficient in lifelong learning settings where the goal is to learn each
consecutive task rapidly from as little data as possible. To reduce this burden, we develop a
lifelong learning method based on coupled dictionary learning that utilizes high-level task
descriptions to model inter-task relationships. We show that using task descriptors im-
proves the performance of the learned task policies, providing both theoretical justification
for the benefit and empirical demonstration of the improvement across a variety of learning
problems. Given only the descriptor for a new task, the lifelong learner is also able to
accurately predict a model for the new task through zero-shot learning using the coupled
dictionary, eliminating the need to gather training data before addressing the task.

1. Introduction

Transfer learning (TL) and multi-task learning (MTL) methods reduce the amount of expe-
rience needed to train individual task models by reusing knowledge from other related tasks.
This transferred knowledge can improve the training speed and model performance, as com-
pared to learning the tasks in isolation following the classical machine learning pipeline (Pan
& Yang, 2010). TL and MTL techniques typically select the relevant knowledge to trans-
fer by modeling inter-task relationships using a shared representation, based on training
data for each task (Baxter, 2000; Ando & Zhang, 2005; Bickel, Sawade, & Scheffer, 2009;
Maurer, Pontil, & Romera-Paredes, 2013). Despite benefits over single-task learning, this
process requires sufficient training data for each task to identify these relationships before
knowledge transfer can succeed and improve generalization performance. This need for data
is especially problematic in learning systems that are expected to rapidly learn new tasks
during real-time interaction with the environment: when faced with a new task, the learner
would first need to gather data on the new task before bootstrapping a model via transfer,
consequently delaying how quickly the learner could address the new task.

Consider instead the human ability to rapidly bootstrap a model for a new task given
only a high-level task description—before obtaining experience on the actual task. For ex-
ample, viewing only the image on the box of a new IKEA chair, we can immediately identify

TAn earlier version of this work focusing on policy gradient reinforcement learning appeared in the proceed-
ings of IJCAI 2016 (Isele, Rostami, & Eaton, 2016).
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related previous assembly tasks and begin formulating a plan to assemble the chair. In the
same manner, an experienced inverted pole balancing agent may be able to predict the
controller for a new pole given its mass and length, prior to interacting with the physical
system. These examples suggest that an agent could similarly use high-level task informa-
tion to bootstrap a model for a new task more efficiently.

Inspired by this idea, we explore the use of high-level task descriptions to improve knowl-
edge transfer between multiple machine learning tasks from a single domain. We focus on
lifelong learning scenarios (Thrun, 1996; Ruvolo & Eaton, 2013; Chen & Liu, 2018; Ros-
tami, Kolouri, & Pilly, 2019), in which multiple tasks arrive consecutively and the goal
is to rapidly learn each new task by building upon previous knowledge. Our approach
to integrating task descriptors into lifelong machine learning is general, as demonstrated
on applications to reinforcement learning, regression, and classification problems. In rein-
forcement learning settings, our idea can be compared with the universal value function
approximation algorithm by Schaul et al. (2015) in that the goal is to generalize the learned
knowledge to other unexplored scenarios. Schaul et al. incorporate the goals of an RL
learner into the value function to allow for generalization over unexplored goals. In con-
trast, our goal is to learn a mapping from high-level task descriptions onto the optimal
task parameters, enabling the agent to learn future tasks without exploration solely using
high-level descriptions of those tasks.

Our algorithm, Task Descriptors for Lifelong Learning (TaDeLL), encodes task descrip-
tions as feature vectors that identify each task, treating these descriptors as side information
to augment training data on the individual tasks. The idea of using task features for knowl-
edge transfer has been explored previously by Bonilla et al. (2007) in an offline batch MTL
setting!, and more recently by Sinapov et al. (2015) in a computationally expensive method
for estimating transfer relationships between pairs of tasks. Svetlik et al. (2017) also use
task descriptors to generate a curriculum that improves the learning performance in the
target task by learning the optimal order in which tasks should be learned. In comparison,
our approach operates online over consecutive tasks in a setting where the agent does not
control the order in which tasks are learned.

We use coupled dictionary learning to model the inter-task relationships between the
task descriptions and the individual task models or policies in lifelong learning. The cou-
pled dictionary enforces the notion that tasks with similar descriptions should have similar
models or policies, but still allows dictionary elements the freedom to accurately represent
the different task models or policies. We connect the coupled dictionaries to the PAC-
learning framework, providing theoretical justification for why the task descriptors improve
performance, and verify this improvement empirically.

In addition to improving the task models, we show that the task descriptors enable
the learner to accurately predict the models or policies for unseen tasks given only their
description—this process of learning without data on future tasks is known as zero-shot
learning. This capability is particularly important in the online setting of lifelong learning.
It enables the system to accurately predict policies for new tasks through transfer from

!Note that “batch learning” in this context refers to offline learning, when all tasks are available a priori
and is not related to the notion of a “batch” of data in first-order optimization methods such as mini-batch
stochastic gradient descent.
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previously learned tasks, without requiring the system to pause to gather training data on
each future task.
Specifically, this article provides the following contributions:

e We develop a general mechanism based on coupled dictionary learning to in-
corporate task descriptors into knowledge transfer algorithms that use a factorized
representation of the learned knowledge to facilitate transfer (Kumar & Daumé, 2012;
Maurer et al., 2013; Ruvolo & Eaton, 2013; Kolouri, Rostami, Owechko, & Kim,
2018).

e Using this mechanism we develop two algorithms, for lifelong learning (TaDeLL) and
MTL (TaDeMTL), that incorporate task descriptors to improve learning performance.

e Most critically, we show how these algorithms can achieve zero-shot transfer to
bootstrap a model for a novel task, given only the high-level task descriptor.

e We provide theoretical justification for the benefit of using task descriptors in
lifelong learning and MTL, building on the PAC-learnability of the framework.

e Finally, we demonstrate the empirical effectiveness of TaDeLL and TaDeMTL on
reinforcement learning scenarios involving the control of dynamical systems, and
on prediction tasks in classification and regression settings, showing the generality
of our approach.

2. Related Work

Multi-task learning (MTL) (Caruana, 1997) methods often model the relationships between
tasks to identify similarities between their datasets or underlying models. There are many
different approaches to modeling these task relationships. Bayesian approaches take a vari-
ety of forms, making use of common priors (Wilson, Fern, Ray, & Tadepalli, 2007; Lazaric
& Ghavamzadeh, 2010), using regularization terms that couple task parameters (Evgeniou
& Pontil, 2004; Zhong & Kwok, 2012), and finding mixtures of experts that can be shared
across tasks (Bakker & Heskes, 2003).

Whereas Bayesian MTL methods aim to find an appropriate bias to share among all
task models, transformation methods seek to make one dataset look like another, often in
a transfer learning setting. This can be accomplished with distribution matching (Bickel
et al., 2009), inter-task mapping (Taylor, Stone, & Liu, 2007), or manifold alignment tech-
niques (Wang & Mahadevan, 2009; Ham, Lee, & Saul, 2005).

Both the Bayesian strategy of discovering biases and the shared spaces often used in
transformation techniques are implicitly connected to methods that learn shared knowledge
representations for MTL. For example, the original MTL framework developed by Caru-
ana (1997) and later variations (Baxter, 2000) capture task relationships by sharing hidden
nodes in neural networks that are trained on multiple tasks. Alternatively, the distribu-
tions of several tasks can be related through a hidden layer in neural networks (Long, Zhu,
Wang, & Jordan, 2017; Rostami, Kolouri, Eaton, & Kim, 2019). Related work in dictionary
learning techniques for MTL (Maurer et al., 2013; Kumar & Daumé, 2012) factorize the
learned models into a shared latent dictionary over the model space to facilitate transfer.
Individual task models are then captured as sparse representations over this dictionary; the
task relationships are captured in these sparse codes.
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The Efficient Lifelong Learning Algorithm (ELLA) framework (Ruvolo & Eaton, 2013)
used this same approach of a shared latent dictionary, trained online, to facilitate transfer
as tasks arrive consecutively. The ELLA framework was first created for regression and
classification (Ruvolo & Eaton, 2013), and later developed for policy gradient reinforcement
learning (PG-ELLA) (Bou Ammar, Eaton, & Ruvolo, 2014) and collective multi-agent
learning (Rostami, Kolouri, Kim, & Eaton, 2018) using distributed optimization (Hao,
Oghbaee, Rostami, Derbinsky, & Bento, 2016). Other approaches that extend MTL to
online settings also exist (Cavallanti, Cesa-Bianchi, & Gentile, 2010). Saha et al. (2011) use
a task interaction matrix to model task relations online and Dekel et al. (2006) propose a
shared global loss function that can be minimized as tasks arrive.

However, all these methods use task data to characterize the task relationships—this
explicitly requires training on some data from each task in order to perform transfer. Instead
of relying solely on the tasks’ training data, several works have explored the use of high-
level task descriptors to model the inter-task relationships in MTL and transfer learning
settings. Task descriptors have been used in combination with neural networks (Bakker
& Heskes, 2003) to define a task-specific prior and to control the gating network between
individual task clusters. Bonilla et al. (2007) explore similar techniques for multi-task
kernel machines, using task features in combination with the data for a gating network
over individual task experts to augment the original task training data. These papers
focus on multi-task classification and regression in batch settings where the system has
access to the data and features for all tasks, in contrast to our study of task descriptors for
lifelong learning over consecutive tasks. We use coupled dictionary learning to link the task
description space with the task model’s or task policy’s parameter space. This idea was
originally used in image processing (Yang, Wright, Huang, & Ma, 2010) and was recently
explored in the machine learning literature (Xu, Hospedales, & Gong, 2016). The core idea
is that two feature spaces can be linked through two dictionaries that are coupled by a joint
sparse representation.

Several works consider transferring knowledge from a single source task to a single
target task (Da Silva & Costa, 2017; Song, Gao, & Wang, 2018; Silva & Costa, 2018)
using task descriptors. We focus on a lifelong learning framework, where the goal is to
transfer knowledge from several previously learned tasks. In the work most similar to our
problem setting, Sinapov et al. (2015) use task descriptors to estimate the transferability
between each pair of tasks for transfer learning. Given the descriptor for a new task,
they identify the source task with the highest predicted transferability, and use that source
task as a warm start in reinforcement learning (RL). Though effective, their approach
is computationally expensive, since they estimate the transferability for every task pair
through repeated simulation. Their evaluation is also limited to a transfer learning setting,
and they do not consider the effects of transfer over consecutive tasks or updates to the
transferability model, as we do in the lifelong setting.

Our work is also related to zero-shot learning, which seeks to successfully label out-of-
distribution examples, often through means of learning an underlying representation that
extends to new tasks and uses outside information that appropriately maps to the latent
space (Palatucci, Hinton, Pomerleau, & Mitchell, 2009; Socher, Ganjoo, Manning, & Ng,
2013; Rostami, Kolouri, McClelland, & Pilly, 2020). The ESZSL method by Romera-
Paredes and Torr (2015) also uses task descriptions. Their method learns a multi-class
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linear model, and factorizes the linear model parameters, assuming the descriptors are coef-
ficients over a latent basis to reconstruct the models. Our approach assumes a more flexible
relationship: that both the model parameters and task descriptors can be reconstructed
from separate latent bases that are coupled together through their coefficients. In compar-
ison to our lifelong learning approach, the ESZSL method operates in an offline multi-class
setting.

3. Background

Our proposed framework for lifelong learning with task descriptors supports both supervised
learning (classification and regression) and reinforcement learning settings. For complete-
ness, we briefly review these learning paradigms here.

3.1 Supervised Learning

Consider a standard batch supervised learning setting. Let © € X C R? be a d-dimensional
vector representing a single data instance with a corresponding label y € ). Given a set of n
sample observations X = {x1,x2,..., ®,} with corresponding labels y = {y1,v2,...,yn},
the goal of supervised learning is to learn a function fy : X — ) that labels inputs X with
their outputs y and generalizes well to unseen observations.

In regression tasks, the labels are assumed to be real-valued (i.e., ) = R). In classi-
fication tasks, the labels are a set of discrete classes; for example, in binary classification,
Y = {+1,—1}. We assume that the learned model for both paradigms fg can be param-
eterized by a vector 8. The model is then trained to minimize the average loss over the
training data between the model’s predictions and the given target labels:

g 3 (/i 0).) + RUo)

where L£(-) is generally assumed to be a convex metric, and R(-) regularizes the learned
model. The form of the model f, loss function £(-), and regularization method varies
between learning methods. This formulation encompasses a number of parametric learning
methods, such as linear regression and logistic regression to name a few.

3.2 Reinforcement Learning

A reinforcement learning (RL) agent selects sequential actions in an environment to max-
imize its expected return. An RL task is typically formulated as a Markov Decision
Process (MDP) (X, A, P, R,~), where X is the set of states, and A is the set of actions
that the agent may execute, P : X x A x X — [0, 1] is the state transition probability de-
scribing the systems dynamics, R : X x A x X — R is the reward function, and v € [0, 1)
is the discount assigned to rewards over time. At time step h, the agent is in state ¢, € X
and chooses an action a € A according to policy mg : X x A+ [0, 1], which is represented
as a function defined by a vector of control parameters @ € R¢. The agents then receives
reward rp, according to R and transitions to state xpy; according to P. This sequence
of states, actions, and rewards is given as a trajectory 7 = {(x1,a1,71),...,(xg,am, o)}
over a horizon H. The goal of RL is to find the optimal policy 7* with parameters 8* that
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maximizes the expected cumulative discounted reward. Learning an individual task typi-
cally requires numerous trajectories, motivating the use of transfer to reduce the number
of interactions with the environment.

Policy gradient (PG) methods (Sutton, McAllester, Singh, & Mansour, 1999), which
we employ as our base learner for RL tasks, are a class of RL algorithms that are effec-
tive for solving high-dimensional problems with continuous state and action spaces, such
as robotic control (Peters & Schaal, 2008). The goal of PG is to optimize the expected

average return: J(0) =E [% Zle rh} = [rpo(T)R(7)dT, where T is the set of all pos-

sible trajectories, the average reward on trajectory 7 is given by R(1) = % Zthl Th,
and pg(T) = Po(x1) HhH:1 p(xh+1 | Th,an) w(ay | ©p) is the probability of 7 under an ini-
tial state distribution Py : X +— [0,1]. Most PG methods, such as episodic REINFORCE
(Williams, 1992), PoOWER (Kober & Peters, 2009), and Natural Actor Critic (Peters &
Schaal, 2008), optimize the policy by employing supervised function approximators to max-
imize a lower bound on the expected return of J7(@). This optimization is carried out by
generating trajectories using the current policy mg, and then comparing the result with a
new policy mg. Jensen’s inequality can then be used to lower bound the expected return
(Kober & Peters, 2009):

10gj(é> = log/Tpé(T) R(T)dr

D

= log/Tpe(T) pa(T) R(T)dr

Pg(T)
> [ o) im0 2

x ~Dicw (po(7) R() | pgl) = T () |

d7 + constant

where Dk, (p(T) || ¢(7)) = /Tp(T) log 2(:)

divergence between the reward-weighted trajectory distribution of mg and the trajectory
distribution pg of the new policy 7.

d7. This is equivalent to minimizing the KL

In our work, we treat the term J g (é) similar to the loss function £ of a classification or

regression task. Consequently, both supervised learning tasks and RL tasks can be modeled
in a unified framework, where the goal is to minimize a convex loss function.

3.3 Lifelong Machine Learning

In a lifelong learning setting (Thrun, 1996; Ruvolo & Eaton, 2013; Chen & Liu, 2018), a
learner faces multiple, consecutive tasks and must rapidly learn each new task by building
upon its previous experience. The learner may encounter a previous task at any time, and
so must optimize performance across all tasks seen so far. A priori, the agent does not know
the total number of tasks Ti,ax, the task distribution, or the task order.

At time ¢, the lifelong learner encounters task Z(®). In this paper, all tasks are either
regression problems Z(*) = (X y®)  classification problems Z() = (X® 4®)) or rein-
forcement learning problems specified by an MDP (X &) A0 p) R(t),’y(t)>. Note that we
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Figure 1: The lifelong machine learning process. As a new task arrives, knowledge accu-
mulated from previous tasks is selectively transferred to the new task to improve learning.
Newly learned knowledge is then stored for future use.

do not mix the learning paradigms—the lifelong learning agent will only face one type of
learning task during its lifetime. The agent will learn each task consecutively, acquiring
training data (i.e., samples or trajectories) in each task before advancing to the next. The
agent’s goal is to learn the optimal models {f;.),..., for) } or policies {mgq),... 75}
with corresponding parameters {0(1), cees B(T)}, where T is the number of unique tasks seen
so far (1 < T < Thnax). Ideally, knowledge learned from previous tasks {Z(1), ..., ZT-11
should accelerate training and improve performance on each new task Z(7). Also, the life-
long learner should scale effectively to large numbers of tasks, learning each new task rapidly
from minimal data. The lifelong learning framework is depicted in Figure 1.

The Efficient Lifelong Learning Algorithm (ELLA) (Ruvolo & Eaton, 2013) and PG-
ELLA (Bou Ammar et al., 2014) were developed to operate in this lifelong learning set-
ting for classification/regression and RL tasks, respectively. Both approaches assume the
parameters for each task model can be factorized using a shared knowledge base L, facil-
itating transfer between tasks. Specifically, the model parameters for task Z() are given
by ) = Ls®, where L € R%*¥ is the shared basis over the model or policy parameter
space, and s(¥) € RF are the sparse coefficients over the basis. This factorization, depicted
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o) L st
75 qfyo B

Figure 2: The task specific model (or policy) parameters 0" are factored into a shared
knowledge repository L and a sparse code s(!). The repository L stores chunks of knowledge
that are useful for multiple tasks, and the sparse code s() extracts the relevant pieces of
knowledge for a particular task’s model (or policy).

in Figure 2, has been effective for transfer in both lifelong and multi-task learning (Kumar
& Daumé, 2012; Maurer et al., 2013).
Under this factorization, the MTL objective is:

T
1
in — () ) 2
TP [£(6®) + pllsD 1] + ALIE (1)
where S = [s(l) ‘e s(T)] is the matrix of sparse vectors, L is the task-specific loss for task
Z® and || - || is the Frobenius norm. The L; norm is used to approximate the true vector

sparsity of s, and p and X\ are regularization parameters. Note that for a convex loss
function £(-), this problem is convex in each of the variables L and S. Thus, one can use
an alternating optimization approach to solve it in a batch learning setting. To solve this
objective in a lifelong learning setting, Ruvolo and Eaton (2013) take a second-order Taylor
expansion to approximate the objective around an estimate a® e R? of the single-task
model parameters for each task Z(®), and update only the coefficients s® for the current
task at each time step. This process reduces the MTL objective to the problem of sparse
coding the single-task models in the shared basis L, and enables S and L to be solved
efficiently by the following alternating online update rules that constitute ELLA (Ruvolo &
Eaton, 2013):

s ¢ argminf|a® — Ls|2, + ulls|s @)

A A+ (sWsT)@T0 ®)

b <+ b+ vec (s(t)T ® (a(t)TI‘(t))) (4)

L + mat lA—i—)\I 7111) (5)
T kd T ?
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where |[v]|%} = v'Av, the symbol ® denotes the Kronecker product, T'™ is the Hessian of
the loss E(a(t)), I, is the m x m identity matrix, A is initialized to a kd x kd zero matrix,
and b € R*® ig initialized to zeros.

This was extended to handle reinforcement learning by Bou Ammar et al. (2014) via
approximating the RL multi-task objective by first substituting in the convex lower-bound
to the PG objective J(a®) in order to make the optimization convex.

While these methods are effective for lifelong learning, this approach requires training
data to estimate the model or policy for each new task before the learner can solve it.
Our key idea is to eliminate this restriction by incorporating task descriptors into lifelong
learning, enabling zero-shot transfer to new tasks. That is, upon learning a few tasks, future
task models or policies can be predicted solely using task descriptors.

4. Lifelong Learning with Task Descriptors
4.1 Task Descriptors

High-level descriptions not only can characterize single tasks, but can be used to identify
inter-task relationships. For example, in multi-task medical domains, patients are often
grouped into tasks by demographic data and disease presentation (Oyen & Lane, 2012). In
control problems, the dynamical system parameters (e.g., the spring, mass, and damper con-
stants in a spring-mass-damper system) describe the task. Descriptors can also be derived
from external sources, such as text descriptions (Pennington, Socher, & Manning, 2014;
Huang, Socher, Manning, & Ng, 2012) or Wikipedia text associated with the task (Socher
et al., 2013).

To incorporate task descriptors into the learning procedure, we assume that each task
2 has an associated descriptor m® that is given to the learner upon first presentation of
the task. The learner has no knowledge of future tasks, or the distribution of task descrip-
tors. The descriptor is represented by a feature vector gf)(m(t)) € R% where ¢(-) performs
feature extraction and (possibly) a non-linear basis transformation on the features. We
make no assumptions on the uniqueness of gf)(m(t)), although in general, we would expect
different tasks to have different descriptors.? In addition, each task also has associated train-
ing data X® to learn the model; in the case of RL tasks, the data consists of trajectories
that are dynamically acquired by the agent through experience in the environment.

We incorporate task descriptors into lifelong learning via sparse coding with a coupled
dictionary, enabling the descriptors and learned models (or policies) to augment each other.
In an earlier version of this work, we focused on RL tasks (Isele et al., 2016); here, we
more fully explore the range of our approach, showing how it can be applied to regression,
classification, and RL problems.

4.2 Coupled Dictionary Optimization

As described previously, many multi-task and lifelong learning approaches have found suc-
cess with factorizing the model or policy parameters 0() for each task as a sparse linear
combination over a shared basis: ) = Ls® . In effect, each column of the shared basis L

2This raises the question of what descriptive features to use, and how task performance will change if some
descriptive features are unknown. We explore these issues in Section 8.1.
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Figure 3: The lifelong machine learning process with task descriptions. High-level descrip-
tors for each task are incorporated as input into the lifelong learning framework and coupled
with the learned model or policy. Because of the learned coupling, the model or policy for
a new task can be predicted given only a high-level description of that task.

serves as a reusable model or policy component representing a cohesive chunk of knowledge.
In lifelong learning, the basis L is refined over time as the system learns more tasks. The
coefficient vectors S = [s() ... s(T)] encode the task models or policies in this shared basis,
providing an embedding of the tasks based on how their models or policies share knowledge.

We make a similar assumption about the task descriptors—that the descriptor features
qb(m(t)) can be linearly factorized?® using a latent basis D € R%** over the descriptor space.
This basis captures relationships among the descriptors, with coefficients that similarly
embed tasks based on commonalities in their descriptions. From a co-view perspective
(Yu, Wu, Yang, Tian, Luo, & Zhuang, 2014), both the policies and descriptors provide
information about the task, and so each can augment the learning of the other. Each
underlying task is common to both views, and so we seek to find task embeddings that
are consistent for both the models/policies and their corresponding task descriptors. As
depicted in Figure 4, we can enforce this by coupling the two bases L and D, sharing
the same coefficient vectors S to reconstruct both the models/policies and descriptors.

3This is potentially non-linear w.r.t m(t), since ¢ can be non-linear.
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Figure 4: The coupled dictionaries of TaDeLL, illustrated on an RL task. Policy parameters
0" are factored into L and s while the task description qﬁ(m(t)) is factored into D and
s, Because we force both dictionaries to use the same sparse code s, the relevant pieces
of information for a task become coupled with the description of the task.

Therefore, for task Z(®),
0" = Ls® o(m®) = Ds® . (6)

To optimize the coupled bases L and D during the lifelong learning process, we employ
techniques for coupled dictionary optimization from the sparse coding literature (Yang et al.,
2010), which optimizes the dictionaries for multiple feature spaces that share a joint sparse
representation. This notion of coupled dictionary learning has led to high performance
algorithms for image super-resolution (Yang et al., 2010), allowing the reconstruction of
high-res images from low-res samples, and for multi-modal retrieval (Zhuang, Wang, Wu,
Zhang, & Lu, 2013) and cross-domain retrieval (Yu et al., 2014). The core idea is that
features in two independent subspaces can have the same representation in a third subspace.

Given the factorization in Eq. (6), we can re-formulate the multi-task objective (Eq. (1))
for the coupled dictionaries as

o1 t t Nk t 2 2
s, B[ (00) o) o] | 0y
where p balances the model’s or policy’s fit to the task descriptor’s fit.
To solve Eq. (7) online, we approximate £(-) by a second-order Taylor expansion around
a® the ridge minimizer for the single-task learner:

(t) — : (t) ()12
o/ = argmin E(O )+usH9 1z (8)

where fis is a regularization parameter. In reinforcement learning, 7 is the single-task
policy for Z® based on the observed trajectories (Bou Ammar et al., 2014). In supervised
learning, a® is the single-task model parameters for zZ®) (Ruvolo & Eaton, 2013). Note
that these parameters are computed once, when the current task is learned. Then we can
expand L (O(t)) for each task around a® as:

2

r (O(t) _ LS(t)) _r (a(t)) VL (e(t))Z(t):a(t) (a(t)_Ls(t)) I Ha(t)_LS(t)HI‘(t) . (9)
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where V denotes the gradient operator. Note that a(?) is the minimizer of the function
L (B(t)), and hence VL (O(t))a(t>:a<t) = 0. Also, since L (a(t)) is a constant term with
respect to the variables, it can be ignored for the purpose of optimization. As a result, this
procedure leads to a unified and simplified formalism that is independent of the learning
paradigm (i.e., classification, regression, or RL). Approximating Eq. (7) leads to

iy S0 260 o om -2 o0 | 0t <1218

We can merge pairs of terms in Eq. (10) by choosing:

(t) L ro o
W_| @ _ (t) _
8= ymn)  B=lp]a%=[% 0

where 0 is the zero matrix, letting us rewrite Eq. (10) concisely as

mmlgﬂpw_xww
t

2

s |- (1)

KST A®)

This objective can now be solved efficiently online, as a series of per-task update rules given
in Algorithm 1, which we call TaDeLL (Task Descriptors for Lifelong Learning). When a
task arrives, the corresponding sparse vector s® is computed and then the dictionaries are
updated. Note that Eq. (11) can be decoupled into two optimization problems with similar
form on L and D, and then L and D can be updated independently using Equations 3-5,
following a recursive construction based on an eigenvalue decomposition (Yu, 1991). Note
that the objective function in Eq. (10) is binconvex, i.e. it is convex on each variable when
the other variable is assumed fixed, and hence it can also be solved in an offline setting
through alternation on the variables K and S, similar to GO-MTL (Kumar & Daumé,
2012). At each iteration, one variable is fixed and the other variable is optimized in an
offline setting as denoted in Algorithm 2. This gives rise to an offline version of TaDeLL
which we call the TaDeMTL (Task Descriptors for Multitask Learning) algorithm. Note
that TaDeMTL has a nested loop and is computationally demanding; at each iteration,
sparse vectors for all tasks are recomputed and the dictionaries are updated from scratch.
The major benefit is that TaDeMTL can be thought of as an upper-bound for TaDeLL,
which not only can be used to assess the quality of online performance in an asymptotic
regime, but also as a useful algorithm on its own for offline learning scenarios where accuracy
is the priority.

For the sake of clarity, we now explicitly state the differences between using TaDeLL
for RL problems and for classification and regression problems. In an RL setting, at each
timestep TaDeLL receives a new RL task and samples trajectories for the new task. We
use the single-task policy as computed using a twice-differentiable policy gradient method
as a¥. The Hessian TV, calculated around the point a®, is derived according to the
particular policy gradient method being used. Bou Ammar et al. (2014) derive it for the
cases of Episodic REINFORCE and Natural Actor Critic. The reconstructed 8 is then
used as the policy for the task Z®).

In the case of classification and regression, at each time step TaDeLL observes a labeled
training set (X®,y®) for task Z®), where X C R™*4, For classification tasks, y(*) €
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Algorithm 1 TaDeLL (k, A, u)
1: L <~ RandomMatrixg, D < RandomMatrix,, j
2: while some task (2, ¢(m®)) is available do
3: T® « collectData(Z®)
: Compute a¥ and T'® from T®)

4
5 s®) « argmin, H,B(t)—K.sHi‘(t) + pf| sl

6: L « updateL(L,s®, a® T® X)) Eq. 3-5
T: D « updateD(D, s, d)(m(t)),pIdm, A) Eq. 3-5
8 forte{l,...,T} do: 80 « Ls®

9: end while

Algorithm 2 TaDeMTL (k, A, p)

: L + RandomMatrixg ;, D < RandomMatrix,, j
T® <« collectallData(Z2™), ... Z(1)
: for itr = {1,..., Ny} do
fort={1,...,7} do
Compute a® and T'® from T®
s®) « argmin, H,@(t)—KsHil(t) + ullsll;
end for
L « updateL(L,s®, a® T® X)) Eq. 3-5
D « updateD(D, s, ¢(m®), pI; ,\)  Eq. 3-5
end for
. fort e {1,...,T} do: ") « Ls®

—_ =
— O

{+1, —1}™, and for regression tasks, y® € R™. We then set a® to be the parameters of a
single-task model trained via classification or regression (e.g., logistic or linear regression)
on that data set, I'® to be the Hessian of the corresponding loss function around the
single-task solution a®, and the reconstructed 8 is used as the model parameters for the
corresponding classification or regression problem.

4.3 Zero-Shot Transfer Learning

In a lifelong setting, when faced with a new task, the agent’s goal is to learn an effective
model or policy for that task as quickly as possible. At this stage, previous multi-task and
lifelong learners incur a delay before they could produce a decent model/policy, since they
need to acquire data from the new task in order to identify related knowledge and train the
new model/policy via transfer.

Incorporating task descriptors enables our approach to predict a model or policy for the
new task immediately, given only the descriptor. This ability to perform zero-shot transfer
is enabled by the use of coupled dictionary learning, which allows us to observe a data
instance in one feature space (i.e., the task descriptor), and then recover its underlying
latent signal in the other feature space (i.e., the model or policy parameters) using the
dictionaries and sparse coding.
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Algorithm 3 Zero-Shot Transfer to a New Task Z(tnew)

1: Inputs: task descriptor m(trew) | learned bases L and D
- . 2

2: s~(t"€’w) + argmin, ||¢(mrew)) — Ds||; + p|s|l;

3, Gltoen)  Lltnen)

4: Return: fgu,.,) O Tg(tnen)

Given only the descriptor m(trew) for a new task Z(new) we can estimate the embedding
of the task in the latent descriptor space via LASSO on the learned dictionary D:

2
§ltnew) o arg min qu(m(t)) — DSH2 +ulslly - (12)

Since the estimate given by §(f»e») also serves as the coefficients over the latent basis L,
we can immediately predict a model or policy for the new task as: @(tnew) = [§(tnew)  Thig
zero-shot transfer learning procedure is given as Algorithm 3.

5. Theoretical Analysis

This section examines theoretical issues related to incorporating task descriptors into life-
long learning via the coupled dictionaries. We start by proving PAC-learnability of our
framework. We also outline why the inclusion of task features can improve performance of
the learned models/policies and enable zero-shot transfer to new tasks safely. We then prove
the convergence of TaDeLL. A full sample complexity analysis is beyond the scope of this
paper, and, indeed, remains an open problem for zero-shot learning (ZSL) (Romera-Paredes
& Torr, 2015).

5.1 Algorithm PAC-learnability

In this section, we establish the PAC-learnability of our algorithm. The goal is to provide
bounds on the generalization error given the number of the previously learned tasks. This
can help us to compute the number of required learned tasks (i.e., past experience) for the
ZSL algorithm to learn future tasks from their descriptors with high probability. We rely
on the ZSL framework developed by Palatucci et al. (2009). The core idea is that if we can
recover the sparse vector with high accuracy through using the task descriptor, then the
task parameters can also be recovered with high probability. Let P; denote the probability
of predicting the task parameters in the ZSL regime. This probability can be decomposed
into two probabilities:

1. Given a certain confidence parameter § and error parameter €, a dictionary can be
trained by learning T, s previous tasks such that for future tasks E(||3 — Ks||3) < ¢,
where E(-) denotes statistical expectation. We denote this event by K, with probabil-
ity P(KCe) = 1—0. This event denotes that the learned knowledge has been successfully
incorporated into the coupled dictionaries and we can rely on this dictionary for ZSL
to succeed.
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2. Given the event K¢ (i.e., given the dictionaries learned from previous tasks), the
current (future) task sparse vector can be estimated with high probability using task
descriptors, enabling us to use it to compute the task parameters. We denote this
event by S|K..

Since the above two events are independent, the event P; can be expressed as the product
of the above probabilities:

Pt = P(Ke)P(SEUCe) . (13)

Our goal is as follows: given the desired values for the confidence parameter § (i.e. P(K¢) =
1—4) and the error parameter € (i.e. E(||3— Ks||3) < €), we compute the minimum number
of tasks T¢ s that needs to be learned to achieve that level of prediction confidence as well as
P(S:|K.) to compute P;. To establish the error bound, we need to ensure that the coupled
dictionaries are learned to a sufficient quality that achieves this error bound. We can rely
on the following theorem on PAC-learnability of dictionary learning:

Theorem 5.1. (Gribonval, Jenatton, Bach, Kleinsteuber, €& Seibert, 2015) Consider the
dictionary learning problem in Eq. (11), the confidence parameter 6 (P(K¢) =1—0), and
the error parameter € in the standard PAC-learning setting. Then, the number of required
tasks to learn the dictionary T¢ s satisfies the following relation:

EZ3\/ﬁlog(Te75)+\/B—|—10g(2/(5)/8

Te,6 Te,6

B= (d+8dm)k max{1,log(6V8k)} ,

(14)

where Kk is a constant that depends on the loss function that we use to measure the data

fidelity.

Given all parameters, Eq. (14) can be solved for T, ;5. For example, in the asymptotic

0.5
. log(T. . .
regime for learned tasks € <%{55)> , and given €, we can easily compute T 5.

So, according to Theorem 5.17, if we learn at least T s tasks to estimate the coupled
dictionaries, we can achieve the required error rate e. Now we need to determine the
probability of recovering the task parameters in the ZSL regime, given that the learned
dictionary satisfies the error bound, or P(S.|K). For this purpose, the core step in the
proposed algorithm is to compute the joint sparse representation using m and D. It is
also important to note that Eq. (11) has a Bayesian interpretation. We can consider it
a result of a maximum a posteriori (MAP) inference, where the sparse vectors are drawn
from a Laplacian distribution and the coupled dictionaries are Gaussian matrices with i.i.d
elements, i.e. d;; ~ N(0,¢). Hence, Eq. (11) is an optimization problem that results from
Bayesian inference and by solving it, we also learn a MAP estimate of the Gaussian matrix
K =[L,D]". Consequently, D would be a Gaussian matrix which is used to estimate s in
ZSL regime. To compute the probability of recovering the joint sparse recovery s, we can
rely on the following theorem for Gaussian matrices:
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Theorem 5.2. (Negahban, Yu, Wainwright, & Ravikumar, 2009) Consider the linear sys-
tem B = Ks +n with a sparse solution, i.e. ||s|o = k, where K € RY>* s a random
Gaussian matriz and ||n|js < e, i.e. E(||B8 — Ks||3) < €. Then the unique solution of this
system can be recovered by solving an £1-minimization with probability of (1 —e%) as far as
k< c’dlog(g), where ¢ is a constant that depends on the loss function and noise statistics,
and & is a constant parameter.

Theorem 5.2 suggests that in our framework, given the learned coupled dictionaries,
we can recover the sparse vector with probability P(S¢|K.) = (1 — el@t@m)€) given that
kE<d(dm+aq) log(ﬁ) for a task. This suggests that adding the task descriptors increases
the probability of recovering the task parameters from (1 —e%) to (1 —e(¢+4m)¢). Moreover,
we can use Eq. (12) to recover the sparse representation in the ZSL regime and subsequently
unseen attributes with probability P(S|KC.) = (1—e%¢), as long as the corresponding sparse
vector satisfies k < dd,, log(ﬁ) to guarantee that the recovered sparse vector is accurate
enough to recover the task parameters. This theorem also suggests that the developed
framework can only work if a suitable sparsifying dictionary can be learned and we have
access to rich task descriptors. Therefore, given desired error 1 — ¢ and error parameter e,
the probability event of predicting task parameters in ZSL regime can be computed as:

Pr=(1-6)(1-e) (15)

which concludes the PAC-learnability analysis of our algorithm. Given the learnability
of our approach, the next question is whether the proposed dictionary learning algorithm
computationally converges to a suitable solution.

5.2 Theoretical Convergence of TaDeLL

In this section, we prove the convergence of TaDeLL, showing that the learned dictionaries
become increasingly stable as it learns more tasks. We build upon the theoretical results
from Bou Ammar et al. (2014) and Ruvolo & Eaton (2013), demonstrating that these
results apply to coupled dictionary learning with task descriptors, and use them to prove
convergence.

Let gr(L) represent the sparse-coded approximation to the MTL objective, which can
be defined as:

T

R 1

gr(L) = 2 3l = Ls® 2 + sV + AL} -
t=1

This equation can be viewed as the cost for L when the sparse coefficients are kept constant.
Let L7 be the version of the dictionary L obtained after observing T tasks. Given these
definitions, we consider the following theorem:

Theorem 5.3. (Ruvolo & FEaton, 2013)
1. The trained dictionary L is stabilized over learning with rate: Ly — Ly = O(%)
2. gr(Lt) converges almost surely.

3. gr(Lt) — gr(Lr—-1) converges almost surely to zero.
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This theorem requires two conditions:

1. The tuples T'®, a® are drawn ii.d from a distribution with compact support to
bound the norms of L and s®.

2. For all £, let L, be the subset of the dictionary L;, where only columns corresponding
to non-zero element of s are included. Then, all eigenvalues of the matrix LTT® L,
need to be strictly positive.

Bou Ammar et al. (2014) show that both of these conditions are met for the lifelong
learning framework given in Eqgs. 2-5. When we incorporate the task descriptors into this
framework, we alter a® — 8, L — K, and T® — A®_ Note both 8 and A® are
formed by adding deterministic entries and thus can be considered to be drawn i.i.d (because
'™ and o are assumed to be drawn i.i.d). Therefore, incorporating task descriptors does
not violate Condition 1.

To show that Condition 2 holds, if we analogously form K., then the eigenvalues of
K, are strictly positive because they are either eigenvalues of L (which are strictly positive
according to Bou Ammar et al., 2014) or the regularizing parameter p by definition. Thus,
both conditions are met and convergence follows directly from Theorem 5.3.

5.3 Computational Complexity

In this section, we analyze the computational complexity of TaDeLL. Each update be-
gins with updating a¥) and T'® at a cost of O(&(d,n;)), where £(-) depends on the base
PG learner for RL and the based supervised learning method for regression/classification
and n; is the number of trajectories for RL and the number of data points for regres-
sion/classification, obtained for task Z® The cost of updating L € R*>* and s ¢ RF
alone is O(k2d®) (Ruvolo & Eaton, 2013), and so the cost of updating K € R(d+dm)xk
through coupled dictionary learning is O(k?(d + d,,)3). This yields an overall per-update
cost of O(k?(d + dy,)3 + £(d,ny)), which is independent of 7.

Next, we empirically demonstrate the benefits of TaDeLL on a variety of different learn-
ing problems.

6. Evaluation on Reinforcement Learning Domains

We applied TaDeLL to a series of RL problems, where the challenge is to learn a collection
of different, related systems. For these systems, we use three benchmark control problems
and an application to quadrotor stabilization.

6.1 Benchmark Dynamical Systems

Spring Mass Damper (SM) The SM system is commonly used for its ability to represent
oscillations. It is described by three parameters: the spring constant, mass, and damping
constant. The system’s state is given by the position and velocity of the mass. The controller
applies a force to the mass, attempting to stabilize it to a given position.

Cart Pole (CP) The CP system involves balancing an inverted pendulum by applying a
force to the cart. The system is characterized by the cart and pole masses, pole length, and
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Figure 5: Performance of multi-task (solid lines), lifelong (dashed), and single-task learning
(dotted) on benchmark dynamical systems. (Best viewed in color.)

a damping parameter. The states are the position and velocity of the cart and the angle
and rotational velocity of the pole.

Bicycle (BK) This system focuses on keeping a bicycle balanced upright as it rolls
along a horizontal plane at constant velocity (see subsection 6.4.2 in Busoniu, 2010). The
system is characterized by the bicycle mass, x- and z-coordinates of the center of mass, and
parameters relating to the shape of the bike (the wheelbase, trail, and head angle). The
state is the bike’s tilt and its derivative; the actions are the torque applied to the handlebar
and its derivative.

6.2 Methodology

In each domain we generated 40 tasks, each with different dynamics, by varying the system
parameters. To this end, we set a maximum value and a minimum value for each task
parameter and then generated the systems by uniformly drawing values for the parameters
from each parameter range. The reward for each task was taken to be the distance between
the current state and the goal. For lifelong learning, tasks were encountered consecutively
with repetition, and learning proceeded until each task had been seen at least once. In
order to cancel out the effect of task order, we ran each experiment 100 times and reported
the average performance and standard deviation error. In each experiment, we used the
same random task order between methods to ensure fair comparison. The learners sampled
trajectories of 100 steps, and the learning session during each task presentation was limited
to 30 iterations. For MTL, all tasks were presented simultaneously. We used Natural Actor
Critic (Peters & Schaal, 2008) as the base learner for the benchmark systems and episodic
REINFORCE (Williams, 1992) for quadrotor control. We chose k and the regularization
parameters independently for each domain and the GO-MTL, ELLA, and PG-ELLA meth-
ods, selecting parameter values that optimize the combined performance of all methods on
20 held-out tasks by using a grid search over ranges {10~ | n =0, ..., 3} for regularization
parameters and {1,...,10} for k, respectively. We set p = mean(diag(p())) to balance the
fit to the descriptors and the policies. We measured learning curves based on the final
policies for each of the 40 tasks. The system parameters for each task were used as the task
descriptors ¢(m); we also tried several non-linear transformations as ¢(-), but found the
linear features worked well.
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Figure 7: Learning performance of using the zero-shot policies as warm start initializations
for PG. The performance of the single-task PG learner is included for comparison. (Best
viewed in color.)

6.3 Results on Benchmark Systems

Figure 5 compares our TaDeLL approach for lifelong learning with task descriptors to

1. PG-ELLA (Bou Ammar et al., 2014), which does not use task features,

2. GO-MTL (Kumar & Daumé, 2012), the MTL optimization of Eq. (1), and

3. single-task learning using PG.

For comparison, we also performed an offline MTL optimization of Eq. (7) via alternating
optimization, and plot the results as TaDeMTL. The shaded regions on the plots denote
standard error bars.

We see that task descriptors improve lifelong learning on every system, even driving
performance to a level that is unachievable from training the policies from experience alone
via GO-MTL in the SM and BK domains. The difference between TaDeLL, and TaDeMTL
is also negligible for all domains except CP, demonstrating the effectiveness of our online
optimization.

To measure zero-shot performance, we generated an additional 40 tasks for each do-
main, averaging results over these new tasks. We compared our work mainly against
Sinapov et al. (2015)’s method by using task descriptors as “task features” in that work. To
make Sinapov et al. (2015)’s method applicable in a lifelong learning setting, we used their
method to transfer knowledge from the tasks that has been learned before time t at each
time step using a version of their method that uses linear regression to select the source
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task. In order to use this method in the lifelong learning setting, we need a memory buffer
to save the value functions for the previously learned tasks. However, learning can still
occur in an online setting by transferring knowledge from all previously learned tasks by
using the suitable value function as the initial policy. Figure 6 shows that task descrip-
tors are effective for zero-shot transfer to new tasks. We see that our approach improves
the initial “jumpstart” performance (Taylor & Stone, 2009) on new tasks, outperforming
Sinapov et al. (2015)’s method and single-task PG, which was allowed to train on the task.
We attribute the especially poor performance of Sinapov et al. on CP to the fact that the
CP policies differ substantially; in domains where the source policies are vastly different
from the target policies, Sinapov et al.’s algorithm does not have an appropriate source to
transfer. Their approach is also much more computationally expensive (quadratic in the
number of tasks) than our approach (linear in the number of tasks), as shown in Figure 14;
details of the runtime experiments are included in Section 8.2. Figure 7 shows that the
zero-shot policies can be used effectively as a warm start initialization for a PG learner,
which is then allowed to improve the policy.

6.4 Application to Quadrotor Control

We also applied our approach to the more challenging domain of quadrotor control, focusing
on zero-shot transfer to new stability tasks. To ensure realistic dynamics, we use the model
of Bouabdallah and Siegwart (2005), which has been verified on physical systems. The
quadrotors are characterized by three inertial constants and the arm length, with their
state consisting of roll/pitch/yaw and their derivatives.

Figure 8 shows the results of our application, demonstrating that TaDeLL can predict
a controller for new quadrotors through zero-shot learning that has equivalent accuracy to
PG, which had to train on the system. As with the benchmarks, TaDeLL is effective for
warm start learning with PG.
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Algorithm ‘ Lifelong Learning ‘ Zero-Shot Prediction

TaDeLL 0.131 + 0.004 0.159 £ 0.005
ELLA 0.152 £ 0.005 N/A
STL 0.730 £ 0.007 N/A

Table 1: Regression performance on robot end effector prediction in both lifelong learning
and zero-shot settings. Performance is measured in mean-squared-error.

7. Evaluation on Supervised Learning Domains

In this section, we evaluate TaDeLL on regression and classification domains, considering
the problem of predicting the real-valued location of a robot’s end effector and two synthetic
classification tasks.

7.1 Predicting the Location of a Robot End Effector

In this section, we evaluate TaDeLL on a regression domain. We look at the problem of
predicting the real-valued position of the end effector of an 8-DOF robotic arm in 3D space,
given the angles of the robot joints. Different robots have different link lengths, offsets, and
twists, and we use these parameters as the description of the task.

We consider 200 different robot arms and use 10 points as training data per robot. The
robot arms are simulated using the Robot Toolbox (Corke, 2011). The learned dictionaries
are then used to predict models for 200 different unseen robots. We measure performance
as the mean square error of the prediction against the true location of the end effector.

Table 1 shows that both TaDeLL and ELLA outperform the single-task learner, with
TaDeLL slightly outperforming ELLA as the result of transfer learning. Moreover, this same
improvement holds for zero-shot prediction on new robot arms. To compare the performance
of TaDeLL for zero-shot prediction, we computed the single-task learner performance on
the new robot using the data, which turned out to be 0.70+0.05. We use STL as a baseline
to measure zero-shot prediction quality using our method. STL performance in Table 1
demonstrates that TaDeLL. outperforms STL on new tasks, despite not using data.

To better understand the relationship of dictionary size to performance, we investigated
how learning performance varies with the number of bases k in the dictionary. Figure 10
shows this relationship for the lifelong learning and zero-shot prediction settings. We ob-
serve that TaDeLL performs better with a larger dictionary than ELLA. We hypothesize
that this difference results from encoding the task descriptions. When the dimension of the
input vector increases, a bigger dictionary can more easily encode the input as a represen-
tation vector. To test this hypothesis, we reduced the number of descriptors in an ablative
experiment. Recall that the task has 24 descriptors consisting of a twist, link offset, and
link length for each joint. We reduced the number of descriptors by alternatingly removing
the subsets of features corresponding to the twist, offset, and length. Figure 11 shows the
performance of this ablative experiment, revealing that the need for the increased number
of bases is particularly related to learning twist.
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Figure 10: Performance of TaDeLL and ELLA as the dictionary size k is varied for lifelong
learning and zero-shot learning. Performance of the single task learner is provided for
comparison. In the lifelong learning setting, both TaDeLL and ELLA demonstrate positive
transfer that converges to the performance of the single-task learner as k is increased. We
see that, for this problem, TaDeLL prefers a slightly larger value of k.

7.2 Experiments on Synthetic Classification Domains

To better understand the connections between TaDeLL’s performance and the structure of
the tasks, we evaluated TaDeLL on two synthetic classification domains. The use of syn-
thetic domains allows us to tightly control the task generation process and the relationship
between the target model and the descriptor.

The first synthetic domain consists of binary-labeled instances drawn from R®, and each
sample x belongs to the positive class iff £Tm > 0. Each task has a different parameter
vector m drawn from the uniform distribution m € [—0.5,0.5]; these vectors m are also
used as the task descriptors. Note that by sampling m from the uniform distribution, this
domain violates the assumptions of ELLA that the samples are drawn from a common set
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the dictionary size k, as we vary the subset of descriptors used. The feature consist of
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subsets of the features {t, 1, 0,tl,to,lo,tlo} and we see that the need for a larger k is directly
related to learning the twist. Subsets that contain twist descriptors are shown in magenta.
Trials that do not include twist descriptors are shown in gray. Performance of ELLA and
the single-task learner (STL) are provided for comparison. (Best viewed in color.)

Algorithm ‘ Lifelong Learning | Zero-Shot Prediction

TaDeLL 0.926 + 0.004 0.930 £ 0.002
ELLA 0.814 + 0.008 N/A
STL 0.755 £ 0.009 N/A

Table 2: Classification accuracy on Synthetic Domain 1.

of latent features. Each task’s data consists of 10 training samples, and we generated 100
tasks to evaluate lifelong learning.

Table 2 shows the performance on this Synthetic Domain 1. We see that the inclusion
of meaningful task descriptors enables TaDeLL to learn a better dictionary than ELLA in
a lifelong learning setting. We also generated an additional 100 unseen tasks to evaluate
zero-shot prediction, which is similarly successful.

For the second synthetic domain, we generated L and D matrices, and then generated
a random sparse vector s(*) for each task. The true task model is then given by a logistic
regression classifier with () = Ls(). This generation process directly follows the assump-
tions of ELLA and TaDeLL, where D is generated independently. We similarly generate
100 tasks for lifelong learning and another 100 unseen tasks for zero-shot prediction, and use
the true task models to label 10 training points per task. In this experiment, we empirically
demonstrate that TaDeLL works in the case of this assumption (Table 3) in both lifelong
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Algorithm ‘ Lifelong Learning ‘ Zero-Shot Prediction

TaDeLL 0.889 + 0.006 0.87 % 0.01
ELLA 0.821 =+ 0.007 N/A
STL 0.752 =+ 0.009 N/A

Table 3: Classification accuracy on Synthetic Domain 2.
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Figure 12: Performance versus sample complexity on Synthetic Domain 2.

learning and zero-shot prediction settings. For comparison, the baseline STL performance
using data is equal to 0.762 £ 0.008 and 0.751 £ 0.009, respectively for these two settings.

We also use this domain to investigate performance versus sample complexity, as we
generated varying amounts of training data per task. In Figure 12a, we see that TaDeLL is
able to greatly improve performance given only a small number of samples, and as expected,
its benefit becomes less dramatic as the single-task learner receives sufficient samples. Fig-
ure 12b shows similar behavior in the zero-shot case.

8. Additional Experiments

Having shown how TaDeLL can improve learning in a variety of settings, we now turn our
attention to understanding other aspects of the algorithm. Specifically, we look at the issue
of task descriptor selection and partial information, runtime comparisons, and the effect of
varying the number of tasks used to train the dictionaries.

8.1 Choice of Task Descriptor Features

For RL, we used the system parameters as the task description, and for the robot end
effector prediction, we used the dimensions of the robot. While in these cases the choice of
task descriptor was straightforward, this might not always be the case. It is unclear exactly
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Figure 13: Performance using various subsets of the SM system parameters (mass M,
damping constant D, and spring constant K) and Robot system parameters (twist 7', link
length L, and offset O) as the task descriptors.

how the choice of task descriptor features might affect the resulting performance. In other
scenarios, we may have only partial knowledge of the system parameters.

To address these questions, we conducted additional experiments on the Spring-Mass
(SM) system and robot end effector problem, using various subsets of the task descriptor
features when learning the coupled dictionaries. Figure 13a shows how the number and
selection of parameters affects performance on the SM domain. We evaluated jumpstart
performance when using all possible subsets of the system parameters as the task descriptor
features. These subsets of the SM system parameters (mass M, damping constant D, and
spring constant K) are shown along the horizontal axis for the task descriptors. Overall,
the results show that the learner performs better when using larger subsets of the system
parameters as the task descriptors.

The robot task has 24 descriptors consisting of a twist, link offset, and link length for
each joint. We group the subset of features describing twist, offset, and length together and
examine removing different subsets. Figure 13b show that twist is more important than the
other features and again the inclusion of more features improves performance.

8.2 Computational Efficiency

We compared the average per-task runtime of our approach to that of Sinapov et al. (2015),
the most closely related method to our approach. Since Sinapov et al.’s method requires
training transferability predictors between all pairs of tasks, its total runtime grows quadrat-
ically with the number of tasks. In comparison, our online algorithm is highly efficient. As
shown in Section 5.3, the per-update cost of TaDeLL is O (k*(d +m)® + £(d,n¢)). Note
that this per-update cost is independent of the number of tasks T', giving TaDeLL a total
runtime that scales linearly in the number of tasks.

Figure 14 shows the per-task runtime for each algorithm based on a set of 40 tasks, as
evaluated on an Intel Core 17-4700HQ CPU. TaDeLL samples tasks randomly with replace-
ment and terminates once every task has been seen. For Sinapov et al., we used ten PG
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Figure 14: Runtime comparison.

iterations for calculating the warm start, ensuring fair comparison between the methods.
These results show a substantial reduction in computational time for TaDeLL: two orders
of magnitude over the 40 tasks.

8.3 Performance for Various Numbers of Tasks

Although we have shown in Section 5.2 that the learned dictionaries become more stable
as the system learns more tasks, we cannot currently guarantee that this will improve
the performance of zero-shot transfer. To evaluate the effect of the number of tasks on
zero-shot performance, we conducted an additional set of experiments on both the Spring-
Mass domain and the robot end effector prediction domain. Our results, shown in Figure
15, reveal that zero-shot performance does indeed improve as the dictionaries are trained
over more tasks. This improvement is most stable and rapid in an MTL setting, since
the optimization over all dictionaries and task policies is run to convergence, but TaDeLL
also shows clear improvement in zero-shot performance as T},,; increases. Since zero-shot
transfer involves only the learned coupled dictionaries, we can conclude that the quality of
these dictionaries for zero-shot transfer improves as the system learns more tasks.

9. Conclusion

This article demonstrated that incorporating high-level task descriptors into lifelong learn-
ing both improves learning performance and also enables zero-shot transfer to new tasks.
The mechanism of using a coupled dictionary to connect the task descriptors with the
learned models or policies is relatively straightforward, yet highly effective in practice.
Most critically, it provides a fast and simple mechanism to predict the model or policy for a
new task via zero-shot learning, given only its high-level task descriptor. This approach is
general and can handle multiple learning paradigms, including classification, regression, and
RL tasks. Experiments demonstrate that our approach outperforms other lifelong learning
methods and requires substantially less computational time than competing methods.

The ability to rapidly bootstrap models (or policies) for new tasks is critical to the
development of lifelong learning systems that will be deployed for extended periods in real

698



UsSING TASK DESCRIPTIONS IN LIFELONG LEARNING

035
0.30
Ee] I | 0.25 -8 TaDelLL Zero-Shot
= - Z’) : -B-TaDelLL
5 &-TaDel L 3
abel
&3 | 020
4.0} ] 0.15 il
a
-4.5 : : : : : : 0.10 S — s
5 10 15 20 25 30 35 25 50 75 100 125 150 175 200
Tasks Tasks
(a) Spring-Mass RL (b) Robot End Effector Prediction

Figure 15: Zero-shot performance as a function of the number of tasks used to train the
dictionary. As more tasks are used, the performance of zero-shot transfer improves.

environments and tasked with handling a variety of tasks. High-level descriptions provide
an effective way for humans to communicate and to instruct one another. The description
need not come from another agent; humans often read instructions and then complete a
novel task quite effectively. Enabling lifelong learning systems to similarly take advantage of
these high-level descriptions provides an effective step toward their practical effectiveness.
As shown in our experiments with warm-start learning from the zero-shot predicted policy,
these task descriptors can also be combined with training data on the new task in a hybrid
approach. Also, while our framework is designed to work for tasks that are drawn from a
single domain, an interesting potential direction for the future is to extend this work for
cross-domain tasks, e.g. balancing tasks of bicycle and spring-mass systems together.

Despite TaDeLLl’s strong performance, defining what constitutes an effective task de-
scriptor for a group of related tasks remains an open question. In our framework, task
descriptors are given, typically as fundamental descriptions of the system. The represen-
tation we use for the task descriptors, a feature vector, is also relatively simple. One
interesting direction for future work is to develop methods for integrating more complex
task descriptors into MTL or lifelong learning. These more sophisticated mechanism could
include natural language descriptions, step-by-step instructions, or logical relationships.
Such an advance would likely involve moving beyond the linear framework used in TaDeLL,
but would constitute an important step toward enabling more practical use of high-level
task descriptors in lifelong learning.
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