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Purpose of review
Despite the impressive results of recent artificial intelligence (AI) applications to general ophthalmol-
ogy, comparatively less progress has been made toward solving problems in pediatric ophthalmology
using similar techniques. This article discusses the unique needs of pediatric ophthalmology patients
and how AI techniques can address these challenges, surveys recent applications of AI to pediatric
ophthalmology, and discusses future directions in the field.

Recent findings
The most significant advances involve the automated detection of retinopathy of prematurity (ROP),
yielding results that rival experts. Machine learning (ML) has also been successfully applied to the clas-
sification of pediatric cataracts, prediction of post-operative complications following cataract surgery,
detection of strabismus and refractive error, prediction of future high myopia, and diagnosis of read-
ing disability via eye tracking. In addition, ML techniques have been used for the study of visual
development, vessel segmentation in pediatric fundus images, and ophthalmic image synthesis.

Summary
AI applications could significantly benefit clinical care for pediatric ophthalmology patients by opti-
mizing disease detection and grading, broadening access to care, furthering scientific discovery, and
improving clinical efficiency. These methods need to match or surpass physician performance in clinical
trials before deployment with patients. Due to widespread use of closed-access data sets and software
implementations, it is difficult to directly compare the performance of these approaches, and repro-
ducibility is poor. Open-access data sets and software implementations could alleviate these issues,
and encourage further AI applications to pediatric ophthalmology.
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INTRODUCTION

The increased availability of ophthalmic data, cou-
pled with advances in artificial intelligence (AI) and
machine learning (ML), offer the potential to pos-
itively transform clinical practice. Recent applica-
tions of ML techniques to general ophthalmology
have demonstrated the potential for automated dis-
ease diagnosis [1], automated prescreening of primary
care patients for specialist referral [2], and scientific
discovery [3], among others. Acting as a complement
to ophthalmologists, these and future applications
have the potential to optimize patient care, reduce
costs and barriers to access, limit unnecessary refer-
rals, permit objective monitoring, and enable early
disease detection.

To date, most AI applications have focused on
adult ophthalmic diseases, as discussed by several re-
views [4–11]. Comparatively little progress has been
made in applying AI and ML techniques to pedi-

atric ophthalmology, despite the pressing need. In
the United States, there is a shortage of pediatric
ophthalmologists [12] and fellowship positions con-
tinue to go unfilled [13]. Globally, this shortage is
even more pronounced and devastating—for exam-
ple, retinopathy of prematurity (ROP), now in its
third epidemic, has resulted in irreversible blindness
in over 50,000 premature infants due to worldwide
shortages of trained specialists and other barriers to
adequate care [14, 15].
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KEY POINTS

• Pediatric ophthalmology has unique aspects that
must be considered when designing AI applications,
including disease prevalence, cause, presentation, di-
agnosis, and treatment, which differ from adults.

• Most recent AI applications focus on ROP or congen-
ital cataracts, although many other areas of pediatric
ophthalmology could benefit from AI.

• Reproducibility and comparability between current
AI approaches is poor, and would be improved with
open-access data sets and software implementations.

• Evaluation on experimental data sets should be aug-
mented with clinical validation prior to deployment
with patients.

UNIQUE CONSIDERATIONS FOR
PEDIATRIC OPHTHALMOLOGY

Ophthalmic disease prevalence, cause, presentation,
diagnosis, and treatment all differ between adult and
pediatric patients—dissimilarities that are important
to consider when developing AI applications.

Common diseases in children include amblyopia,
strabismus, nasolacrimal duct obstruction (NLDO),
retinopathy of prematurity (ROP), and congenital
eye diseases. The adult population, by contrast, is
affected by cataracts, dry eye, macular degeneration,
diabetic retinopathy, and glaucoma. For diseases that
occur in both children and adults, the presentation,
cause, and treatment often differ. Glaucoma is a good
example, as the cause and presentation in congeni-
tal glaucoma patients are both unlike those in adult-
onset glaucoma patients. Optimal management of
glaucoma, including surgery, also differs for these two
populations.

Infants and children have distinct characteristics
from adults that affect their ophthalmology visits.
Given their developmental capabilities, there is gen-
erally less information gleaned from a single eye exam
of a child, so several visits may be required to accu-
rately diagnose or characterize that child’s disease.
There is also a stronger reliance on the objective
exam because of the infant’s or child’s inability to
effectively communicate. Children’s short attention
spans and unpredictable behavior often necessitate
a quick exam that allows the physician to gain the
child’s trust while keeping him or her at ease. De-
spite this, there are portions of the clinic visit that
take longer, such as restraining a child to adminis-
ter dilating drops and then waiting for that child to

be fully cyclopleged. Ancillary testing that requires
patient cooperation may not be possible in an awake
child, and eye exams under anesthesia are not un-
common. Similarly, children are typically placed un-
der general anesthesia for eye procedures, whereas
adults may require only topical or local anesthesia.
Techniques for more accurate diagnosis and disease
prediction could help reduce the high cost and risk of
repeated exams and surgeries under anesthesia.

Other distinguishing factors pertain to the pedi-
atric patient’s growth and development. In most chil-
dren, visual development occurs from birth until age
7 or 8; eye diseases affecting children during this pe-
riod can cause permanent vision loss due to ambly-
opia or reduced visual abilities. Additionally, during
development, significant ocular growth occurs, caus-
ing changes in refractive error that complicate surgi-
cal planning for congenital cataract patients.

Retinal imaging, too, differs for pediatric and
adult patients. Factors such as children’s lack of fix-
ation and small pupils can create blur, partial occlu-
sion, and illumination defects, all of which degrade
image quality. For infants being screened for ROP,
their fundus images are more variable and have more
visible choroidal vessels, making classification com-
paratively difficult [16].

CLINICAL APPLICATIONS OF AI

This section surveys recent AI applications to pedi-
atric ophthalmology, organized by disease (see Ta-
ble 1). The approaches discussed in this survey
would more precisely be called applications of ML—
the largest subfield of AI concerned with learning
models from data. We have provided a brief overview
of AI and ML and their relationship in supplemental
material, but the interested reader is encouraged to
consult a more extensive tutorial on these topics [e.g.
5]. To limit its scope, this review focuses on appli-
cations with a goal of having the AI aspects directly
impact clinical practice; we omit studies where ML
was used primarily for statistical analysis.

Retinopathy of Prematurity (ROP)

The most significant AI advances in pediatric oph-
thalmology apply to ROP, a leading cause of child-
hood blindness worldwide [14, 15, 40]. In addition
to the shortage of trained providers [14, 15, 41], ROP
exams are difficult, clinical impressions are subjective
and vary among examiners [23, 42, 43], and disease
management is time-intensive, requiring several serial
exams. AI applications have focused on detecting the
presence and grading of ROP or plus disease from
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Table 1. Summary of ML-based techniques for pediatric ophthalmic disease detection and diagnosis

Approach
(Approx. devel. year)

Predicted category Sensitivity
(%)

Specificity
(%)

AUROC Accuracy
(%)

Method summary

Retinopathy of prematurity (ROP)

DeepROP [17��]
(2018)

Experimental data set
Presence of ROP
Severe (vs Mild) ROP

Clinical test
Presence of ROP
Severe (vs Mild) ROP

96.64
88.46

84.91
93.33

99.33
92.31

96.90
73.63

0.995
0.951

–
–

97.99
90.38

95.55
76.42

Cloud-based platform. Set of
fundus images → two CNNs
(modified Inception-BN nets
pretrained on ImageNet): one
predicts presence, and the
other severity

i-ROP-DL [18��]
(2018)

Clinically significant ROP
Type 1 ROP
Type 2 ROP
Pre-plus disease

–
94

–
–

–
79

–
–

0.914
0.960
0.867
0.910

–
–
–
–

Applies a linear formula to
the probabilities output by
i-ROP-DL (see below) to yield
a severity score on a 1–9 scale

MiGraph [19]
(2016)

Presence of ROP 99.4 95.0 0.98 97.5 SIFT features from image
patches → multiple instance
learning graph-kernel SVM

VesselMap [20]
(2007)

Severe ROP
From mean arteriole diameter
From mean venule diameter

–
–

–
–

0.93
0.87

–
–

Semiautomated tool that uses
classic image analysis to mea-
sure vessel diameter

ROP: Plus or pre-plus disease

i-ROP-DL [21�]
(2018)

Plus disease [18��]
Pre-plus disease [18��]
Plus disease [21�]
Pre-plus or worse disease [21�]

–
–

93
100

–
–

94
94

0.989
0.910
0.98
0.94

–
–

91.0
–

CNN-output (U-net) ves-
sel segmentations → CNN
(InceptionV1 pretrained on
ImageNet) to classify as
normal/pre-plus/plus

CNN + Bayes [16]
(2016)

Plus disease (per image)
(per exam)

82.5
95.4

98.3
94.7

–
–

91.8
93.6

CNN (InceptionV1 pretrained
on ImageNet) adapted to out-
put the Bayesian posterior

i-ROP [22]
(2015)

Plus disease
Pre-plus or worse disease

93
97

–
–

–
–

95
–

SVM with a kernel derived
from a GMM of tortuosity and
dilation features from manually
segmented images

Näıve Bayes [23]
(2015)

Plus/pre-plus/none (SVM-RFE)
Plus disease (ReliefF)

–
–

–
–

–
–

79.41
88.24

Näıve Bayes with SVM-RFE or
ReliefF vessel feature selection

CAIAR [24]
(2008)

Plus (from venule width)
Plus (from arteriole tortuosity)

–
–

–
–

0.909
0.920

–
–

Generative vessel model fit to
a multi-scale representation of
the retinal image

ROPtool [26]
(2007)

Plus tortuosity (eye)
(quadrant)

Pre-plus tortuosity (quadrant)

95
85
89

78
77
82

–
0.885
0.875

87.50
80.63

–

User-guided tool that traces
centerlines of retinal vessels to
measure tortuosity

RISA [27]
(2005)

Plus disease (from arteriole
and venule curvature and
tortuosity, venule diameter)

93.8 93.8 0.967 – Logistic regression on geomet-
ric features computed for each
segment of the vascular tree

IVAN [24]
(2002)

Plus (from venule width) – – 0.909 – Measures vessel width via clas-
sic image analysis

Abbreviations: AUROC – area under the receiver operating characteristic curve; GMM – Gaussian mixture model

digital fundus photos. Beyond the benefits of auto-
mated ROP screening and objective assessment, dig-
ital retinal imaging may cause less pain and stress for
infants undergoing ROP screening compared to indi-
rect ophthalmoscopy [44] and enable neonatology-led
screening programs [45].

Early computational approaches to detecting plus
disease from fundus images focused on vessel tor-
tuosity. One early attempt to objectively quantify
tortuosity used the spatial frequency of manual ves-
sel tracings [46]. Since then, there have been sev-
eral tools developed to determine vessel tortuosity

and width via classic image analysis, including Vessel
Finder [47], VesselMap [20], ROPtool [26], RISA [27,
48, 49], CAIAR [24, 25], and IVAN [24, 50], all of
which require at least one manual step from the user.
Recent work suggests other potential vessel measure-
ments correlated with plus disease, such as a decrease
in the openness of the major temporal arcade an-
gle [51]. Once extracted, retinal vessel measurements
have been used as features for various predictive mod-
els of plus disease, including linear models such as lo-
gistic regression [27] and näıve Bayes [23], as well as
non-linear models trained by support vector machines
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Table 1. (Continued)

Approach
(Approx. devel. year)

Predicted category Sensitivity
(%)

Specificity
(%)

AUROC Accuracy
(%)

Method summary

Pediatric cataracts

Post-operative
complication
prediction [28]
(2019)

CLR and/or High IOP (RF)
(NB)

Central lens regrowth (RF)
(NB)

High IOP (RF)
(NB)

62.5
73.1
66.7
61.1
63.6
54.5

76.9
66.7
72.2
68.8
71.8
69.2

0.722
0.719
0.743
0.735
0.735
0.719

70.0
70.0
72.0
66.0
70.0
66.0

Demographic and cataract
severity evaluation data →
class-balancing using SMOTE
→ random forest (RF) and
näıve Bayes (NB) classifiers

CS-ResCNN [29]
(2017)

Severe posterior
capsular opacification 89.66 93.19 0.9711 92.24

Slit-lamp images → automat-
ically crop to lens → CNN
(ResNet pretrained on Ima-
geNet) with cost-sensitive loss

CC-Cruiser [30]
(2016)

Multi-center trial
Cataract presence [31�]
Opacity area grading [31�]
Density grading [31�]
Location grading [31�]
Treatment [31�]

Experimental data set
Cataract presence [32�]
Area grading [32�]
Density grading [32�]
Location grading [32�]

89.7
91.3
85.3
84.2
86.7

96.83
90.75
93.94
93.08

86.4
88.9
67.9
50.0
44.4

97.28
86.63
91.05
82.70

–
–
–
–
–

0.9686
0.9892
0.9743
0.9591

87.4
90.6
80.2
77.1
70.8

97.07
89.02
92.68
89.28

Cloud-based platform. Slit-
lamp images → automatically
crop to lens → three CNNs
(AlexNets) to predict: cataract
presence, severity (area, den-
sity, location), and treatment
(surgery or follow-up)

Strabismus

RF-CNN [33��]
(2018)

Strabismus presence 93.30 96.17 0.9865 93.89 Two-stage CNN: eye regions
segmented from face images
via R-FCN → 11-layer CNN

SVM + VGG-S [34]
(2017)

Strabismus presence 94.1 96.0 – 95.2 Eye-tracking gaze maps →
CNN (VGG-S pretrained on
ImageNet) features → SVM

Pediatric Vision
Screener [35]
(2017)

Central vs. paracentral fixation
Experimental evaluation
Clinical evaluation

100.0
98.51

100.0
100.0

–
–

–
–

Signals from retinal birefrin-
gence scanning → two-layer
feed-forward neural net

Vision screening

AVVDA [36]
(2008)

Strabismus and/or RE
Strabismus
High refractive error (RE)

–
82
90

–
–
–

–
–
–

76.9
–
–

Features from Brückner red re-
flex imaging and eccentric fixa-
tion video → C4.5 decision tree

Reading disability (RD)

SVM-RFE [37]
(2016)

High risk for RD, ages 8–9 95.5 95.7 – 95.6 SVM with feature selection
trained on eye-tracking data

Polynomial SVM [38]
(2015)

RD in adults, children ages 11+ – – – 80.18 SVM trained on eye-tracking
and demographic features

Approach
(Approx. devel. year)

Predicted category AUROC
(at 3 years)

AUROC
(at 5 years)

AUROC
(at 8 years)

Method summary

Refractive error (RE)

Random forest [39�]
(2018)

Internal evaluation
High myopia onset

Clinical test
High myopia onset
High myopia at age 18

0.903-0.986

0.874-0.976
0.940-0.985

0.875-0.901

0.847-0.921
0.856-0.901

0.852-0.888

0.802-0.886
0.801-0.837

Age, spherical equivalent (SE),
and progression rate of SE be-
tween two visits was used by a
random forest for prediction

(SVMs) [22]. For predicting ROP, Rani et al. [19] also
employ an SVM, but instead use SIFT [52] features
extracted from retinal image patches and frame the
problem in a multiple instance learning [53] setting.

Recent approaches to ROP and plus disease de-
tection are mostly based on convolutional neural net-
works (CNN), which take fundus images as input
and do not require manual annotation. These sys-

tems, which include Worrall et al. [16], i-ROP-DL
[18��, 21�], and DeepROP [17��], demonstrate agree-
ment with expert opinion [16, 18��] and better disease
detection than some experts [17��, 21�].

Like many ML methods, these systems can pro-
vide a confidence score in their predictions. i-ROP-
DL exploits this notion directly by combining the pre-
diction probabilities via a linear formula to compute
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Table 2. Pediatric ROP data sets used in deep learning

Approach Data set Patients Images Labels

DeepROP
[17��]

Chengdu 1,273 20,795 normal, mild ROP,
severe ROP

i-ROP-DL
[21�]

i-ROP 898 5,511 normal, plus,
pre-plus

CNN + Bayes
[16]

Canada
London

35
–

1,459
106

normal, plus
normal, plus

an ROP severity score, which can serve as an ob-
jective quantification of disease; a similar idea could
provide finer grading of plus disease [21�].

For their core predictive networks, all these CNN-
based systems use versions of the Inception architec-
ture [54, 55] with transfer learning [56, 57] by pre-
training on ImageNet, giving them similar founda-
tions. However, these approaches differ in prepro-
cessing (e.g., i-ROP-DL [21�] uses a U-net [58] to
perform automatic vessel segmentation) and postpro-
cessing (e.g., i-ROP-DL [18��] outputs the ROP sever-
ity score; Worrall et al. [16] outputs the Bayesian
posterior). DeepROP processes a set of fundus im-
ages per case, taking a multiple instance learning [53]
approach, while the other two deep learning meth-
ods classify single images. The other key difference is
that these systems are trained on different non-public
ROP data sets of varying sizes and labelings (Ta-
ble 2). The use of non-public data sets and closed im-
plementations (only DeepROP is open source) com-
plicates comparison and reproducibility [59].

Current methods for ROP detection are capable
of coarse-grained classification, such as discriminat-
ing severe from mild ROP; they do not specifically
assess disease stage or zone (e.g., [17��]). In fact, all
systems except DeepROP [17��] and MiGraph [19] ex-
amine only the posterior pole view, either ignoring
other views or explicitly cropping them out. While
the literature suggests that severe disease rarely de-
velops without changes in posterior pole vasculature
[60], providing additional outputs of the zone and
stage could improve the interpretability of the sys-
tem’s assessment and improve performance.

Pediatric Cataracts

Pediatric cataracts are more variable than adult
cataracts, and surgical removal depends upon
cataract severity and deprivational amblyopia risk.
Slit lamp exams enable cataract visualization but can
be challenging and subjective, and slit lamp image
quality can vary (e.g., based on the child’s coopera-
tiveness, image amplification, and interference from
eyelashes and other eye disease or structures) [32�].

CC-Cruiser [30–32�] is a cloud-based platform
that can automatically detect cataracts from slit-
lamp images, grade them, and recommend treatment.
After automatically cropping the slit-lamp image to
the lens region, it uses three separate CNNs (modified
AlexNets [61]) to predict three aspects: cataract pres-
ence, grading (opacity area, density, location), and
treatment recommendation (surgery or non-surgical
follow-up). CC-Cruiser was evaluated in a multi-
center randomized controlled trial within five oph-
thalmology clinics, demonstrating significantly lower
performance in diagnosing cataracts (87.4%) and rec-
ommending treatment (70.8%) than experts (99.1%
and 96.7%, respectively), but achieving high patient
satisfaction for its rapid evaluation [31�].

Children who require surgery face potential com-
plications that differ from those that adults face [62].
Zhang et al. applied random forests and näıve Bayes
classifiers to predict two common post-operative com-
plications, central lens regrowth and high intraocular
pressure (IOP), from a patient’s demographic infor-
mation and cataract severity evaluation [28]. Another
approach [29] uses a CNN to detect severe posterior
capsular opacification warranting surgery, employing
a ResNet [63] pretrained on ImageNet with a cost-
sensitive loss to handle data set imbalance.

Strabismus

Strabismus affects 1 in 50 children and can cause am-
blyopia, interfere with binocularity, and have lasting
psychosocial effects [64–68]. A CNN was used to de-
tect strabismus based on visual manifestation in the
eye regions of facial photos [33��], which would be
especially useful for telemedical evaluation. For in-
office evaluation, which in contrast permits the use
of specialized screening instruments, strabismus can
be detected using a CNN based on fixation devia-
tions from eye-tracking data [34], or with very high
sensitivity and specificity from retinal birefringence
scanning [35].

Vision Screening

Like strabismus, refractive error can cause ambly-
opia, but is difficult for pediatricians to detect.
Instrument-based vision screening is recommended
[69] and most devices have adjustable thresholds for
signaling a screening failure. Using video frames from
one such instrument that combines Brückner pupil
red reflex imaging and eccentric photorefraction, Van
Eenwyk et al. trained a variety of ML classifiers to de-
tect amblyogenic risk factors in young children, with
the most successful being a C4.5 decision tree [70].
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Reading Disability

Reading disability affects approximately 10% of chil-
dren [38], but objective and efficient testing for it is
lacking [37]. Abnormal eye tracking is non-causally
associated with reading disability [37, 38]. Two stud-
ies used SVMs to identify reading disability from eye
movements during reading, either predicting reading
disability risk in children ages 8–9 [37], or detect-
ing reading disability in adults and children ages 11+
[38]. The children in both of these studies are older
than the optimal age for diagnosis, so validation in a
younger cohort could be useful.

Refractive Error

High myopia is associated with numerous vision-
threatening complications [71]. Children at risk for
high myopia can take low-dose atropine to halt or
slow myopic progression [72, 73]1, but it can be dif-
ficult to determine for which children to recommend
this treatment [39�]. Lin et al. [39�] predicted high
myopia in children from clinical measures using a ran-
dom forest, showing good predictive performance for
up to 8 years into the future. Further work has the
potential to guide prophylactic treatment.

Non-Pediatric Applications

AI has been applied to various adult ophthalmic dis-
eases, including diabetic retinopathy [1, 74–77], AMD
[78–83], sight-threatening retinal disease [2, 84–89],
glaucoma [90–92], intraocular lens calculation [93],
and keratoconus [94]. It has also been used for robot-
assisted repair of epiretinal membranes [95], retinal
vessel segmentation [96–99], and systemic disease pre-
diction from fundus images [100]. For a detailed re-
view, see [4–11].

OTHER OPHTHALMIC APPLICATIONS

This section reviews applications of ML to pediatric
ophthalmology that are not tied to specific diagnoses.

Visual Development

ML has the potential to provide scientific insight
into visual development. For example, adults who
had cataract surgery and aphakic correction in in-
fancy have exhibited diminished facial processing ca-
pabilities [101, 102]. This impairment was originally
blamed on early visual deprivation [101, 102], but
more recently, it was conjectured to be caused by
the aphakic correction and high initial acuity experi-
enced by these infants [103��]. The hypothesis is that

many visual proficiencies, such as facial recognition,
are facilitated by the gradual increase in visual acu-
ity during normal visual development. When tested
in CNNs via initial training with blurred images,
gradual acuity development increased generalization
performance and encouraged the development of re-
ceptive fields with a broader spatial extent [103��].
These results provide a possible explanation for the
decreased visual proficiencies of congenital cataract
patients, and suggest the potential for temporary re-
fractive undercorrection to help restore visual devel-
opment [103��].

Pediatric Retinal Vessel Segmentation

Although many programs have been developed for
vessel segmentation in adults or premature infants,
fundus images in older children have unique traits,
including light artifacts, that complicate segmenta-
tion [104]. Fraz et al. [104] developed an ensemble
of bagged decision trees that use multi-scale analysis
with multiple filter types to do vessel segmentation in
pediatric fundus images. Another tool, CAIAR [25],
has been validated in school-aged children [105]. CA-
IAR was first applied to infants with ROP and uses a
generative model of the vessels fit via maximum like-
lihood to a multi-scale representation of the retinal
image [25].

Ophthalmic Image Synthesis

Through their multi-layered representation, deep
learning methods such as generative adversarial net-
works [106] are able to synthesize novel realistic
images, including retinal fundus images [107, 108].
Such synthesized images can compensate for data
scarcity, preserve patient privacy, and depict vari-
ations on or combinations of diseases for resident
education [109, 110].

One recent technique to synthesize high-
resolution images, progressive growing of GANs
(PGGANs), was used to synthesize realistic fundus
images of ROP (see examples in Figure 1) [111�].
The PGGAN was trained on ROP fundus images
in combination with vessel segmentation maps
obtained from a pre-trained U-net CNN [58]. GANs
have also been used to synthesize retinal images of
diabetic retinopathy, including the ability to control
high-level aspects of the presentation [77, 112].
While many of the GAN-synthesized images display
believable pathologic features, some do contain
“checkerboard” and other generation artifacts.

1Note: this usage of atropine is not approved by the FDA.
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Figure 1. Real (top row) and synthetic (bottom row) fundus images of ROP with their corresponding vessel
segmentations [111�]. The top row shows real images that were not included in the training set, and the bottom
row shows the most similar synthesized images. (Image from [111�], reused with permission.)

CURRENT LIMITATIONS AND
FUTURE DIRECTIONS

Current applications to pediatric ophthalmology have
several limitations that offer avenues for future work.

Disagreement on reference standards An ML
classifier’s performance is fundamentally limited by
the quality of the training data, which are manually
labeled by clinicians. However, there is often signifi-
cant variation of the diagnosis and treatment among
physicians, given the same case information [23, 42,
43, 113], which complicates determination of the cor-
rect labels. When ML was used to identify factors
influencing ROP experts’ decisions for plus disease
diagnosis, the most important features were venous
tortuosity and vascular branching [23, 43], neither of
which are part of the standard “plus disease” defi-
nition of arteriolar tortuosity and venular dilatation
[114, 115]. Most approaches use the majority label
from multiple experts as the label for each training
instance, or combine the majority label given to im-
agery with the clinical diagnosis [116]. An alternative
approach puts cases with any amount of disagreement
up for adjudication among the experts, resulting in a
consensus label and reducing errors, as demonstrated
for diabetic retinopathy [76].

Need for pediatric-specific models It would be
advantageous for pediatric ophthalmology to benefit
from the large amount of work in AI for adult oph-
thalmology. However, due to the unique aspects of
pediatric disease manifestation, ML models trained
on adult patients may make errors when directly ap-
plied to pediatric patients. Transfer learning [56, 57]

and multi-task learning [117, 118] techniques may of-
fer a solution to this problem, providing mechanisms
to adapt adult models to pediatric patients given a
small amount of pediatric ophthalmic data. These
methods could also reuse knowledge across models
of different diseases or populations—for example, in-
tegrating knowledge across multiple smaller pediatric
data sets of different ophthalmic diseases to help com-
pensate for the lack of data on any one disease. No-
tice that, by pretraining on ImageNet, many of the
CNN-based methods surveyed here already employ
transfer learning of basic image features to compen-
sate for using small data sets; transferring from adult
ophthalmic data sets may provide further advantages.

Poor reproducibility and comparability Al-
most all the ML studies discussed here, even those
that focus on the same disease, are trained and eval-
uated on different data sets. In many cases, the data
sets and software source code are not available pub-
licly, complicating reproducibility and scientific com-
parison across algorithms [59].

Most ML research relies on publicly accessible
data sets and software implementations for evalua-
tion and comparison. One simple way to encourage
further applications of AI to pediatric ophthalmol-
ogy is through the public release of data sets in strict
compliance with HIPAA regulations, and with special
regard to the additional HIPAA restrictions for mi-
nors. Even small pediatric ophthalmic data sets could
be of use when used in combination with adult data
through transfer learning techniques, as mentioned
above. For the largest impact, these open data sets
should be hosted in a widely used ML repository.
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Lack of temporal information Most of these
systems detect disease based upon one snapshot in
time, without consideration of longitudinal imaging
of the case [16]. In some diseases, such as ROP, rapid
change is associated with poorer outcomes [47, 119],
suggesting that temporal information may have a role
in predicting severe disease.

Uninterpretable “black-box” models Despite
their predictive power, the “black-box” nature of
most state-of-the-art ML methods, such as deep
neural networks, complicates their application in
medicine. It is often challenging to quantitatively
interpret the inference process of such models, under-
standing how they arrived at their predictions [120,
121]. Since they focus on correlations between the
input and desired output, in some cases ML models
may fixate on confounding factors instead of patho-
logical information [122]. Interpretable ML methods
provide a potential solution to benefit clinicians, al-
lowing, for example, examination of intermediate de-
cision steps within a deep network, natural language
justifications for a decision, or visualization of image
features that contribute to a decision [121]. While
these methods seek to improve the interpretability of
black-box models, other approaches seek to improve
the predictive power of models that are already inter-
pretable, such as the MediBoost algorithm for grow-
ing decision trees via gradient boosting [123].

CONCLUSION

There is a large potential for current and future AI
applications to pediatric ophthalmology, and there
are some diseases, such as NLDO, congenital glau-
coma, and congenital ptosis, without any published
applications of AI to our knowledge. Automated dis-
ease detection, the most common use case, could aug-
ment telemedical efforts to broaden access to care,
improve efficiency, and result in earlier diagnoses.
However, other less-utilized capabilities of this tech-
nology, including disease grading and outcome predic-
tion, have the potential to enhance clinical care. All
AI methods deployed in clinical care must ultimately
match or surpass physician performance while meet-
ing the unique requirements of both clinicians and pe-
diatric patients, suggesting the need to augment eval-
uations on experimental data sets with clinical trials.
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ONLINE SUPPLEMENT:
A BRIEF OVERVIEW OF AI AND ML

Artificial intelligence (AI) is the broad field concerned
with the study of intelligence and its computational
manifestation within machines. It spans a broad
set of problems that are all interrelated, from basic
search (e.g., route finding on a map, or sequences of
moves in a chess game) to logical reasoning (e.g., the-
orem proving, logistics planning) to reasoning under
uncertainty (e.g., Bayesian abductive reasoning) to
multi-agent systems (e.g., markets of trading agents)
to robotics (e.g., computer vision and perception,
control of dynamical systems) to learning.

Machine learning (ML) is perhaps the largest sub-
field of AI and is concerned with this latter problem
of learning from experience (i.e., data). Most recent
news headlines and research concerning the applica-
tion of AI techniques to problems in other disciplines
(including the title of this article) would more pre-
cisely be termed applications of ML. Modern statisti-
cal ML is primarily concerned with the optimization
of a model (e.g., a classification or regression model)
to fit a given set of training data in such a manner
that the model will be able to generalize to new data.

As a simple example, the training data might con-
sist of demographical, biometric, and imaging data of
a chosen cohort of 10,000 patients gathered from hos-
pital records. Each record (called a data instance)
could be characterized as a set of categorical, ordi-
nal, and numeric features that are derived from the
patient’s record, and would be labeled according to
the patient’s diagnosis. ML algorithms could then
train a classifier model (e.g., a decision tree, logis-
tic regression) to predict the labeled diagnosis of a
patient given the set of features derived from their
record. Critically, the performance of the classifier
should be assessed on new patients from the same
population (i.e., patients with similar demograph-
ics that were not present in the training data), us-
ing application-dependent metrics (such as accuracy,
sensitivity/specificity, receiver operating characteris-
tic (ROC) curves).

This example focused on a supervised learning set-
ting, in which each patient’s data instance had a cor-
responding categorical label and we trained a classifi-
cation model. If the labels had instead been numeric
values, we could have trained a regression model us-
ing other supervised learning algorithms. Other set-
tings include semi-supervised learning, in which only
some data instances are labeled; unsupervised learn-
ing, which focuses on discovering patterns in un-
labeled data (e.g, clusters of patients with similar
biomarkers), and reinforcement learning, which seeks

to learn a policy that can determine sequences of ac-
tions to execute to achieve a goal (e.g., the sequence
of treatments to administer to an ICU patient, or the
movements a robot should perform to tie a ligature).
There are numerous different ML techniques, which
vary according to the model representation (e.g., de-
cision trees, linear classifiers, neural networks, logical
rules), the mathematical technique used to optimize
the model (e.g., greedy heuristics, gradient descent,
evolutionary computation), and the evaluation met-
ric used to assess the quality of model fit to the data
(e.g., accuracy, precision and recall, posterior proba-
bility). Note that these metrics focus on performance
on data and do not necessarily relate to the model ac-
quiring generalizable knowledge. Consequently, ML
models are learning patterns of correlations between
the inputs and the desired outputs, not causal knowl-
edge. This may cause them to exploit confounding
details instead of physiological aspects. For exam-
ple, an image classifier tasked with predicting disease
severity might erroneously focus on identifying the
type of camera (portable vs. fixed) or the presence
of chest tubes or other medical devices, rather than
pathological information, simply because these other
confounding details are highly correlated with the de-
sired output [122].

Deep learning (DL) methods are one subgroup of
ML techniques that have shown exceptional impact
to a wide variety of applications. Although DL tech-
niques have been studied for decades, recent advances
in computational algorithms and hardware have en-
abled these models to be trained at scale on large
data sets, leading to their impact. DL is concerned
with training models with numerous layers of pro-
cessing, such as deep neural networks. Convolutional
neural networks (CNNs) are one popular type of deep
network that are often used for image classification.
These models take raw input, such as a fundus pho-
tograph, and extract layered features from the input
image, where higher levels of the deep neural network
typically focus on increasingly abstract features that
are built upon lower-level features. This automatic
discovery of features is called representation learning,
since the model identifies commonalities within the
given input data as a way to re-represent it at differ-
ent levels of abstraction. Although fundamentally an
unsupervised learning technique, deep learning mod-
els can easily be adapted for classification, regression,
and reinforcement learning. Despite its success and
popularity, DL typically requires large data sets for
training (e.g., thousands or hundreds of thousands or
millions of examples, depending on the complexity of
the decision), which may be problematic in certain
medical applications.
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