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Abstract

Policy gradient methods have shown success in learning control policies for high-
dimensional dynamical systems. Their biggest downside is the amount of explo-
ration they require before yielding high-performing policies. In a lifelong learning
setting, in which an agent is faced with multiple consecutive tasks over its lifetime,
reusing information from previously seen tasks can substantially accelerate the
learning of new tasks. We provide a novel method for lifelong policy gradient
learning that trains lifelong function approximators directly via policy gradients,
allowing the agent to benefit from accumulated knowledge throughout the en-
tire training process. We show empirically that our algorithm learns faster and
converges to better policies than single-task and lifelong learning baselines, and
completely avoids catastrophic forgetting on a variety of challenging domains.

1 Introduction

Policy gradient (PG) methods have been successful in learning control policies on high-dimensional,
continuous systems [33, 23, 34]. However, like most methods for reinforcement learning (RL), they
require the agent to interact with the world extensively before outputting a functional policy. In some
settings, this experience is prohibitively expensive, such as when training an actual physical system.

If an agent is expected to learn multiple consecutive tasks over its lifetime, then we would want it to
leverage knowledge from previous tasks to accelerate the learning of new tasks. This is the premise of
lifelong RL methods. Most previous work in this field has considered the existence of a central policy
that can be used to solve all tasks the agent will encounter [21, 35]. If the tasks are sufficiently related,
this model serves as a good starting point for learning new tasks, and the main problem becomes how
to avoid forgetting the knowledge required to solve tasks encountered early in the agent’s lifetime.

However, in many cases, the tasks the agent will encounter are less closely related, and so a single
policy is insufficient for solving all tasks. A typical approach for handling this (more realistic)
setting is to train a separate policy for each new task, and then use information obtained during
training to find commonalities to previously seen tasks and use these relations to improve the learned
policy [6, 5, 19]. Note that this only enables the agent to improve policy performance after an initial
policy has been trained. Such methods have been successful in outperforming the original policies
trained independently for each task, but unfortunately do not allow the agent to reuse knowledge from
previous tasks to more efficiently search for policies, and so the learning itself is not accelerated.

We propose a novel framework for lifelong RL via PG learning that automatically leverages prior
experience during the training process of each task. In order to enable learning highly diverse
tasks, we follow prior work in lifelong RL by searching over factored representations of the policy-
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parameter space to learn both a shared repository of knowledge and a series of task-specific mappings
to constitute individual task policies from the shared knowledge.

Our algorithm, lifelong PG: faster training without forgetting (LPG-FTW) yields high-performing
policies on a variety of benchmark problems with less experience than independently learning each
task, and avoids the problem of catastrophic forgetting [24]. Moreover, we show theoretically that
LPG-FTW is guaranteed to converge to a particular approximation to the multi-task objective.

2 Related work

A large body of work in lifelong RL is based on parameter sharing, where the underlying relations
among multiple tasks are captured by the model parameters. The key problem is designing how to
share parameters across tasks in such a way that subsequent tasks benefit from the earlier tasks, and
the modification of the parameters by future tasks does not hinder performance of the earlier tasks.

Two broad categories of methods have arisen that differ in the way they share parameters.

The first class of lifelong RL techniques, which we will call single-model, assumes that there is one
model that works for all tasks. These algorithms follow some standard single-task learning (STL)
PG algorithm, but modify the PG objective to encourage transfer across tasks. A prominent example
is elastic weight consolidation (EWC) [21], which imposes a quadratic penalty for deviating from
earlier tasks’ parameters to avoid forgetting. This idea has been extended by modifying the exact
form of the penalty [22, 42, 26, 29, 10, 37], but most of these approaches have not been evaluated in
RL. An alternative approach has also been proposed that first trains an auxiliary model for each new
task and subsequently discards it and distills any new knowledge into the single shared model [35].
In order for single-model methods to work, they require one of two assumptions to hold: either all
tasks must be very similar, or the model must be over-parameterized to capture variations among
tasks. The first assumption is clearly quite restrictive, as it would preclude the agent from learning
highly varied tasks. The second, we argue, is just as restrictive, since the over-parameterization is
finite, and so the model can become saturated after a (typically small) number of tasks.

The second class, which we will call multi-model, assumes that there is a set of shared parameters,
representing a collection of models, and a set of task-specific parameters, to select a combination
of these models for the current task. A classical example is PG-ELLA [6, 5, 19], which assumes
that each task’s parameters are factored as a linear combination of dictionary elements. A similar
approach uses tensor factorization for deep nets [43], but in a batch multi-task setting. In a first stage,
these methods learn a policy for each task in isolation (i.e., ignoring any information from other
tasks) to determine similarity to previous policies, and in a second stage, the parameters are factored
to improve performance via transfer. The downside of this is that the agent does not benefit from
prior experience during initial training, which is critical for efficient learning in a lifelong RL setting.

Our approach, LPG-FTW, uses multiple models like the latter category, but learns these models
directly via PG learning like the former class. This enables LPG-FTW to be flexible and handle
highly varied tasks while also benefiting from prior information during the learning process, thus
accelerating the training. A similar approach has been explored in the context of model-based RL [25],
but their focus was discovering when new tasks were encountered in the absence of task indicators.

Other approaches store experiences in memory for future replay [18, 30] or use a separate model for
each task [31, 14]. The former is not applicable to PG methods without complex and often unreliable
importance sampling techniques, while the latter is infeasible when the number of tasks grows large.

Meta-RL [9, 11, 15, 8] and multi-task RL [27, 36, 40, 43] also seek to accelerate learning by reusing
information from different tasks, but in those settings the agent does not handle tasks arriving
sequentially and the consequent problem of catastrophic forgetting. Instead, there is a large batch of
tasks available for training and evaluation is done either on the same batch or on a target task.

3 Reinforcement learning via policy gradients

In a Markov decision process (MDP) 〈X ,U , T,R, γ〉, X ⊆ Rd is the set of states, U ⊆ Rm is the set
of actions, T : X ×U ×X 7→ [0, 1] is the probability P (x′ | x,u) of going to state x′ after executing
action u in state x, R : X × U 7→ R is the reward function measuring the goodness of a state-action
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pair, and γ ∈ [0, 1) is the discount factor for future rewards. A policy π : X × U 7→ [0, 1] prescribes
the agent’s behavior as a probability P (u | x) of selecting action u in state x. The goal of RL is to
find the policy π∗ that maximizes the expected returns E

[∑∞
i=0 γ

iRi
]
, where Ri = R(xi,ui).

PG algorithms have shown success in solving continuous RL problems by assuming that the policy
πθ is parameterized by θ ∈ Rd and searching for the set of parameters θ∗ that optimizes the long-
term rewards: J (θ) = E

[∑∞
i=0 γ

iRi
]

[33, 23, 34]. Different approaches use varied strategies for
estimating the gradient∇θJ (θ). However, the common high-level idea is to use the current policy
πθ to sample trajectories of interaction with the environment, and then estimating the gradient as the
average of some function of the features and rewards encountered through the trajectories.

4 The lifelong learning problem

We frame lifelong PG learning as online multi-task learning of policy parameters. The agent will face a
sequence of tasksZ(1), . . . ,Z(Tmax) , each of which will be an MDPZ(t) = 〈X (t),U (t), T (t), R(t), γ〉.
Tasks are drawn i.i.d. from a fixed, stationary environment; we formalize this assumption in Sec-
tion 5.4. The goal of the agent is to find the policy parameters

{
θ(1), . . . ,θ(Tmax)

}
that maximize the

performance across all tasks: 1
Tmax

∑Tmax

t=1 E
∑∞
i=0 γ

iR
(t)
i . We do not assume knowledge of the total

number of tasks, the order in which tasks will arrive, or the relations between different tasks.

Upon observing each task, the agent will be allowed to interact with the environment for a limited
time, typically insufficient for obtaining optimal performance without exploiting information from
prior tasks. During this time, the learner will strive to discover any relevant information from the
current task to 1) relate it to previously stored knowledge in order to permit transfer and 2) store
any newly discovered knowledge for future reuse. At any time, the agent may be evaluated on any
previously seen task, so it must retain knowledge from all early tasks in order to perform well.

5 Lifelong policy gradient learning Algorithm 1 LPG-FTW(d, k, λ, µ,M )

T ← 0, L← initializeL(d, k)
loop
t← getTask()
if isNewTask(t) then
s(t) ← initializeSt(k)
T ← T + 1

else
A← A− 2

(
s(t)s(t)

>)⊗H(t)

b← b− s(t) ⊗
(
−g(t) + 2H(t)α(t)

)
for i = 1, . . . , N do

T← getTrajectories(Ls(t))
s(t)← PGStep(T,L, s(t), µ)
if i mod M = 0 then
α(t) ← Ls(t)

g(t),H(t) ← gradAndHess(α(t))

Atmp ← A+ 2
(
s(t)s(t)

>)⊗H(t)

btmp ← b+s(t)⊗
(
−g(t)+2H(t)α(t)

)
vec(L)←

(
1
TAtmp−2λI

)−1( 1
T btmp

)
A← Atmp, b← btmp

Our framework for lifelong PG learning uses
factored representations. The central idea is as-
suming that the policy parameters for task t can
be factored into θ(t) ≈ Ls(t), where L ∈ Rd×k
is a shared dictionary of policy factors and
s(t) ∈ Rk are task-specific coefficients that se-
lect components for the current task. We further
assume that we have access to some base PG
algorithm that, given a single task, is capable of
finding a parametric policy that performs well
on the task, although not necessarily optimally.

Upon encountering a new task Z(t), LPG-FTW
(Algorithm 1) will use the base learner to opti-
mize the task-specific coefficients s(t), without
modifying the knowledge base L. This corre-
sponds to searching for the optimal policy that
can be obtained by combining the factors of L.
Every M � 1 steps, the agent will update the
knowledge base L with any relevant informa-
tion collected from Z(t) up to that point. This
allows the agent to search for policies with an
improved knowledge base in subsequent steps.

Concretely, the agent will strive to solve the following optimization during the training phase:

s(t) = arg max
s

`(Lt−1, s) = arg max
s

J (t)(Lt−1s)− µ‖s‖1 , (1)

where Lt−1 denotes the L trained up to task Z(t−1), J (t)(·) is any PG objective, and the `1 norm
encourages sparsity. Following Bou Ammar et al. [6], the agent will then solve the following second-
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order approximation to the multi-task objective to add knowledge from task Z(t) into the dictionary:

Lt = arg max
L

ĝt(L) = arg max
L

−λ‖L‖2F +
1

t

t∑
t̂=1

ˆ̀(L, s(t̂),α(t̂),H(t̂), g(t̂)) , (2)

where ˆ̀(L, s(t̂),α(t̂),H(t̂), g(t̂)) = −µ‖s(t̂)‖1 + ‖α(t̂) − Ls(t̂)‖2
H(t̂) + g(t̂)>(Ls(t̂) − α(t̂)) is

the second-order approximation to the objective of a previously seen task, Z(t̂). The gradient
g(t̂) = ∇θJ (t̂)(θ)

∣∣
θ=α(t̂) and Hessian H(t̂) = 1

2∇θ,θ>J
(t̂)(θ)

∣∣
θ=α(t̂) are evaluated at the policy

for task Z(t̂) immediately after training, α(t̂) = Lt̂−1s
(t̂). The solution to this optimization can be

obtained in closed form as vec(Lt) = A−1b, whereA = −2λI + 2
t

∑t
t̂=1(s(t̂)s(t̂)>)⊗H(t̂) and

b = 1
t

∑t
t̂=1 s

(t̂) ⊗ (−g(t̂) + 2H(t̂)α(t̂)). Notably, these can be computed incrementally as each
new task arrives, so that L can be updated without preserving data or parameters from earlier tasks.
Moreover, the HessiansH(t̂) needed to computeA and b can be discarded after each task if the agent
is not expected to revisit tasks for further training. If instead the agent will revisit tasks multiple times
(e.g., for interleaved multi-task learning), then eachH(t̂) must be stored at a cost of O(d2Tmax).

Intuitively, in Equation 1 the agent leverages knowledge from all past tasks while training on taskZ(t),
by searching for θ(t) in the span of Lt−1. This makes LPG-FTW fundamentally different from prior
multi-model methods that learn each task’s parameter vector in isolation and subsequently combine
prior knowledge to improve performance. One potential drawback is that, by restricting the search to
the span of Lt−1, we might miss other, potentially better, policies. However, any set of parameters
far from the space spanned by Lt−1 would be uninformative for the multi-task objective, since the
approximations to the previous tasks would be poor near the current task’s parameters and vice
versa. In Equation 2, LPG-FTW approximates the loss around the current set of parameters α(t)

via a second-order expansion and finds the Lt that optimizes the average approximate cost over all
previously seen tasks, ensuring that the agent does not forget the knowledge required to solve them.

Time complexity LPG-FTW introduces an overhead ofO(k×d) per PG step, due to the multiplica-
tion of the gradient byL>. Additionally, every M � 1 steps, the update step ofL takes an additional
O(d3k2). If the number of parameters d is too high, we could use faster techniques for solving the
inverse ofA in Equation 2, like the conjugate gradient method, or approximate the Hessian with a
Kronecker-factored (KFAC) or diagonal matrix. While we didn’t use these approximations, they work
well in related methods [6, 29], so we expect LPG-FTW to behave similarly. However, note that the
time complexity of LPG-FTW is constant w.r.t. the number of tasks seen, since Equation 2 is solved
incrementally. This applies to diagonal matrices, but not to KFAC matrices, which require storing all
Hessians and recomputing the cost for every new task, which is infeasible for large numbers of tasks.

5.1 Knowledge base initialization Algorithm 2 InitializeL(d, k, λ, µ)

T ← 0, L←empty(d, 0)
while T < k do

t←getTask()
s(t) ←initializeSt(k)
T ← T + 1
for i = 1, . . . , N do

T← getTrajectories(Ls(t))
s(t), ε(t) ← PGStep(T,L, s(t), ε(t), µ)

L← addColumn(L, ε(t))
α(t) ← Ls(t) + ε(t)

g(t),H(t) ← gradAndHess(α(t))
A← A+ 2

(
s(t)s(t)

>)⊗H(t)

b← b+ s(t) ⊗
(
−g(t) + 2H(t)α(t)

)

The intuition we have built holds only when
a reasonably good L matrix has already been
learned. But what happens at the beginning of
the learning process, when the agent has not yet
seen a substantial number of tasks? If we take
the naïve approach of initializing L at random,
then the s(t)’s are unlikely to be able to find a
well-performing policy, and so updates toL will
not leverage any useful information.

One common alternative is to initialize the k
columns of L with the STL solutions to the
first k tasks. However, this method prevents
tasks Z(2), . . . ,Z(k) from leveraging informa-
tion from earlier tasks, impeding them from
achieving potentially higher performance. Moreover, several tasks might rediscover information,
leading to wasted training time and capacity of L.

We propose an initialization method (Algorithm 2) that enables early tasks to leverage knowledge
from previous tasks and prevents the discovery of redundant information. The algorithm starts from
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an empty dictionary and adds error vectors ε(t) ∈ Rd for the initial k tasks. For each task Z(t), we
modify Equation 1 for learning s(t) by adding ε(t) as additional learnable parameters:

s(t), ε(t) = arg max
s,ε

J (t)(Lt−1s+ ε)− µ‖s‖1 − λ‖ε‖22 .

Each ε(t) finds knowledge of task Z(t) not contained in L and is then incorporated as a new column
of L. Note that this initialization process replaces the standard PG training of tasks Z(1), . . . ,Z(k),
and therefore does not require collecting additional data beyond that required by the base PG method.

5.2 Base policy gradient algorithms

Now, we show how two STL PG learning algorithms can be used as the base learner of LPG-FTW.

5.2.1 Episodic REINFORCE

Episodic REINFORCE updates parameters as θj ← θj−1 + ηjgθj−1 , with the policy gradient given by
gθ = ∇θJ (θ) = E [

∑∞
i=0∇θ log πθ(xi,ui)A(xi,ui)], where A(x,u) is the advantage function.

LPG-FTW would then update the s(t)’s as s(t)j ← s
(t)
j−1 + ηj∇s

[
J (t)(Lt−1s)− µ‖s‖1

] ∣∣
s=s

(t)
j

,

with the gradient given by ∇s
[
J (t)(Lt−1s)− µ‖s‖1

]
= L>t−1gLt−1s − µ sign(s). The Hes-

sian for Equation 2 is given by H = 1
2E
[∑∞

i=0∇θ,θ> log πθ(xi,ui)A(xi,ui)
]
, which evalu-

ates to H = − 1
2σ2E

[∑∞
i=0 xx

>A(xi,ui)
]

in the case where the policy is a linear Gaussian (i.e.,
πθ = N (θ>x, σ)). One major drawback of this is that the Hessian is not negative definite, so Equa-
tion 2 might move the policy arbitrarily far from the original policy used for sampling trajectories.

5.2.2 Natural Policy Gradient

The natural PG (NPG) algorithm allows us to get around this issue. We use the formulation followed
by Rajeswaran et al. [28], which at each iteration optimizes maxθ g

>
θj−1

(θ − θj−1) subject to the
quadratic constraint ‖θ − θj−1‖2Fθj−1

≤ δ, where Fθ = E
[
∇θ log πθ(x,u)∇θ log πθ(x,u)>

]
is

the approximate Fisher information of πθ [20]. The base learner would then update the policy
parameters at each iteration as θj ← θj−1 + ηθF

−1
θj−1

gθj−1
, with ηθ =

√
δ/(g>θj−1

F−1θj−1
gθj−1

).

To incorporate NPG as the base learner in LPG-FTW, at each step we solve maxs g
>
s
(t)
j−1

(s− s(t)j−1)

subject to ‖s− s(t)j−1‖2F
s
(t)
j−1

≤ δ, which gives us the update: s(t)j ← s
(t)
j−1 + ηs(t)F

−1
s
(t)
j−1

g
s
(t)
j−1

. We

compute the Hessian for Equation 2 as H = − 1
ηθ
Fθj−1 using the equivalent soft-constrained

problem: Ĵ (θ) = g>θj−1
(θ − θj−1) +

‖θ−θj−1‖2Fθj−1
−δ

2ηθ
. This Hessian is negative definite, and thus

encourages the parameters to stay close to the original ones, where the approximation is valid.

5.3 Connections to PG-ELLA

LPG-FTW and PG-ELLA [6] both learn a factorization of policies into L and s(t). To optimize the
factors, PG-ELLA first trains individual task policies via STL, potentially leading to policy parameters
that are incompatible with a shared L. In contrast, our method learns the s(t)’s directly via PG
learning, leveraging shared knowledge in L to accelerate the learning and restricting the α(t)’s to the
span of L. This choice implies that, even if we find the (often infeasible) optimal s(t), this may not
result in an optimal policy, so we explicitly add a linear term in Equation 2 omitted in PG-ELLA. We
also improve PG-ELLA’s knowledge base initialization, which typically uses the policies of the first k
tasks. Instead, LPG-FTW exploits the policies from the few previously observed tasks to 1) accelerate
the learning of the earliest tasks and 2) discover k distinct knowledge factors. These improvements
enable our method to operate in a true lifelong setting, where the agent encounters tasks sequentially.
In contrast, PG-ELLA was evaluated in the easier interleaved multi-task setting, in which the agent
experiences each task multiple times, alternating between tasks frequently. These modifications
also enable applying LPG-FTW to far more complex dynamical systems than PG-ELLA, including
domains requiring deep policies, previously out of reach for factored policy learning methods.
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5.4 Theoretical guarantees

We now show that LPG-FTW converges to the optimal multi-task objective for any ordering over tasks,
despite the online approximation of keeping the s(t)’s fixed after initial training. We substantially
adapt the proofs by Ruvolo and Eaton [32] to handle the non-optimality of the α(t)’s and the fact that
the s(t)’s and L optimize different objectives. Complete proofs are available in Appendix A.

The objective defined in Equation 2, ĝ, considers the optimization of each s(t) separately with the Lt
known up to that point, and is a surrogate for our actual objective:

gt(L) =
1

t

t∑
t̂=1

max
s(t̂)

{
‖α(t̂) −Ls(t̂)‖2

H(t̂) + g(t̂)
>

(Ls(t̂) −α(t̂))− µ‖s(t̂)‖1
}
− λ‖L‖2F ,

which considers the simultaneous optimization of all s(t)’s. We define the expected objective as:

g(L) = EH(t),g(t),α(t)

[
max
s

ˆ̀(L, s,α(t),H(t), g(t))
]
,

which represents how well a particularL can represent a randomly selected task without modifications.

We show that 1) Lt becomes increasingly stable, 2) ĝt, gt, and g converge to the same value, and
3) Lt converges to a stationary point of g. These results are based on the following assumptions:

A. The tuples
(
H(t), g(t)

)
are drawn i.i.d. from a distribution with compact support.

B. The sequence {α(t)}∞t=1 is stationary and φ-mixing.
C. The magnitude of J (t)(0) is bounded by B.
D. For all L, H(t), g(t), and α(t), the largest eigenvalue (smallest in magnitude) of
L>γH

(t)Lγ is at most −κ, with κ > 0, where γ is the set of non-zero indices of
s(t) = arg maxs

ˆ̀(L, s,H(t), g(t),α(t)). The non-zero elements of the unique maximizing
s(t) are given by: s(t)γ =

(
L>γH

(t)Lγ
)−1(

L>
(
H(t)α(t) − g(t)

)
− µ sign

(
s
(t)
γ

))
.

Proposition 1. Lt −Lt−1 = O( 1
t ) .

Proof sketch. First, we show that the entries of L, s(t), and α(t) are bounded by Assumptions A and
C and the regularization terms. Next, we show that ĝt−ĝt−1 is O

(
1
t

)
–Lipschitz. We finish the proof

with the facts that Lt−1 maximizes ĝt−1 and the eigenvalues of the Hessian of ĝt−1 are bounded. �

The critical step for adapting the proof from Ruvolo and Eaton [32] to our algorithm is to introduce
the following lemma, which shows the equality of the maximizers of ` and ˆ̀.

Lemma 1. ˆ̀
(
Lt, s

(t+1),α(t+1),H(t+1), g(t+1)
)

= maxs ˆ̀
(
Lt, s,α

(t+1),H(t+1), g(t+1)
)

.
Proof sketch. The fact that the single-task objective ˆ̀ is a second-order approximation at s(t+1) of `,
along with the fact that s(t+1) is a maximizer of `, implies that s(t+1) is also a maximizer of ˆ̀. �

Proposition 2. 1. ĝt(Lt) converges a.s.
2. gt(Lt)− ĝt(Lt) converges a.s. to 0

3. gt(Lt)− ĝ(Lt) converges a.s. to 0
4. g(Lt) converges a.s.

Proof sketch. First, using Lemma 1, we show that the sum of negative variations of the stochastic
process ut = ĝt(Lt) is bounded. Given this result, we show that ut is a quasi-martingale that
converges almost surely (Part 1). This fact, along with a simple lemma of positive sequences, allows
us to prove Part 2. The final two parts can be shown due to the equivalence of g and gt as t→∞. �

Proposition 3. The distance between Lt and the set of all stationary points of g converges a.s. to 0.
Proof sketch. We use the fact that ĝt and g have Lipschitz gradients with constants independent of t.
This fact, combined with the fact that ĝt and g converge almost surely completes the proof. �

6 Experimental evaluation

We evaluated our method on a range of complex continuous control domains, showing a substantial
increase in learning speed and a dramatic reduction in catastrophic forgetting. See Appendix B for
additional details. Code and training videos are available at github.com/GRASP-ML/LPG-FTW and
on the last author’s website.
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(a) HalfCheetah gravity (b) Hopper gravity (c) Walker-2D gravity

(d) HalfCheetah body-parts (e) Hopper body-parts (f) Walker-2D body-parts

Figure 1: Average performance during training across all tasks for six MuJoCo domains. LPG-FTW
is consistently faster than STL and PG-ELLA (which by definition learn at the same pace) in achieving
proficiency, and achieves better final performance in five domains and equivalent performance in
the remaining one. EWC is faster and converges to higher performance than LPG-FTW in some
domains, but completely fails to learn in others. Shaded error bars denote standard error over five
random task orderings and parameter initializations.

Baselines We compared against STL, which does not transfer knowledge across tasks, using NPG
as described in Section 5.2.2. We then chose EWC [21] from the single-model family, which places
a quadratic penalty for deviating from earlier tasks’ parameters. Finally, we compared against
PG-ELLA, described in Section 5.3. All lifelong algorithms used NPG as the base learning method.

Evaluation procedure We chose the hyper-parameters of NPG to maximize the performance of
STL on a single task, and used those hyper-parameters for all agents. For EWC, we searched for the
regularization parameter over five tasks on each domain. For LPG-FTW and PG-ELLA, we fixed all
regularization parameters to 10−5 and the number of columns inL to k=5, unless otherwise noted. In
LPG-FTW, we used the simplest setting for the update schedule of L, M=N . All experiments were
repeated over five trials with different random seeds for parameter initialization and task ordering.

6.1 Empirical evaluation on OpenAI Gym MuJoCo domains

We first evaluated LPG-FTW on simple MuJoCo environments from OpenAI Gym [38, 7]. We
selected the HalfCheetah, Hopper, and Walker-2D environments, and created two different evaluation
domains for each: a gravity domain, where each task corresponded to a random gravity value between
0.5g and 1.5g, and a body-parts domain, where the size and mass of each of four parts of the body
(head, torso, thigh, and leg) was randomly set to a value between 0.5× and 1.5× its nominal value.
These choices led to highly diverse tasks, as we show in Appendix C. We generated tasks using the
gym-extensions [16] package, but modified it so each body part was scaled independently.

We created Tmax = 20 tasks for HalfCheetah and Hopper domains, and Tmax = 50 for Walker-2D
domains. The agents were allowed to train on each task for a fixed number of iterations before moving
on to the next. For these simple experiments, all agents used linear policies. For the Walker-2D
body-parts domain, we set the capacity of L to k = 10, since we found empirically that it required a
higher capacity. The NPG hyper-parameters were tuned without body-parts or gravity modifications.

Figure 1 shows the average performance over all tasks as a function of the NPG training iterations.
LPG-FTW consistently learned faster than STL, and obtained higher final performance on five out
of the six domains. Learning the task-specific coefficients s(t) directly via policy search increased
the learning speed of LPG-FTW, whereas PG-ELLA was limited to the learning speed of STL, as
indicated by the shared learning curves. EWC was faster than LPG-FTW in reaching high-performing
policies in four domains, primarily due to the fact that EWC uses a single shared policy across all
tasks, which enables it to have starting policies with high performance. However, EWC failed to
even match the STL performance in two of the domains. We hypothesize that this was due to the
fact that the tasks were highly varied (particularly in the body-parts domains, since there were four
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(a) HalfCheetah gravity (b) Hopper gravity (c) Walker-2D gravity

(d) HalfCheetah body-parts (e) Hopper body-parts (f) Walker-2D body-parts

Figure 2: Average performance at the beginning of training (start), after all training iterations (tune,
equivalent to the final point in Figure 1), after the update step for PG-ELLA and LPG-FTW (update),
and after all tasks have been trained (final). The update step in LPG-FTW never hinders performance,
and even after all tasks have been trained performance is maintained. PG-ELLA always performed
worse than STL. EWC suffered from catastrophic forgetting in five domains, in two resulting in
degradation below initial performance. Error bars denote standard error over five random task
orderings and parameter initializations.

different axes of variation), and the single shared policy was unable to perform well in all domains.
Appendix D shows an evaluation with various versions of EWC attempting to alleviate these issues.

Results in Figure 1 consider only how fast the agent learns a new task using information from earlier
tasks. PG-ELLA and LPG-FTW then perform an update step (Equation 2 for LPG-FTW) where they
incorporate knowledge from the current task into L. The third bar from the left per each algorithm
in Figure 2 shows the average performance after this step, revealing that LPG-FTW maintained
performance, whereas PG-ELLA’s performance decreased. This is because LPG-FTW ensures that
the approximate objective is computed near points in the parameter space that the current basis L can
generate, by finding α(t) via a search over the span of L. A critical component of lifelong learning
algorithms is their ability to avoid catastrophic forgetting. To evaluate the capacity of LPG-FTW to
retain knowledge from earlier tasks, we evaluated the policies obtained from the knowledge base L
trained on all tasks, without modifying the s(t)’s. The rightmost bar in each algorithm in Figure 2
shows the average final performance across all tasks. LPG-FTW successfully retained knowledge of
all tasks, showing no signs of catastrophic forgetting on any of the domains. The PG-ELLA baseline
suffered from forgetting in all domains, and EWC in all but one of the domains. Moreover, the final
performance of LPG-FTW was the best among all baselines in all but one domain.

6.2 Empirical evaluation on more challenging Meta-World domains

Results so far show that our method improves performance and completely avoids forgetting in
simple settings. To showcase the flexibility of our framework, we evaluated it on Meta-World [41], a
substantially more challenging benchmark, whose tasks involve using a simulated Sawyer robotic
arm to manipulate various objects in diverse ways, and have been shown to be notoriously difficult
for state-of-the-art multi-task learning and meta-learning algorithms. Concretely, we evaluated all
methods on sequential versions of the MT10 benchmark, with Tmax = 10 tasks, and the MT50
benchmark, using a subset of Tmax = 48 tasks. We added an experience replay (ER) baseline that
uses importance sampling over a replay buffer from all previous tasks’ data to encourage knowledge
retention, with a 50-50 replay rate as suggested by Rolnick et al. [30]. We chose the NPG hyper-
parameters on the reach task, which is the simplest task from the benchmark. For LPG-FTW and
PG-ELLA, we fixed the number of latent components as k = 3. All algorithms used a Gaussian policy
parameterized by a multi-layer perceptron with two hidden layers of 32 units and tanh activation.
We also evaluated EWC with a higher capacity (EWC_h), with 50 hidden units for MT10 and 40 for
MT50, to ensure that it was given access to approximately the same number of parameters as our
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(a) Meta-World MT10 (b) Meta-World MT50

Figure 3: Performance on the Meta-World benchmark. Top: average performance during training
across all tasks. Bottom: average performance at the beginning of training (start), after all training
iterations (tune), after the update step for PG-ELLA and LPG-FTW (update), and after all tasks
have been trained (final). In this notoriously challenging benchmark, LPG-FTW still improves the
performance of STL and all baselines, and suffers from no catastrophic forgetting.

method. Given the high diversity of the tasks considered in this evaluation, we allowed all algorithms
to use task-specific output layers, in order to specialize policies to each individual task.

The top row of Figure 3 shows average learning curves across tasks. LPG-FTW again was faster in
training, showing that the restriction that the agent only train the s(t)’s for each new task does not
harm its ability to solve complex, highly diverse problems. The difference in learning speed was
particularly noticeable in MT50, where single-model methods became saturated. To our knowledge,
this is the first time lifelong transfer has been shown on the challenging Meta-World benchmark. The
bottom row of Figure 3 shows that LPG-FTW suffered from a small amount of forgetting on MT10.
However, on MT50, where L trained on sufficient tasks for convergence, our method suffered from
no forgetting. In contrast, none of the baselines was capable of accelerating the learning, and they all
suffered from dramatic forgetting, particularly on MT50, when needing to learn more tasks. Adding
capacity to EWC did not substantially alter these results, showing that our method’s ability to handle
highly varied tasks does not stem from its higher capacity from using k factors, but instead to the use
of different models for each task by intelligently combining the shared latent policy factors.

Conclusion

We proposed a method for lifelong PG learning that enables RL learners to quickly learn to solve
new tasks by leveraging knowledge accumulated from earlier tasks. We showed empirically that our
method, LPG-FTW, does not suffer from catastrophic forgetting, and therefore permits learning a
large number of tasks in sequence. Moreover, we prove theoretically that our algorithm is guaranteed
to converge to the approximate multi-task objective, despite operating completely online.

Our method can be viewed as an improvement over the popular PG-ELLA algorithm [6], which to
date had not been applicable to highly complex and diverse RL problems like we study in this work,
especially in our evaluation on the Meta-World benchmark.

Two of the primary limitations of our work are the reliance on task indicators (t) to reconstruct
individual task policies via the s(t)’s, and the assumption that the world is stationary and tasks
are drawn i.i.d. One possible way to address the former challenge is to assume each new batch
of experiences comes from a new task, as has been done in prior work [25]. However, note that
this would require a small amount of retraining at evaluation time, since the agent would need to
discover which task is currently being tested. To address the latter challenge of non-stationarity, our
initialization method in Section 5.1 could be extended to dynamically add and remove factors as the
environment shifts over time. We leave this avenue of investigation open for future work.
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Broader Impact

One of the key contributions of our work is reducing the amount of experience required by RL agents
to achieve proficiency at a multitude of tasks. The method we present here is a first plausible solution
to solving a highly diverse set of RL tasks in a lifelong setting. Research in this direction that further
reduces the amount of experience required to learn proficient policies would enable RL training on
systems where experience is expensive, such as training real robotic systems or learning policies for
medical treatments. In these settings, training RL policies has been impractical to date, but could
potentially have a large positive impact by discovering policies superior to those conceivable by
human experts with domain knowledge.
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