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ABSTRACT

A hallmark of human intelligence is the ability to construct self-contained chunks
of knowledge and adequately reuse them in novel combinations for solving differ-
ent yet structurally related problems. Learning such compositional structures has
been a significant challenge for artificial systems, due to the combinatorial nature
of the underlying search problem. To date, research into compositional learning
has largely proceeded separately from work on lifelong or continual learning. We
integrate these two lines of work to present a general-purpose framework for life-
long learning of compositional structures that can be used for solving a stream of
related tasks. Our framework separates the learning process into two broad stages:
learning how to best combine existing components in order to assimilate a novel
problem, and learning how to adapt the set of existing components to accommo-
date the new problem. This separation explicitly handles the trade-off between
the stability required to remember how to solve earlier tasks and the flexibility
required to solve new tasks, as we show empirically in an extensive evaluation.

1 INTRODUCTION

A major goal of artificial intelligence is to create an agent capable of acquiring a general understand-
ing of the world. Such an agent would require the ability to continually accumulate and build upon
its knowledge as it encounters new experiences. Lifelong machine learning addresses this setting,
whereby an agent faces a continual stream of diverse problems and must strive to capture the knowl-
edge necessary for solving each new task it encounters. If the agent is capable of accumulating
knowledge in some form of compositional representation (e.g., neural net modules), it could then
selectively reuse and combine relevant pieces of knowledge to construct novel solutions.

Various compositional representations for multiple tasks have been proposed recently (Zaremba
et al., 2016; Hu et al., 2017; Kirsch et al., 2018; Meyerson & Miikkulainen, 2018). We address the
novel question of how to learn these compositional structures in a lifelong learning setting. We
design a general-purpose framework that is agnostic to the specific algorithms used for learning and
the form of the structures being learned. Evoking Piaget’s (1976) assimilation and accommodation
stages of intellectual development, this framework embodies the benefits of dividing the lifelong
learning process into two distinct stages. In the first stage, the learner strives to solve a new task by
combining existing components it has already acquired. The second stage uses discoveries from the
new task to improve existing components and to construct fresh components if necessary.

Our proposed framework, which we depict visually in Appendix A, is capable of incorporating
various forms of compositional structures, as well as different mechanisms for avoiding catastrophic
forgetting (McCloskey & Cohen, 1989). As examples of the flexibility of our framework, it can
incorporate naı̈ve fine-tuning, experience replay, and elastic weight consolidation (Kirkpatrick et al.,
2017) as knowledge retention mechanisms, and linear combinations of linear models (Kumar &
Daumé III, 2012; Ruvolo & Eaton, 2013), soft layer ordering (Meyerson & Miikkulainen, 2018), and
a soft version of gating networks (Kirsch et al., 2018; Rosenbaum et al., 2018) as the compositional
structures. We instantiate our framework with the nine combinations of these examples, and evaluate
it on eight different data sets, consistently showing that separating the lifelong learning process into
two stages increases the capabilities of the learning system, reducing catastrophic forgetting and
achieving higher overall performance. Qualitatively, we show that the components learned by an
algorithm that adheres to our framework correspond to self-contained, reusable functions.
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2 RELATED WORK

Lifelong learning In continual or lifelong learning, agents must handle a variety of tasks over
their lifetimes, and should accumulate knowledge in a way that enables them to more efficiently
learn to solve new problems. Recent efforts have mainly focused on avoiding catastrophic forget-
ting. At a high level, algorithms define parts of parametric models (e.g., deep neural networks) to
be shared across tasks. As the agent encounters tasks sequentially, it strives to retain the knowledge
that enabled it to solve earlier tasks. One common approach is to impose regularization to prevent
parameters from deviating in directions that are harmful for performance on the early tasks (Kirk-
patrick et al., 2017; Zenke et al., 2017; Li & Hoiem, 2017; Ritter et al., 2018). Another approach
retains a small buffer of data from all tasks, and continually updates the model parameters utilizing
data from all tasks, thereby maintaining the knowledge required to solve them (Lopez-Paz & Ran-
zato, 2017; Nguyen et al., 2018; Isele & Cosgun, 2018). A related technique is to learn a generative
model to “hallucinate” data, reducing the memory footprint at the cost of using lower-quality data
and increasing the cost of accessing data (Shin et al., 2017; Achille et al., 2018; Rao et al., 2019).

These approaches, although effective in avoiding the problem of catastrophic forgetting, make no
substantial effort toward the discovery of reusable knowledge. One could argue that the model pa-
rameters are learned in such a way that they are reusable across all tasks. However, it is unclear what
the reusability of these parameters means, and moreover the way in which parameters are reused is
hard-coded into the architecture design. This latter issue is a major drawback when attempting to
learn tasks with a high degree of variability, as the exact form in which tasks are related is often
unknown. Ideally, the algorithm would be able to determine these relations autonomously.

Other methods learn a set of models that are reusable across many tasks and automatically select how
to reuse them (Ruvolo & Eaton, 2013; Nagabandi et al., 2019). However, such methods selectively
reuse entire models, enabling knowledge reuse, but not explicitly in a compositional manner.

Compositional knowledge A mostly distinct line of parallel work has explored the learning of
compositional knowledge. The majority of such methods either learn the structure for piecing to-
gether a given set of components (Cai et al., 2017; Xu et al., 2018; Bunel et al., 2018) or learn the
set of components given a known structure for how to compose them (Bošnjak et al., 2017).

A more interesting case is when neither the structure nor the set of components are given, and the
agent must autonomously discover the compositional structure underlying a set of tasks. Some ap-
proaches for solving this problem assume access to a solution descriptor (e.g., in natural language),
which can be mapped by the agent to a solution structure (Hu et al., 2017; Johnson et al., 2017;
Pahuja et al., 2019). However, many agents (e.g., service robots) are expected to learn in more au-
tonomous settings, where this kind of supervision is not available. Other approaches instead learn
the structure directly from optimization of a cost function (Rosenbaum et al., 2018; Kirsch et al.,
2018; Meyerson & Miikkulainen, 2018; Alet et al., 2018; Chang et al., 2019). Many of these works
can be viewed as instances of neural architecture search, a closely related area (Elsken et al., 2019).

However, note that the approaches above assume that the agent will have access to a large batch
of tasks, enabling it to evaluate numerous combinations of components and structures on all tasks
simultaneously. More realistically, the agent faces a sequence of tasks in a lifelong learning fashion.
Most work in this line assumes that each component can be fully learned by training on a single task,
and then can be reused for other tasks (Reed & de Freitas, 2016; Fernando et al., 2017; Valkov et al.,
2018). Unfortunately, this is infeasible in many real-world scenarios in which the agent has access
to little data for each of the tasks. One notable exception was proposed by Gaunt et al. (2017), which
improves early components with experience in new tasks, but is limited to very simplistic settings.

Unlike prior work, our approach explicitly learns compositional structures in a lifelong learning
setting. We do not assume access to a large batch of tasks or the ability to learn definitive components
after training on a single task. Instead, we train on a small initial batch of tasks (four tasks, in our
experiments), and then autonomously update the existing components to accommodate new tasks.

Our framework also permits incorporating new components over time. Related work has increased
network capacity in the non-compositional setting (Yoon et al., 2018) or in a compositional setting
where previously learned parameters are kept fixed (Li et al., 2019). Another method enables adap-
tation of existing parameters (Rajasegaran et al., 2019), but requires expensively storing and training
multiple models for each task to select the best one before adapting the existing parameters, and is
designed for a specific choice of architecture, unlike our general framework.
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3 THE LIFELONG LEARNING PROBLEM

We frame lifelong learning as online multi-task learning. The agent will face a sequence of tasks
T (1), . . . , T (T ) over its lifetime. Each task will be a learning problem defined by a cost function
L(t)

(
f (t)
)
, where the agent must learn a prediction function f (t) ∈ F : X (t) 7→ Y(t) to minimize the

cost, where F is a function class, and X (t) and Y(t) are the instance and label spaces, respectively.
Each task’s solution is parameterized by θ(t), such that f (t) = fθ(t) . The goal of the lifelong learner
is to find parameters θ(1), . . . ,θ(T ) that minimize the cost across all tasks:

∑T
t=1 L(t)

(
f (t)
)
. The

number of tasks, the order in which tasks will arrive, and the task relationships are all unknown.

Given limited data for each new task, the agent will strive to discover any relevant information to
1) relate it to previously stored knowledge in order to permit transfer and 2) store any new knowledge
for future reuse. The agent may be evaluated on any previous task, requiring it to perform well on
all tasks. In consequence, it must strive to retain knowledge from even the earliest tasks.

4 THE LIFELONG COMPOSITIONAL LEARNING FRAMEWORK

Our framework for lifelong learning of compositional structures (illustrated in Appendix A) stores
knowledge in a set of k shared components M = {m1, . . . ,mk} that are acquired and refined over
the agent’s lifetime. Each component mi = mφi

∈ M is a self-contained, reusable function
parameterized by φi that can be combined with other components. The agent reconstructs each
task’s predictive function f (t) via a task-specific structure s(t) : X (t) ×Mk 7→ F , withMk being
the set of possible sequences of k components, such that f (t)(x) = s(t)(x,M)(x), where s(t) is
parameterized by a vector ψ(t). Note that s(t) yields a function from F . The structure functions
select the components from M and the order in which to compose them to construct the model for
each task (the f (t)’s). Specific examples of components and structures are described in Section 4.1.

The intuition behind our framework is that, at any point in time t, the agent will have acquired a
set of components suitable for solving tasks it encountered previously (T (1), . . . , T (t−1)). If these
components, with minor adaptations, can be combined to solve the current task T (t), then the agent
should first learn how to reuse these components before making any modifications to them. The
rationale for this idea of keeping components fixed during the early stages of training on the current
task T (t), before the agent has acquired sufficient knowledge to perform well on T (t), is that pre-
mature modification could be catastrophically damaging to the set of existing components. Once the
structure s(t) has been learned, we consider that the agent has captured sufficient knowledge about
the current task, and it would be sensible to update the components to better accommodate that
knowledge. If, instead, it is not possible to capture the current task with the existing components,
then new components should be added. These notions loosely mirror the stages of assimilation
and accommodation in Piaget’s (1976) theories on intellectual development, and so we adopt those
terms. Algorithms under our framework take the form of Algorithm 1, split into the following steps.

Algorithm 1 Lifelong Comp. Learning

Initialize components M
while T (t) ← getTask()

Freeze M
for i = 1, . . . , structUpdates

Assimilation step on structure s(t)
if i mod adaptFreq = 0

Freeze s(t), unfreeze M
for j = 1, . . . , compUpdates

Adaptation step on M
Freeze M , unfreeze s(t)

Add components via expansion
Store info. for future adaptation

Initialization The components M should be ini-
tialized encouraging reusability, both across tasks
and within different structural configurations of task
models. The former signifies that the components
should solve a particular sub-problem regardless of
the objective of the task. The latter means that com-
ponents may be reused multiple times within the
structure for a single task’s model, or at different
structural orders across different tasks. For example,
in deep nets, this means that the components could
be used at different depths. We achieve this by train-
ing the first few tasks the agent encounters jointly to
initialize M , keeping a fixed, but random, structure
that reuses components to encourage reusability.

Assimilation Algorithms for finding compositional knowledge vary in how they optimize each
task’s structure. In modular nets, component selection can be learned via reinforcement learning
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(Johnson et al., 2017; Rosenbaum et al., 2018; Chang et al., 2019; Pahuja et al., 2019), stochastic
search (Fernando et al., 2017; Alet et al., 2018), or backpropagation (Shazeer et al., 2017; Kirsch
et al., 2018; Meyerson & Miikkulainen, 2018). Our framework will use any of these approaches to
assimilate the current task by keeping the components M fixed and learning only the structure s(t).
Approaches supported by our framework must accept decoupling the learning of the structure from
the learning of the components themselves; this requirement holds for all the above examples.

Accommodation An effective approach should maintain performance on earlier tasks, while be-
ing flexible enough to incorporate new knowledge. To accommodate new knowledge from the cur-
rent task, the learner may adapt existing components or expand to include new components:
• Adaptation step Approaches for non-compositional structures have been to naı̈vely fine-

tune models with data from the current task, to impose regularization to selectively freeze
weights (Kirkpatrick et al., 2017; Ritter et al., 2018), or to store a portion of data from previ-
ous tasks and use experience replay (Lopez-Paz & Ranzato, 2017; Isele & Cosgun, 2018). We
will instantiate our framework by using any of these methods to accommodate new knowledge
into existing components once the current task has been assimilated. For this to be possible, we
require that the method can be selectively applied to only the component parameters φ.

• Expansion step Often, existing components, even with some adaptation, are insufficient to
solve the current task. In this case, the learner would incorporate novel components, which should
encode knowledge distinct from existing components and combine with those components to
solve the new task. The ability to discover new components endows the learner with the flexibility
required to learn over a lifetime. For this, we create component dropout, described in Section 4.2.

Concrete instantiations of Algorithm 1 are described in Section 5.1, with pseudocode in Appendix B.

4.1 COMPOSITIONAL STRUCTURES

We now present three compositional structures that can be learned within our framework.

Linear combinations of models In the simplest setting, each component is a linear model, and
they are composed via linear combinations. Specifically, we assume that X (t) ⊆ Rd, and each task-
specific function is given by fθ(t)(x) = θ(t)>x, with θ(t) ∈ Rd. The predictive functions are con-
structed from a set of linear component functions mφi

(x) = φi
>x, with φi ∈ Rd, by linearly com-

bining them via a task-specific weight vector ψ(t) ∈ Rk, yielding: f (t)(x) = sψ(t)(x,M)(x) =

ψ(t)>(Φ>x), where we have constructed the matrix Φ = [φ1, . . . ,φk] to collect all k components.

Soft layer ordering In order to handle more complex models, we construct compositional deep
nets that compute each layer’s output as a linear combination of the outputs of multiple modules.
As proposed by Meyerson & Miikkulainen (2018), we assume that each module is one layer, the
number of components matches the network’s depth, and all components share the input and output
dimensions. Concretely, each component is a deep net layer mφi

(x) = σ(φi
>x), where σ is

any nonlinear activation and φi ∈ Rd̃×d̃. A set of parameters ψ(t) ∈ Rk×k weights the output
of the components at each depth: s(t) = D(t) ◦

∑k
i=1ψ

(t)
i,1mi ◦ · · · ◦

∑k
i=1ψ

(t)
i,kmi ◦ E(t), where

E(t) and D(t) are task-specific input and output transformations such that E(t) : X (t) 7→ Rd̃ and
D(t) : Rd̃ 7→ Y(t), and the weights are restricted to sum to one at each depth j:

∑k
i=1ψ

(t)
i,j = 1.

Soft gating In the presence of large data, it is often beneficial to modify the network architecture
for each input x (Rosenbaum et al., 2018; Kirsch et al., 2018), unlike both approaches above which
use a constant structure for each task. We modify the soft layer ordering architecture by weighting
each component’s output at depth j by an input-dependent soft gating net s(t)j :X (t) 7→Rk, giving a

predictive function s(t)=D(t) ◦
∑k
i=1[s

(t)
1 (x)]imi ◦ · · · ◦

∑k
i=1[s

(t)
k (x)]imi ◦ E(t). As above, we

restrict the weights to sum to one at each depth:
∑k
i=1[s

(t)
j (x)]i=1.

4.2 EXPANSION OF THE SET OF COMPONENTS M VIA COMPONENT DROPOUT

To enable our deep learners to discover new components, we created an expansion step where the
agent considers adding a single new component per task. In order to assess the benefit of the new
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component, the agent learns two different networks: with and without the novel component. Dropout
enables training multiple neural networks without additional storage (Hinton et al., 2012), and has
been used to prune neural net nodes in non-compositional settings (Gomez et al., 2019). Our pro-
posed dropout strategy deterministically alternates backpropagation steps with and without the new
component, which we call component dropout. Intermittently bypassing the new component ensures
that existing components can compensate for it if it is discarded. After training, we apply a post hoc
criterion (in our experiments, a validation error check) to potentially prune the new component.

4.3 COMPUTATIONAL COMPLEXITY

Approaches to lifelong learning tend to be computationally intensive, revisiting data or parameters
from previous tasks at each training step. Our framework only carries out these expensive operations
during (infrequent) adaptation steps. Table 1 summarizes the computational complexity per epoch
of the algorithms described in Section 5.1. The assimilation step of our method with expansion
(dynamic + compositional) is comparable to compositional baselines in the worst case (one new
component per task), and our method without expansion (compositional) is always at least as fast.

Table 1: Time complexity per epoch (of assimilation, where applicable) for n samples of d features,
k components of d̃ nodes, T tasks, and nm replay samples per task. Derivations in Appendix C.

Dyn. + Comp. Compositional Joint No Comp.
ER

O
(
nd̃
(
d̃kT + d

))
O
(
nd̃
(
d̃k2 + d

))O((Tnm + n)d̃
(
d̃k2 + d

))
O
(
(Tnm + n)d̃

(
d̃k + d

))
EWC1 O

(
nd̃
(
T d̃2k + d̃k2 + d

))
O
(
nd̃
(
T d̃2k + d̃k + d

))
NFT O

(
nd̃
(
d̃k2 + d

))
O
(
nd̃
(
d̃k + d

))
5 EXPERIMENTAL EVALUATION

5.1 FRAMEWORK INSTANTIATIONS AND BASELINES

Instantiations We evaluated our framework with the three compositional structures of Sec-
tion 4.1. All methods assimilate task T (t) via backpropagation on the structure’s parameters ψ(t).
For each, we trained three instantiations of Algorithm 1, varying the method used for adaptation:
• Naı̈ve fine-tuning (NFT) updates components via standard backpropagation, ignoring past tasks.
• Elastic weight consolidation (EWC, Kirkpatrick et al., 2017) penalizes modifying model param-

eters via λ
2

∑T−1
t=1 ‖θ − θ(t)‖2F (t) , where F (t) is the Fisher information around θ(t). Backpropa-

gation is carried out on the regularized loss, and we approximated F (t) with Kronecker factors.
• Experience replay (ER) stores nm samples per task in a replay buffer, and during adaptation takes

backpropagation steps with data from the replay buffer along with the current task’s data.
We explored variations with and without the expansion step: dynamic + compositional methods
use component dropout to add new components, while compositional methods keep a fixed-size set.

Baselines For every adaptation method listed above, we constructed two baselines. Joint base-
lines use compositional structures, but do not separate assimilation and accommodation, and instead
update components and structures jointly. In contrast, no-components baselines optimize a single
architecture to be used for all tasks, with additional task-specific input and output mappings, E(t)
and D(t). The latter baselines correspond to the most common lifelong learning approach, which
learns a monolithic structure shared across tasks, while the former are the naı̈ve extensions of those
methods to a compositional setting. We also trained an ablated version of our framework that keeps
all components fixed after initialization (FM), only taking assimilation steps for each new task.

5.2 RESULTS

We evaluated these methods on tasks with no evident compositional structure to demonstrate that
there is no strict requirement for a certain type of compositionality. Appendix D introduces a simple
compositional data set, and shows that our results naturally extend to that setting. We repeated

1While it is theoretically possible for EWC to operate in constant time w.r.t. T , practical implementations
use per-task Kronecker factors due to the enormous computational requirements of the constant-time solution.
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Table 2: Average final performance across tasks using factored linear models—accuracy for FERA
and Landmine (higher is better) and RMSE for Schools (lower is better). Standard errors after ±.

Base Algorithm FERA Landmine Schools

ER
Compositional 79.0± 0.4% 93.6± 0.1% 10.65± 0.04
Joint 78.2± 0.4% 90.5± 0.3% 11.55± 0.09
No Comp. 66.4± 0.3% 93.5± 0.1% 10.34± 0.02

EWC
Compositional 79.0± 0.4% 93.7± 0.1% 10.55± 0.03
Joint 72.1± 0.7% 92.2± 0.2% 10.73± 0.17
No Comp. 60.1± 0.5% 93.5± 0.1% 10.35± 0.02

NFT
Compositional 79.0± 0.4% 93.7± 0.1% 10.87± 0.07
Joint 67.9± 0.6% 72.8± 2.5% 25.80± 2.35
No Comp. 57.0± 0.9% 92.7± 0.4% 18.01± 1.04

experiments ten times with varying random seeds. For details on data sets and hyper-parameters,
see Appendix E. Code and data sets are available at https://github.com/Lifelong-ML/
Mendez2020Compositional.git. Additional results, beyond those presented in this section,
are given in Appendix F.

5.2.1 LINEAR COMBINATIONS OF MODELS

We first evaluated linear combinations of models on three data sets used previously for evaluating
linear lifelong learning (Ruvolo & Eaton, 2013). The Facial Recognition (FERA) data set tasks
involve recognizing one of three facial expression action units for one of seven people, for a total of
T = 21 tasks. The Landmine data set consists of T = 29 tasks, which require detecting land mines
in radar images from different regions. Finally, the London Schools (Schools) data set contains
T = 139 regression tasks, each corresponding to exam score prediction in a different school.

Table 2 summarizes the results obtained with linear models. The compositional versions of ER,
EWC, and NFT clearly outperformed all the joint versions, which learn the same form of models
but by jointly optimizing structures and components. This suggests that the separation of the learning
process into assimilation and accommodation stages enables the agent to better capture the structure
of the problem. Interestingly, the no-components variants, which learn a single linear model for all
tasks, performed better than the jointly trained versions in two out of the three data sets, and even
outperformed our compositional algorithms in one. This indicates that the tasks in those two data
sets (Landmine and Schools) are so closely related that a single model can capture them.

5.2.2 DEEP COMPOSITIONAL LEARNING WITH SOFT LAYER ORDERING

We then evaluated how the different algorithms performed when learning deep nets with soft layer
ordering, using five data sets. Binary MNIST (MNIST) is a common lifelong learning bench-
mark, where each task is a binary classification problem between a pair of digits. We constructed
T = 10 tasks by randomly sampling the digits with replacement across tasks. The Binary Fash-
ion MNIST (Fashion) data set is similar to MNIST, but images correspond to items of clothing.
For these two data sets, all models used a task-specific input transformation layer E(t) initialized at
random and kept fixed throughout training, to ensure that the input spaces were sufficiently differ-
ent (Meyerson & Miikkulainen, 2018). A more complex lifelong learning problem commonly used
in the literature is Split CUB-200 (CUB), where the agent must classify bird species. We created
T = 20 tasks by randomly sampling ten species for each, without replacement across tasks. All
agents used a frozen ResNet-18 pre-trained on ImageNet as a feature extractor E(t) shared across all
tasks. For these first three data sets, all architectures were fully connected networks. To show that
our framework supports more complex convolutional architectures, we used two additional data sets.
We constructed a lifelong learning version of CIFAR-100 (CIFAR) with T = 20 tasks by randomly
sampling five classes per task, without replacement across tasks. Finally, we used the Omniglot data
set, which consists of T = 50 multi-class classification problems, each corresponding to detecting
handwritten symbols in a given alphabet. The inputs to all architectures for these two data sets were
the images directly, without any transformation E(t).
Results in Table 3 show that all the algorithms conforming to our framework outperformed the
joint and no-components learners. In four out of the five data sets, the dynamic addition of new
components yielded either no or marginal improvements. However, on CIFAR it was crucial for
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Table 3: Average final accuracy across tasks using soft layer ordering. Standard errors after ±.
Base Algorithm MNIST Fashion CUB CIFAR Omniglot

ER

Dyn. + Comp. 97.6± 0.2% 96.6± 0.4% 79.0± 0.5% 77.6± 0.3% 71.7± 0.5%
Compositional 96.5± 0.2% 95.9± 0.6% 80.6± 0.3% 58.7± 0.5% 71.2± 1.0%
Joint 94.2± 0.3% 95.1± 0.7% 77.7± 0.5% 65.8± 0.4% 70.7± 0.3%
No Comp. 91.2± 0.3% 93.6± 0.6% 44.0± 0.9% 51.6± 0.6% 43.2± 4.2%

EWC

Dyn. + Comp. 97.2± 0.2% 96.5± 0.4% 73.9± 1.0% 77.6± 0.3% 71.5± 0.5%
Compositional 96.7± 0.2% 95.9± 0.6% 73.6± 0.9% 48.0± 1.7% 53.4± 5.2%
Joint 66.4± 1.4% 69.6± 1.6% 65.4± 0.9% 42.9± 0.4% 58.6± 1.1%
No Comp. 66.0± 1.1% 68.8± 1.1% 50.6± 1.2% 36.0± 0.7% 68.8± 0.4%

NFT

Dyn. + Comp. 97.3± 0.2% 96.4± 0.4% 73.0± 0.7% 73.0± 0.4% 69.4± 0.4%
Compositional 96.5± 0.2% 95.9± 0.6% 74.5± 0.7% 54.8± 1.2% 68.9± 0.9%
Joint 67.4± 1.4% 69.2± 1.9% 65.1± 0.7% 43.9± 0.6% 63.1± 0.9%
No Comp. 64.4± 1.1% 67.0± 1.3% 49.1± 1.6% 36.6± 0.6% 68.9± 1.0%

FM Dyn. + Comp. 99.1± 0.0% 97.3± 0.3% 78.3± 0.4% 78.4± 0.3% 71.0± 0.4%
Compositional 84.1± 0.8% 86.3± 1.3% 80.1± 0.3% 48.8± 1.6% 63.0± 3.3%
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Figure 1: Average gain w.r.t. no-components NFT across tasks and data sets immediately after
training on each task (forward) and after all tasks had been trained (final), using soft ordering (top)
and soft gating (bottom). Algorithms within our framework (C and D+C) outperformed baselines.
Gaps between forward and final performance indicate that our framework exhibits less forgetting.
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Figure 2: Learning curves averaged across MNIST and Fashion using ER and soft ordering. Each
curve shows a single task trained for 100 epochs and continually evaluated during and after training.
Algorithms under our framework displayed no forgetting. For ER dynamic + compositional, as
more tasks were seen and accommodated, assimilation performance of later tasks improved. Joint
and no-components versions dropped performance of early tasks during the learning of later tasks.

the agent to be capable of detecting when new components were needed. This added flexibility
enables our learners to handle more varied tasks, where new problems may not be solved without
substantially new knowledge. Algorithms with adaptation outperformed the ablated compositional
FM agent, showing that it is necessary to accommodate new knowledge into the set of components
in order to handle a diversity of tasks. When FM was allowed to dynamically add new components
(keeping old ones fixed), it yielded the best performance on MNIST and Fashion by adding far more
components than methods with adaptation, as we show in Appendix F, as well as on CIFAR.

To study how flexibly our agents learn new tasks and how stably they retain knowledge about earlier
tasks, Figure 1 (top) shows accuracy gains immediately after each task was learned (forward) and af-
ter all tasks had been learned (final), w.r.t. no-components NFT (final). Compositional learners with
no dynamically added components struggled to match the forward performance of joint baselines,
indicating that learning the ordering over existing layers during much of training is less flexible than
modifying the layers themselves, as expected. However, the added stability dramatically decreased
forgetting w.r.t. joint methods. The dynamic addition of new layers yielded substantial improve-
ments in the forward stage, while still reducing catastrophic forgetting w.r.t. baselines. Figure 2
shows the learning curves of MNIST and Fashion tasks using ER, the best adaptation method. Per-
formance jumps in 100-epoch intervals show adaptation steps incorporating knowledge about the
current task into the existing components without noticeably impacting earlier tasks’ performance.
Compositional and dynamic + compositional ER exhibit almost no performance drop after training
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Table 4: Average final accuracy across all tasks using soft gating. Standard errors after the ±.
Base Algorithm MNIST Fashion CIFAR Omniglot

ER

Dyn. + Comp. 98.2± 0.1% 97.1± 0.4% 74.9± 0.3% 73.7± 0.3%
Compositional 98.0± 0.2% 97.0± 0.4% 75.9± 0.4% 73.9± 0.3%
Joint 93.8± 0.3% 94.6± 0.7% 72.0± 0.4% 72.6± 0.2%
No Comp. 91.2± 0.3% 93.6± 0.6% 51.6± 0.6% 43.2± 4.2%

EWC

Dyn. + Comp. 98.2± 0.1% 97.0± 0.4% 76.6± 0.5% 73.6± 0.4%
Compositional 98.0± 0.2% 97.0± 0.4% 76.9± 0.3% 74.6± 0.2%
Joint 68.6± 0.9% 69.5± 1.8% 49.9± 1.1% 63.5± 1.2%
No Comp. 66.0± 1.1% 68.8± 1.1% 36.0± 0.7% 68.8± 0.4%

NFT

Dyn. + Comp. 98.2± 0.1% 97.1± 0.4% 66.6± 0.7% 69.1± 0.9%
Compositional 98.0± 0.2% 96.9± 0.5% 68.2± 0.5% 72.1± 0.3%
Joint 67.3± 1.7% 66.4± 1.9% 51.0± 0.8% 65.8± 1.3%
No Comp. 64.4± 1.1% 67.0± 1.3% 36.6± 0.6% 68.9± 1.0%

FM Dyn. + Comp. 98.4± 0.1% 97.0± 0.4% 77.2± 0.3% 74.0± 0.4%
Compositional 94.8± 0.4% 96.3± 0.4% 77.2± 0.3% 74.1± 0.3%

Table 5: Average final accuracy across tasks on the Combined data set. Each column shows accuracy
on the subset of tasks from each given data set, as labeled. Standard errors after ±.

Base Algorithm All data sets MNIST Fashion CUB

ER

Dyn. + Comp. 86.5± 1.8% 99.5± 0.0% 98.0± 0.3% 74.2± 2.0%
Compositional 82.1± 2.5% 99.5± 0.0% 97.8± 0.3% 65.5± 2.4%
Joint 72.8± 4.1% 98.9± 0.3% 97.0± 0.7% 47.6± 6.2%
No Comp. 47.4± 4.5% 91.8± 1.3% 83.5± 2.5% 7.1± 0.4%

on a task, whereas accuracy for the joint and no-components versions diminishes as the agent learns
subsequent tasks. Most notably, as more tasks were seen by dynamic ER, the existing components
became better able to assimilate new tasks, shown by the trend of increasing performance as the
number of tasks increases. This suggests that the later tasks’ accommodation stage can successfully
determine which new knowledge should be incorporated into existing components (enabling them
to better generalize across tasks), and which must be incorporated into a new component.

In Appendix F, we show that our methods do not forget early tasks, and outperform baselines even
in small data settings. We also found that most components learned by our methods are reused by
multiple tasks, as desired. Moreover, analysis of various accommodation schedules revealed that
infrequent adaptation leads to best results, informing future algorithm design choices.

5.2.3 DEEP COMPOSITIONAL LEARNING WITH SOFT GATING

Finally, we tested our algorithms when the compositional structures were given by a soft gating
net. Table 4 shows a substantial improvement of compositional algorithms w.r.t. baselines. We
hypothesized that the gating net granted our assimilation step more flexibility, which is confirmed
in Figure 1 (bottom): the forward accuracy of compositional methods was nearly identical to that of
jointly trained and no-components versions. This added flexibility enabled our simplest version of a
compositional algorithm, FM, to perform better than the full versions of our algorithm on the CIFAR
data set with convolutional gating nets, showing that even the components initialized with only a few
tasks are sufficient for top lifelong learning performance. We attempted to run experiments with this
method on the CUB data set, but found that all algorithms were incapable of generalizing to test data.
This is consistent with findings in prior work, which showed that gating nets require vast amounts
of data, unavailable in CUB (Rosenbaum et al., 2018; Kirsch et al., 2018).

5.2.4 DEEP COMPOSITIONAL LEARNING OF SEQUENCES OF DIVERSE TASKS

One of the key advantages of learning compositional structures is that they enable learning a more
diverse set of tasks, by recombining components in novel ways to solve each problem. In this setting,
non-compositional structures struggle to capture the diversity of the tasks in a single monolithic
architecture. To verify that this is indeed the case, we created a novel data set that combines the
MNIST, Fashion, and CUB data sets into a single Combined data set of T = 40 tasks. We trained
all our instantiations and baselines with soft layer ordering, using the same architecture as used for
CUB in Section 5.2.2. Agents were given no indication that each task came from a different data

8



Published as a conference paper at ICLR 2021

4
←
−d

ep
th
−→

1

0 ←− intensity −→ 1

Task 9

0 ←− intensity −→ 1

Task 10
Figure 3: Generated MNIST “4” digits on the last two tasks seen by compositional ER with soft
ordering, varying the intensity with which a single specific component is selected. The learned
component performs a functional primitive: the more the component is used (left to right on each
row), the thinner the lines of the digit become. The magnitude of this effect decreases with depth
(moving from top to bottom), with the digit completely disappearing at the earliest layers, but only
becoming slightly sharper at the deepest layers. This effect is consistent across both tasks.

set, and they were all trained following the exact same setup of Section 5.2.2. Table 5 summarizes
the results for ER-based algorithms, showing that our method greatly outperforms the baselines. In
particular, ER with no components was completely incapable of learning the CUB tasks, showing
that compositional architectures are required to handle this more complex setting. Even jointly
training the components and structures performed poorly. Algorithms under our framework instead
performed remarkably well, especially the complete version with dynamically added components.
The remaining instantiations and baselines exhibited a similar behavior (see Appendix G).

5.3 VISUALIZATION OF THE LEARNED COMPONENTS

We now visually inspect the components learned by our framework to verify that they are indeed
self-contained and reusable. Similar to Meyerson & Miikkulainen (2018), we created T = 10
generative tasks, where each pixel in an image of the digit “4” constitutes one data point, using the
coordinates as features and the pixel intensity as the label. We trained a soft ordering net with k = 4
components via compositional ER, and shared the input and output transformations across tasks to
ensure the only differences across task models are due to the structure s(t) of each task. Varying
the intensity ψ(t)

i,j with which component i is selected at various depths j gives information about
the effect of the component in different contexts. Figure 3 shows generated digits as the intensity
of component i = 0 varies at different depths, revealing that the discovered component learned to
vary the thickness of the digit regardless of the task at hand, with a more extreme effect at the initial
layers. Additional details and more comprehensive visualizations are included in Appendix H.

CONCLUSION

We presented a general framework for learning compositional structures in a lifelong learning set-
ting. The key piece of our framework is the separation of the learning process into two stages:
assimilation of new problems with existing components, and accommodation of newly discovered
knowledge into the set of components. These stages have connections to Piagetian theory of devel-
opment, opening the door for future investigations that bridge between lifelong machine learning and
developmental psychology. We showed the flexibility of our framework by capturing nine different
concrete algorithms within our framework, and demonstrated empirically in an extensive evaluation
that these algorithms are stronger lifelong learners than existing approaches. More concretely, we
demonstrated that both learning traditional monolithic architectures and naı̈vely training composi-
tional structures via existing methods lead to substantially degraded performance. Our framework is
simple conceptually, easy to combine with existing continual or compositional learning techniques,
and effective in trading off the flexibility and stability required for lifelong learning.

In this work, we showed the potential of compositional structures to enable strong lifelong learning.
One major line of open work remains properly understanding how to measure the quality of the ob-
tained compositional solutions, especially in settings without obvious decompositions, like those we
consider in Section 5.2. While our visualizations in Section 5.3 and results in Table F.4 suggest that
our method obtains reusable components, we currently lack a proper metric to assess the degree to
which the learned structures are compositional. We leave this question open for future investigation.
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APPENDICES TO

“LIFELONG LEARNING OF
COMPOSITIONAL STRUCTURES”

by Jorge A. Mendez and Eric Eaton

A DEPICTION OF OUR COMPOSITIONAL LIFELONG LEARNING FRAMEWORK

Section 4 in the main paper presented our general-purpose framework for lifelong learning of com-
positional structures. Figure A.1 illustrates our proposed framework, split into four learning stages:
1) initialization of components, 2) assimilation of new tasks with existing components, 3) adaptation
of existing components with new knowledge, and 4) expansion of the set of components.

previous tasks future tasks

…t – 2 

1. Initialize components 

2. Reuse existing 
components to 
solve new tasks

3. Improve old 
components

initial tasks

4. Add new 
components

…

previously learned 
components !

Lifelong 
Learning System

current task

learned task model
!(#)

t – 1 t + 2 t + 1 t

training
data

Figure A.1: Our framework for lifelong compositional learning initializes a set of components by
training on a small set of tasks (1). Each new task is learned by composing the relevant compo-
nents (2). Subsequently, the agent improves imperfect components with newly discovered knowl-
edge (3), and adds any new components that were discovered during training on the current task (4).

B FRAMEWORK INSTANTIATIONS

In this section, we describe in more detail the specific implementations used in the experiments of
Section 5 in the main paper. To simplify evaluation, we fixed structUpdates, adaptFreq, and
compUpdates such that the learning process would be split into multiple epochs of assimilation
followed by a single final epoch of adaptation. This is the most extreme separation of the learning
into assimilation and accommodation: no knowledge is accommodated into existing components
until after assimilation has finished. We study the effects of this choice in Appendix F.

Algorithms B.5–B.10 summarize the implementations of all instantiations of our framework used in
our experiments. Shared subroutines are included as Algorithms B.1–B.4, and we leave blank lines
in compositional methods to highlight missing steps from their dynamic + compositional counter-
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parts. The learner first initializes the components by jointly training on the first Tinit tasks it en-
counters. At every subsequent time t, during the first (numEpochs−1) epochs, the agent assimilates
the new task by training the task-specific structure parameters ψ(t) via backpropagation, learning
how to combine existing components for task T (t). For dynamic + compositional methods, this as-
similation step is done with component dropout, and simultaneously optimizes the parameters of the
newly added component φk+1. The adaptation step varies according to the base lifelong learning
method, applying techniques for avoiding forgetting to the whole set of component parameters Φ for
one epoch. This step is done via component dropout for dynamic + compositional methods. Finally,
dynamic + compositional methods discard the fresh component if it does not improve performance
by more than a threshold τ on the current task T (t), and otherwise keep it for future training.

Algorithm B.1 Initialization

1: s(t) ← randomInitialization()
2: init buff← init buff ∪ T (t).train
3: if t = Tinit − 1
4: for i = 1, . . . , numEpochs
5: for t̃,x← init buff

6: Φ← Φ− η∇ΦL(t̃)(f (t̃)(x))
7: end for
8: end for . backprop on components
9: end if

Algorithm B.2 Expansion

1: a1 ← accuracy(T (t).validation)
2: hideComponent(k + 1)
3: a2 ← accuracy(T (t).validation)
4: recoverComponent(k + 1)
5: if a1−a2a2

< τ . validation error check
6: discardComponent(k + 1)
7: k ← k + 1
8: end if

Algorithm B.3 Assimilation (Comp.)

1: for i = 1, . . . , numEpochs− 1
2: for x← T (t).train
3: ψ(t) ← ψ(t) − η∇ψ(t)L(t)(f (t)(x))

4: end for
5: end for . backprop on structure

Algorithm B.4 Assimilation (Dyn. + Comp.)

1: Φ← [Φ; randomVector()] . new comp.
2: ψ(t)

k+1,1:k ← 1
3: for i = 1, . . . , numEpochs− 1
4: for x← T (t).train
5: ψ(t) ← ψ(t) − η∇ψ(t)L(t)(f (t)(x))

6: φk+1←φk+1 − η∇φk+1
L(t)(f (t)(x))

7: hideComponent(k + 1)
8: ψ(t) ← ψ(t) − η∇ψ(t)L(t)(f (t)(x))
9: recoverComponent(k + 1)

10: end for
11: end for . component dropout

Algorithm B.5 Compositional ER

1: while T (t) ← getTask()
2: if t < Tinit
3: Call Algorithm B.1 . initialization
4: else
5: Call Algorithm B.3 . assimilation
6: for t̃,x← (t, T (t).train) ∪ buffer

7: Φ← Φ− η∇ΦL(t̃)(f (t̃)(x))

8: end for . adaptation

9: end if
10: buffer[t]← sample(T (t).train, nm)
11: end while

Algorithm B.6 Dynamic + Compositional ER

1: while T (t) ← getTask()
2: if t < Tinit
3: Call Algorithm B.1 . initialization
4: else
5: Call Algorithm B.4 . assimilation
6: for t̃,x← (t, T (t).train) ∪ buffer

7: Φ← Φ− η∇ΦL(t̃)(f (t̃)(x))
8: hideComponent(k + 1)

9: Φ← Φ− η∇ΦL(t̃)(f (t̃)(x))
10: recoverComponent(k + 1)
11: end for . adaptation
12: Call Algorithm B.2 . expansion
13: end if
14: buffer[t]← sample(T (t).train, nm)
15: end while
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Algorithm B.7 Compositional EWC

1: while T (t) ← getTask()
2: if t < Tinit
3: Call Algorithm B.1 . initialization
4: else
5: Call Algorithm B.3 . assimilation
6: for x← T (t).train
7: A←

∑t−1
t̃ a(t̃)Φb(t̃)

8: g ← ∇ΦL(t)(f (t)(x)) + λ(A−B)
9: Φ← Φ− ηg

10: end for . adaptation

11: end if
12: a(t), b(t) ← KFAC(T (t).train,Φ)
13: B ← B − a(t)Φb(t)

14: end while

Algorithm B.8 Dynamic + Compositional EWC

1: while T (t) ← getTask()
2: if t < Tinit
3: Call Algorithm B.1 . initialization
4: else
5: Call Algorithm B.4 . assimilation
6: for x← T (t).train
7: A←

∑t−1
t̃ a(t̃)Φb(t̃)

8: g ← ∇ΦL(t)(f (t)(x)) + λ(A−B)
9: Φ← Φ− ηg

10: hideComponent(k + 1)

11: A←
∑t−1
t̃ a(t̃)Φb(t̃)

12: g ← ∇ΦL(t)(f (t)(x)) + λ(A−B)
13: Φ← Φ− ηg
14: recoverComponent(k + 1)
15: end for . adaptation
16: Call Algorithm B.2 . expansion
17: end if
18: a(t), b(t) ← KFAC(T (t).train,Φ)
19: B ← B − a(t)Φb(t)

20: end while

Algorithm B.9 Compositional NFT

1: while T (t) ← getTask()
2: if t < Tinit
3: Call Algorithm B.1 . initialization
4: else
5: Call Algorithm B.3 . assimilation
6: for x← T (t).train
7: Φ← Φ− η∇ΦL(t)(f (t)(x))

8: end for . adaptation

9: end if
10: end while

Algorithm B.10 Dynamic + Compositional NFT

1: while T (t) ← getTask()
2: if t < Tinit
3: Call Algorithm B.1 . initialization
4: else
5: Call Algorithm B.4 . assimilation
6: for x← T (t).train
7: Φ← Φ− η∇ΦL(t)(f (t)(x))
8: hideComponent(k + 1)
9: Φ← Φ− η∇ΦL(t)(f (t)(x))

10: recoverComponent(k + 1)
11: end for . adaptation
12: Call Algorithm B.2 . expansion
13: end if
14: end while

C COMPUTATIONAL COMPLEXITY DERIVATION

We now derive asymptotic bounds for the computational complexity of all baselines and instantia-
tions of our framework presented in Section 4.3 in the main paper. We assume the network archi-
tecture uses fully connected layers, and soft layer ordering for compositional structures. Extending
these results to convolutional layers and soft gating is straightforward.

A single forward and backward pass through a standard fully connected layer of i inputs and o
outputs requires O(io) computations, and is additive across layers. Assuming a binary classification
net, the no-components architecture contains one input layer E(t) with d inputs and d̃ outputs, k
layers with d̃ inputs and d̃ outputs, and one output layer D(t) with d̃ inputs and one output. Training
such a net in the standard single-task setting then requires O

(
dd̃+ d̃2k+ d̃

)
computations per input

point. For a full epoch of training on a data set with n data points, the training cost would then be
O
(
nd̃
(
d̃k+d

))
. This is exactly the computational cost of no-components NFT, since it ignores any

information from past tasks during training, and leverages only the initialization of parameters.
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On the other hand, a soft layer ordering net evaluates all k layers of size d̃ × d̃ at every one of
the k depths in the network, resulting in a cost of O

(
d̃2k2

)
for those layers. This results in an

overall cost per epoch of O
(
nd̃
(
d̃k2 + d

))
for single-task training, and therefore also for joint NFT

training. Since compositional methods do not use information from earlier tasks during assimilation,
because they only train the task-specific structure s(t) during this stage, then the cost per epoch of
assimilation is also O

(
nd̃
(
d̃k2 + d

))
. Dynamic + compositional methods can at most contain T

components if they add one new component for every seen task. This leads to a cost of O
(
d̃2kT

)
for the shared layers, and an overall cost per epoch of assimilation of O

(
nd̃
(
d̃kT + d

))
.

Kronecker-factored EWC requires computing two O
(
d̃ × d̃

)
matrices, a(t) and b(t), for every ob-

served task. At each training iteration, EWC modifies the gradient of component i by adding
λ
∑T
t=1 a

(t)φib
(t) − a(t)φi

(t)b(t), where φi(t) are the parameters of component i obtained after
training on task T (t). While the second term of this sum can be pre-computed and stored in mem-
ory, it is not possible to pre-compute the first term. Theoretically, one can apply Kronecker product
properties to store a (prohibitively large) O

(
d̃2 × d̃2

)
matrix and avoid computing the per-task sum,

but practical implementations avoid this and instead compute the sum for every task, at a cost of
O
(
T d̃3k

)
per mini-batch. With O(n) mini-batches per epoch, we obtain an additional cost with

respect to joint and no-components NFT of O
(
nT d̃3k

)
. Note that this step is carried out after

obtaining the gradients for each layer, and thus there is no additional k2 term for joint EWC.

Deriving the complexity bound of ER simply requires extending the size of the batch of data from
n to (Tnm + n) for a replay buffer size of nm per task.

To put the computational complexity of dynamic + compositional methods into perspective, we
compute the number of components required to solve T tasks. We consider networks with hard
layer ordering, and assume that all T tasks can be represented by different orders over the same
set of components. Given a network with k depths and k̃ components, it is possible to create k̃k

different layer orderings. If all T tasks require different orderings, then we require at least k̃ = k
√
T

components. Designing a lifelong learning algorithm that can provably attain this bound in the
number of components, or any sublinear growth in T , remains an open problem.

For completeness, we note that the (very infrequent) adaptation steps for compositional methods
incur the same computational cost as any epoch of joint methods. On the other hand, to obtain the
cost of adaptation steps for dynamic + compositional methods, we need to replace k2 terms in the
expressions for joint methods by kT , again noting that this corresponds to the worst case, where the
agent adds a new component for every single task it encounters.

D EVALUATION ON A TOY COMPOSITIONAL DATA SET

The results of Section 5.2 in the main paper were obtained on a suite of data sets that does not
explicitly require any compositional structure. This deliberate choice enabled us to study the gen-
erality of our framework, and we found that algorithms that instantiate it work well across data sets
with a range of feature representations, relations across tasks, number of tasks, and sample sizes.
In this section, we introduce a data set that explicitly assumes a compositional structure that intu-
itively matches the assumptions of our soft layer ordering architecture, and we show that the results
obtained for non-compositional data sets still hold for this class of problems.

We created the Objects data set with 48 classes, each corresponding to an object composed of a
shape (circle, triangle, or square), color (orange, blue, pink, or green), and location (each of the for
quadrants in the image). We generated n = 100 images of size 28 × 28 per class. We uniformly
sampled the center of the object from [cx − 3, cx + 3], [cy − 3, cy + 3], where cx and cy are the
centers of the quadrant for each class, respectively. The RGB values were uniformly sampled from
[r− 16, r+16], [g− 16, g+16], [b− 16, g+16], where r, g, and b are the nominal RGB values for
the color of the class. Finally, we uniformly sampled the size of the objects from [3, 7] pixels.

To test our approach in this setting, we created a lifelong version of the Objects data set by randomly
splitting the data into 16 three-way classification tasks. 50% of the instances for each class were used
as training data, 20% as validation data, and 30% as test data. We used soft ordering nets with k = 4
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Table D.1: Average final accuracy across tasks on the compositional Objects data set using soft layer
ordering. Column labels indicate which component was held out for final tasks. Std. errors after ±.

Base Algorithm Circle Top-left Orange Random

ER

Dyn. + Comp. 93.4± 0.7% 85.9± 1.0% 89.4± 1.0% 91.8± 0.6%
Compositional 92.2± 0.9% 84.9± 1.2% 88.7± 1.2% 90.9± 0.9%
Joint 92.0± 0.8% 83.5± 1.0% 87.8± 1.2% 89.1± 0.6%
No Comp. 91.2± 1.0% 83.5± 1.1% 88.4± 0.8% 89.8± 1.0%

EWC

Dyn. + Comp. 93.4± 0.7% 85.9± 1.0% 89.5± 1.1% 91.6± 0.7%
Compositional 92.0± 1.1% 85.3± 1.2% 88.7± 1.2% 90.9± 0.9%
Joint 91.1± 0.8% 82.4± 1.3% 87.0± 1.4% 90.1± 0.7%
No Comp. 88.1± 1.8% 81.0± 1.5% 83.3± 2.5% 86.3± 2.1%

NFT

Dyn. + Comp. 93.3± 0.7% 86.3± 1.0% 89.6± 1.1% 91.5± 0.6%
Compositional 92.3± 0.8% 85.7± 1.1% 88.7± 1.2% 90.6± 0.9%
Joint 90.6± 0.9% 81.8± 1.2% 86.6± 1.3% 88.4± 1.2%
No Comp. 89.2± 2.0% 77.5± 1.9% 86.8± 1.2% 85.7± 1.5%

FM Dyn. + Comp. 93.0± 0.7% 86.0± 1.0% 89.5± 1.1% 91.4± 0.5%
Compositional 90.8± 1.4% 83.8± 1.5% 88.1± 1.2% 89.4± 0.9%

components of 64 fully connected hidden units shared across tasks, and a linear input transformation
E(t) trained for each task. All agents trained for 100 epochs per task using a mini-batch of size 32,
with compositional agents using 99 epochs for assimilation and a single epoch for adaptation. The
regularization hyper-parameter for EWC was set to λ = 1e− 3, and ER was given a a replay buffer
of size nm = 5. We ran 50 trials of each experiment with different random seeds controlling class
splits for each task, training/validation/test splits for each class, and the ordering of tasks.

We evaluated all methods in four different settings. In the Random setting, classes were randomly
split and ordered, matching the experimental setting of Section 5.2. The other, more challenging
settings were created by holding out one shape, location, or color only for the final four (for color
and location) or five (for shape) tasks, requiring the agents to adapt to never-seen components dy-
namically. Results in Table D.1 show each of our methods outperforms all baselines in all settings,
showcasing the ability of our framework to discover the underlying compositional structures.

E EXPERIMENTAL SETTING

Below, we give additional details describing the experimental setting used in the main paper.

E.1 DATA SETS

The data sets used for linear experiments underwent the same processing and train/test split of
Ruvolo & Eaton (2013). For MNIST and Fashion, we randomly sampled pairs of digits to act as the
positive and negative classes in each task, and allowed digits to be reused across tasks. For CUB
and CIFAR, ten and five classes were used per task, respectively, without reusing of classes across
different tasks. CUB images were cropped by the provided bounding boxes and resized to 224×224.
For these four data sets, we used the standard train/test split, and further divided the training set into
80% for training and 20% for validation. Finally, for Omniglot, we used each alphabet as one task,
and split the data into 80% for training, 10% for validation, and 10% for test, for each task. For each
of the ten trials, we varied the random seed which controlled the tasks (whenever the tasks were not
fixed by definition), the random splits for training/validation/test, and the order in which the tasks
were presented to the agent. Validation sets were only used by dynamic + compositional learners
for selecting whether to keep a new component. Details are summarized in Table E.2.

E.2 NETWORK ARCHITECTURES

We used k=4 components for all compositional algorithms with fixed k. This is the only architec-
tural choice for linear models. Below, we describe the architectures used for other experiments.
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Table E.2: Data set details summary.

FERA Landmine Schools MNIST Fashion CUB CIFAR Omniglot
tasks 21 29 139 10 10 20 20 50
classes 2 2 — 2 2 10 5 14–55
features 100 9 27 784 784 512 32×32×3 105×105
feat. extract. PCA — — — — ResNet-18 — —
train 225–499 222–345 11–125 ∼9500 ∼9500 ∼120 ∼2000 224–880
val — — — ∼2500 ∼2500 ∼30 ∼500 28–110
test 225–500 223–345 11–126 ∼2000 2000 ∼150 500 28–110

Soft layer ordering We based our soft layer ordering architectures on those used by Meyerson
& Miikkulainen (2018), whenever possible. For MNIST and Fashion, we used a random and fixed
linear input transformation E(t) for each task, and each component was a fully connected layer
of 64 units. For CUB, all tasks shared a fixed ResNet-18 pre-trained on ImageNet2 as an input
transformation, followed by a task-specific input transformation E(t) given by a linear trained layer,
and each component was a fully connected layer of 256 units. For CIFAR, there was no input
transformation, and each component was a convolutional layer of 50 channels with 3 × 3 kernels
and padding of 1 pixel, followed by a max-pooling layer of size 2× 2. Finally, for Omniglot, there
was also no input transformation, and each component was a convolutional layer of 53 channels
with 3× 3 kernels and no padding, followed by max-pooling of 2× 2 patches. The input images to
the convolutional nets in CIFAR and Omniglot were padded with all-zero channels in order to match
the number of channels required by all component layers (50 and 53, respectively). All component
layers were followed by ReLU activation and a dropout layer with dropout probability p = 0.5. The
output of each network was a linear task-specific output transformation D(t) trained individually
on each task. The architectures for jointly trained baselines were identical to these, and those for
no-components baselines had the same layers but no mechanism to select the order of the layers.

Soft gating The soft gating architectures mimicked those of the soft layer ordering architectures
closely, all having the same input and output transformations, as well as the same components.
The only difference was in the structure architectures. For fully connected nets, at each depth, the
structure function s(t) was a linear layer that took as input the previous depth’s output and whose
output was a soft selection over the component layers for the current depth. For convolutional nets,
there was one gating net per task with the same architecture as the main network. The structure s(t)
was computed by passing the previous depth’s output in the main network through the remaining
depths in the gating network (e.g., the output of depth 2 in the original network was passed through
depths 3 and 4 in the gating network to compute the structure over modules at depth 3).

E.3 ALGORITHM DETAILS

All agents trained for 100 epochs on each task, with a mini-batch of 32 samples. Compositional
agents used the first 99 epochs solely for assimilation and the last epoch for adaptation. Dynamic
+ compositional agents followed this same process, but every assimilation step was done via com-
ponent dropout; after the adaptation step, the agent kept the new component if its validation per-
formance with the added component represented at least a 5% relative improvement over the per-
formance without the additional component. Joint agents trained all components and the structure
for the current task jointly during all 100 epochs, keeping the structure for the previous tasks fixed,
while no-components agents trained the whole model at every epoch.

ER-based algorithms used a replay buffer of a single mini-batch per task. Similarly, EWC-based
algorithms used a single mini-batch to compute the approximate Fisher information matrix required
for regularization, and used a fixed regularization parameter λ = 10−3.

To ensure a fair comparison, all algorithms, including our baselines, used the same initialization
procedure by training the first Tinit=4 tasks jointly, in order to encourage the network to generalize
across tasks. For soft ordering nets, the order of modules for the initial tasks was initialized as a
random one-hot vector for each task at each depth, ensuring that each component was selected at

2The pre-trained ResNet-18 is provided by PyTorch, and we followed the pre-processing recommended at
https://pytorch.org/docs/stable/torchvision/models.html.
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Figure F.2: Soft layer ordering accuracy. Compositional agents outperformed baselines in most data
sets for every adaptation method. Dyn. + comp. agents further improved performance, leading to
our methods being strongest. Error bars denote standard errors.
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Figure F.3: Smoothed learning curves with soft layer ordering using ER. Compositional methods
did not exhibit decaying performance of early tasks, while joint and no-components baselines did.

least once, and for soft gating nets, the gating nets were randomly initialized. The structures over
initial tasks were kept fixed during training, modifying only the weights of the components.

F ADDITIONAL RESULTS FOR QUANTITATIVE EXPERIMENTS

We now present detailed results that expand upon those presented in Section 5.2 in the main paper.

For completeness, we include expanded results from Figures 1 and 2 in the main paper, correspond-
ing to soft layer ordering. Figure F.2 is a more detailed version of Figure 1, and shows the test
accuracy immediately after each task was trained and after all tasks had been trained, separately for
each data set. Compositional algorithms conforming to our proposed framework achieve a better
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(c) NFT—Soft Ordering
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(f) NFT—Soft Gating
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Figure F.4: Catastrophic forgetting across data sets. Ratio of accuracy when a task was first trained to
when all tasks had been trained. For data sets with more than ten tasks, we sampled ten interleaved
tasks to match all the x-axes. Compositional algorithms had practically no forgetting, whereas
jointly trained and no-components baselines forgot knowledge required to solve earlier tasks.

Table F.3: Number of learned components. Standard errors reported after the ±.

Structure Base MNIST Fashion CUB CIFAR Omniglot

Soft ordering
ER 5.2± 0.3 4.9± 0.3 5.9± 0.3 19.1± 0.3 9.3± 0.3
EWC 5.0± 0.3 4.7± 0.2 5.8± 0.2 19.6± 0.2 10.1± 0.3
NFT 5.0± 0.2 4.8± 0.3 6.1± 0.3 17.7± 0.3 10.0± 0.7
FM 10.0± 0.0 8.8± 0.2 6.5± 0.4 19.1± 0.4 10.2± 0.6

Soft gating
ER 4.0± 0.0 4.2± 0.1 — 4.1± 0.1 7.1± 0.4
EWC 4.1± 0.1 4.0± 0.0 — 4.8± 0.2 7.4± 0.4
NFT 4.1± 0.1 4.2± 0.1 — 4.1± 0.1 7.2± 0.3
FM 5.4± 0.2 4.7± 0.2 — 4.4± 0.2 7.3± 0.4

trade-off than others in flexibility and stability, leading to good adaptability to each task with little
forgetting of previous tasks. Similarly, Figure F.3 shows learning curves similar to those in Figure 2
in the main paper, for each data set. Baselines that train components and structures jointly all exhibit
a decay in the performance of earlier tasks as learning of future tasks progresses, whereas methods
conforming to our framework do not. Results for soft gating nets display a similar behavior.

The gap between the first and second bar for each algorithm in Figure F.2 is an indicator of the
amount of catastrophic forgetting. However, it hides details of how forgetting affects each indi-
vidual task. On the other hand, the decay rate of each task in Figure F.3 shows how each task is
forgotten over time, but does not measure quantitatively how much forgetting occurred. Based on
prior work (Lee et al., 2019), we evaluated the ratio of performance after each task was trained to
after all tasks had been trained as a metric of knowledge retention. Results in Figure F.4 show that
compositional methods exhibit substantially less catastrophic forgetting, particularly for the earlier
tasks seen during training.

In our experiments, it was in many cases necessary to incorporate an expansion step in order for
our algorithm to be sufficiently flexible to handle the stream of incoming tasks. This expansion
step enables our methods to dynamically add new components if the existing ones are insufficient
to achieve good performance in the new task. Table F.3 shows the number of components learned
by each dynamic algorithm using both soft ordering and soft gating, averaged across all ten trials.
Notably, in the soft ordering case, in order for our methods to work on the CIFAR data set, they
required learning almost one component per task. This explains why compositional algorithms
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Figure F.5: Accuracy of ER-based methods with varying data sizes. Compositional methods per-
formed better even with extremely little data per task. Shaded area represents standard errors.

Table F.4: Number of tasks that reuse a component. A task reuses a component if its accuracy drops
by more than 5% relative when the component is dropped. Standard errors reported after the ±.

Algorithm Comp. MNIST Fashion CUB CIFAR Omniglot

Compositional

0 6.40± 0.43 6.00± 0.24 13.40± 0.78 18.90± 0.30 46.40± 0.98
1 4.90± 0.26 4.70± 0.28 7.90± 0.41 16.20± 0.80 30.60± 2.86
2 4.10± 0.26 4.10± 0.17 5.90± 0.57 11.90± 1.14 18.80± 3.76
3 3.00± 0.32 2.60± 0.32 3.20± 0.49 5.70± 0.97 10.90± 2.17

Dyn. + Comp.

0 4.70± 0.38 5.10± 0.26 9.80± 0.98 13.30± 1.27 21.90± 1.82
1 3.60± 0.25 3.90± 0.22 6.20± 0.56 6.20± 0.61 12.30± 0.68
2 2.80± 0.28 3.30± 0.28 4.40± 0.62 4.00± 0.35 9.20± 0.61
3 1.90± 0.26 2.10± 0.22 2.70± 0.20 3.10± 0.26 7.40± 0.47
4 — — — 3.00± 0.32 6.50± 0.49
5 — — — 1.80± 0.13 5.00± 0.51
6 — — — 1.50± 0.16 4.20± 0.46
7 — — — 1.10± 0.09 3.40± 0.47
8 — — — 1.00± 0.00 1.90± 0.30
9 — — — 1.00± 0.00 —
10 — — — 1.00± 0.00 —
11 — — — 1.00± 0.00 —
12 — — — 1.00± 0.00 —
13 — — — 0.90± 0.09 —
14 — — — 0.90± 0.09 —

without dynamic component additions were incapable of performing well on CIFAR. It is also worth
noting that soft gating nets typically required adding fewer new components, which is to be expected,
since the gating structure gives the learner substantially more flexibility. Recall that, as mentioned
in Section 5.2.3, soft gating networks were unable to perform well on the CUB data set because of
the small sample size, so the corresponding column is omitted from the table.

One of the key aspects of lifelong learning is the ability to learn in the presence of little data for
each task, using knowledge acquired from previous tasks to acquire better generalization for new
tasks. To evaluate the sample efficiency of our algorithm, we varied the number of data points used
for training for MNIST, Fashion, and CUB using the soft ordering structure and ER. We repeated
the evaluation for 50 trials, each with a different random seed controlling the selection of classes
and samples for each task, and the order over tasks. Learners were trained for 1,000 epochs, with
our compositional methods alternating nine epochs of assimilation and one epoch of adaptation. We
used a batch size of b = 32, and limited the replay buffer size to min(max(b0.1nc, 1), b) for each
data size n. Figure F.5 shows the learning accuracy for ER-based algorithms as a function of the
number of training points, revealing that compositional algorithms work better than baselines even
in the presence of very little data.

Our approach was designed to discover a set of components that are reusable across multiple tasks.
To verify that this effectively occurs, we evaluated how many tasks reuse each component. Taking
the models pre-trained via compositional and dynamic + compositional ER with soft layer ordering,
we evaluated the accuracy of the model on each task if any individual component was removed
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Figure F.6: Effect of the assimilation and accommodation schedule. Average accuracy across tasks
w.r.t. the number of assimilation epochs between accommodation epochs. Broadly, methods under
our framework performed better with a scheduled that favored stability, taking more assimilation
steps before accommodating any new knowledge into the set of existing components.

from the model. We then considered a task to reuse a given component if removing it caused a
relative drop in accuracy of more than 5%. Table F.4 shows the number of tasks that reuse each
component. Since there is no fixed ordering over components across trials, we sorted each trial’s
components in descending order of the number of tasks that reused each component. Moreover, for
dynamic + compositional ER, we only consider components that are created across all trials for a
given data set to ensure all averages are statistically significant. We found that across all data sets
and algorithms, all k = 4 components available from initialization were used by multiple tasks. For
the Omniglot data set, we find that this behavior persists even for components that are dynamically
added in the expansion step. However, this is not the case for the CIFAR data set, for which the
first few dynamically added components are indeed reused by multiple tasks, but subsequent ones
are used by a single task. This indicates that those components were added merely for increasing
performance of that individual task, but found no reusable knowledge useful for future tasks.

When designing algorithms under our framework, one needs to choose how to alternate the pro-
cesses of assimilation and accommodation. In most experiments so far, we considered the simplest
case, where adaptation is entirely carried out after assimilation is finished. However, it is possi-
ble that other choices yield better results, enabling the learner to incorporate knowledge about the
current task that further enables it to assimilate it better. To study this question, we carried out ad-
ditional experiments using ER variants on the MNIST, Fashion, and CUB data sets with soft layer
ordering. Instead of executing the adaptation step only after completing assimilation, we alternated
epochs of assimilation with epochs of adaptation with various frequencies. Results are displayed
in Figure F.6. Generally, we found that it was beneficial to carry out adaptation steps infrequently,
with a clear increasing trend in performance as the learner took more assimilation steps before each
adaptation step. For MNIST and Fashion, we found that all choices of schedule led to improved per-
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Table G.5: Average final accuracy across tasks on the Combined data set. Each column shows
accuracy on the subset of tasks from each given data set, as labeled. Standard errors after ±.

Base Algorithm All data sets MNIST Fashion CUB

ER

Dyn. + Comp. 86.5± 1.8% 99.5± 0.0% 98.0± 0.3% 74.2± 2.0%
Compositional 82.1± 2.5% 99.5± 0.0% 97.8± 0.3% 65.5± 2.4%
Joint 72.8± 4.1% 98.9± 0.3% 97.0± 0.7% 47.6± 6.2%
No Comp. 47.4± 4.5% 91.8± 1.3% 83.5± 2.5% 7.1± 0.4%

EWC

Dyn. + Comp. 75.1± 3.2% 98.7± 0.5% 97.1± 0.7% 52.4± 2.9%
Compositional 71.3± 4.0% 99.4± 0.0% 96.1± 0.9% 44.8± 3.5%
Joint 52.2± 5.0% 85.1± 5.5% 88.6± 3.8% 17.5± 1.5%
No Comp. 28.9± 2.8% 52.9± 1.6% 52.5± 1.4% 5.0± 0.4%

NFT

Dyn. + Comp. 75.5± 3.2% 99.1± 0.3% 96.2± 0.9% 53.3± 2.8%
Compositional 70.6± 3.8% 98.5± 0.5% 95.6± 0.8% 44.2± 3.5%
Joint 52.7± 4.9% 85.5± 4.9% 88.5± 3.7% 18.4± 1.7%
No Comp. 34.6± 3.7% 61.3± 3.8% 59.8± 3.6% 8.7± 0.5%

FM Dyn. + Comp. 83.8± 2.0% 99.6± 0.0% 98.3± 0.3% 68.7± 1.5%
Compositional 74.6± 3.1% 99.5± 0.0% 98.1± 0.3% 50.3± 2.0%

formance over baselines, highlighting the benefits of splitting the learning process into assimilation
and accommodation. For CUB, the results were more nuanced, with very fast accommodation rates
achieving lower accuracy than the baselines. This is consistent with our results in Table 3, where
compositional FM, equivalent to compositional ER with a schedule of infinite assimilation steps per
accommodation step, performed nearly as well as compositional ER with a single adaptation epoch.

G COMPLETE RESULTS ON SEQUENCES OF DIVERSE TASKS

We now describe in more detail the experimental setting used to obtain the results in Section 5.2.4
in the main paper, and provide the complete table of results using all our instantiations and baselines
on the Combined data set.

We combined the 10 MNIST tasks, 10 Fashion tasks, and 20 CUB tasks into a single lifelong learn-
ing data set with T = 40 tasks, and trained all our methods on this new Combined data set. None
of the methods were informed in any way that the tasks came from different data sets, and each
learner was simply required to learn all tasks consecutively exactly as in the remaining experiments.
We used the soft layer ordering structure, with the architecture used for the CUB tasks described in
Appendix E. Only CUB images were processed with the pre-trained ResNet-18, whereas MNIST
and Fashion images where fed directly to the task-specific input transformation E(t).
The results are summarized in Table G.5. As expected, our methods clearly outperformed all base-
lines, by a much wider margin than in the single-data-set settings of Section 5.2.2 in the main pa-
per. In particular, no-components baselines (those with monolithic architectures) were completely
incapable of learning to solve the CUB tasks. Even the jointly trained variants, which do have com-
positional structures but learn them naı̈vely with existing lifelong methods, failed drastically. Our
methods were far better, especially when using ER as the base adaptation method.

Note that, in order to match the requirements of the CUB data set, the architecture we used gave
MNIST and Fashion a higher capacity (layers of size 256 vs 64) and the ability to train the input
transformation for each task individually (instead of keeping it fixed) compared to the architecture
described in Appendix E. This explains the higher performance of most methods in those two data
sets compared to the results in Table 3 in the main paper.

H VISUALIZATION OF THE LEARNED COMPONENTS

The primary motivation for our framework was the creation of lifelong learning algorithms capable
of discovering self-contained, reusable components, useful for solving a variety of tasks. In this
section, provide additional details about the visualization experiment of Section 5.3, as well as a
more comprehensive study of various components and a comparison to the joint ER baseline.
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Figure H.7: Visualization of reconstructed MNIST “4” digits on the last two tasks seen by the
compositional and joint variants of ER with soft layer ordering, varying the intensity with which
component i = 0 is selected. Compositional ER learned a component that performs a functional
primitive: the more intensely the component is selected (moving from left to right on each row), the
thinner the lines of the digit become. The magnitude of this effect decreases with depth (moving
from top to bottom), with the digit completely disappearing as the component is more intensely
selected at the earliest layers, but only becoming slightly sharper with intensity at the deepest layers.
This effect is consistent across both tasks. Joint ER did not exhibit this consistent behavior, with
different effects observed at different depths and for the different tasks.
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Figure H.8: Visualization of reconstructed MNIST “4” digits, varying the intensity of component
i = 1. The component learned via compositional ER consistently decreases the length of the left
side of the digit and increases that of the right side. Again, we were unable to detect any consistency
in the effect of the component learned via joint ER.

We followed the visualization experiment of Meyerson & Miikkulainen (2018), where each task
corresponded to a single image of the digit “4”, and each pixel in the image constituted one data-
point. The x, y coordinates of the pixel were used as features, and the pixel’s intensity was the
associated label. Pixel coordinates and intensities were normalized to [0, 1]. All pixels in the image
were treated as training data, since we were interested in understanding the learned representations,
as opposed to generalizing to unseen data. Our network had k = 4 components shared across all
tasks, and used soft layer ordering to learn the structure s(t) for each task. We used a linear input
transformation layer E(t) shared across all tasks, and a shared sigmoid output transformation layer
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Figure H.9: Visualization of reconstructed MNIST “4” digits, varying the intensity of component
i = 2. As the intensity of the component learned via compositional ER increased, the digit changed
from very sharp to very smooth. Joint ER again did not exhibit any consistent behavior.
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Figure H.10: Visualization of reconstructed MNIST “4” digits, varying the intensity of component
i = 3. This component also interpolates between sharper and smoother digits, while also rotating
the digit. There was no consistency in the behavior of the component learned by Joint ER.

D(t). Sharing the input and output transformations across tasks ensures that the only differences
across the models of the different tasks are due to the structure of each task over the components.
We trained the network to minimize the binary cross-entropy loss on T = 10 tasks for 1,000 epochs
via the compositional and jointly trained versions of ER with a replay buffer and batch size of 32
pixel instances, updating the components of the compositional version every 100 epochs.

To evaluate the ability of compositional ER to capture reusable functional primitives, we observed
the reconstructed images output by our network as we varied the intensity ψ(t)

i,j with which one
specific component i is chosen at different depths j in the network. We focused our evaluation
on the last two tasks seen by the learner, in order to disregard the effects of catastrophic forgetting,
which rendered the visualizations of the outputs of the joint ER baseline incomprehensible for earlier
tasks. Figures H.7–H.10 show these reconstructions as the intensity of each component individually
varies at different depths. The components learned with compositional ER learned to produce effects
on the digits consistent across tasks, with more extreme effects at the initial layers. In contrast, joint
ER learned components whose effects are different for different tasks and at different depths.
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