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Abstract

A hallmark of human intelligence is the ability
to construct self-contained chunks of knowledge
and reuse them in novel combinations for solving
different problems. To date, research into compo-
sitional learning has largely proceeded separately
from work on continual learning. We present a
general-purpose framework for continual learning
of compositional structures, which separates the
learning process into two broad stages: learning
how to combine existing components to assimilate
a novel problem, and learning how to adapt exist-
ing components to accommodate the new problem.
This separation trades off the stability required to
remember how to solve earlier tasks and the flexi-
bility required to solve new tasks.

1. Introduction

A major goal of artificial intelligence is to create an agent
capable of acquiring a general understanding of the world.
Such an agent would require the ability to continually accu-
mulate and build upon its knowledge. Continual learning
addresses this setting, whereby an agent faces a sequence
of problems and must strive to capture the knowledge nec-
essary for solving each new task it encounters. If the agent
accumulates knowledge in some form of compositional rep-
resentation, it could then selectively reuse and combine
relevant pieces of knowledge to construct novel solutions.

We investigate how to learn compositional structures in a
continual learning setting, and propose a framework agnos-
tic to the specific algorithms used for learning and the form
of the structures being learned. Evoking Piaget’s (Piaget,
1976) assimilation and accommodation stages of intellectual
development, this framework embodies the benefits of divid-
ing the continual learning process into two stages: striving
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to solve a new task by combining existing components, and
using discoveries from the new task to improve existing
components and to construct fresh components if necessary.

Our framework can incorporate various forms of compo-
sitional structures and different mechanisms for avoiding
catastrophic forgetting. As examples, it can incorporate
naive fine-tuning, experience replay, and elastic weight con-
solidation (Kirkpatrick et al., 2017) as knowledge retention
mechanisms, and linear combinations of linear models (Ru-
volo & Eaton, 2013) and soft layer ordering (Meyerson &
Miikkulainen, 2018) as the compositional structures. We
instantiate our framework with these examples, and evaluate
it on eight data sets, showing that separating the continual
learning process into two stages increases the capabilities
of the learning system, reducing catastrophic forgetting and
achieving higher overall performance.

2. Related Work

In continual learning, agents must learn multiple tasks se-
quentially, and should accumulate knowledge so as to more
efficiently learn to solve new problems. Recent efforts have
mainly focused on avoiding catastrophic forgetting. Differ-
ent algorithms define parts of models to share across tasks.
As the agent encounters tasks, it strives to retain the knowl-
edge that enabled it to solve earlier tasks. One common
approach is to impose regularization to prevent parameters
from deviating in directions that would harm performance
on the early tasks (Kirkpatrick et al., 2017; Zenke et al.,
2017; Li & Hoiem, 2017; Ritter et al., 2018). Another ap-
proach retains a buffer of data from all tasks, and updates
the model parameters with data from all tasks, thereby main-
taining the knowledge required to solve them (Lopez-Paz &
Ranzato, 2017; Nguyen et al., 2018; Isele & Cosgun, 2018).

These approaches avoid catastrophic forgetting, but do not
seek to discover reusable knowledge. Although model pa-
rameters are reused across tasks, it is unclear what this
reusability means, and the way parameters are reused is
hard-coded into the architecture design. This latter issue is
a major drawback when learning highly varied tasks, as the
way in which tasks are connected is often unknown. Algo-
rithms should determine these connections autonomously.
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Other approaches learn factored or clustered models (Ru-
volo & Eaton, 2013; Nagabandi et al., 2019). These algo-
rithms learn a set of models that are reusable across tasks
and automatically select how to reuse them. However, such
methods selectively reuse entire models, enabling knowl-
edge reuse, but not explicitly in a compositional manner.

A mostly distinct line of work has explored the learning of
compositional knowledge. The majority of such methods
either learn the structure for piecing together a given set
of components (Xu et al., 2018; Bunel et al., 2018; Cai
etal., 2017) or learn the set of components given a known
structure for how to compose them (Bosnjak et al., 2017).

When neither the structure nor the set of components are
given and the agent must autonomously discover both, some
approaches assume access to a solution descriptor (e.g., in
natural language), which the agent can map to a solution
structure (Hu et al., 2017; Johnson et al., 2017; Pahuja et al.,
2019). Other approaches do not make such an assumption,
and instead learn directly from optimization of a cost func-
tion (Rosenbaum et al., 2018; Kirsch et al., 2018; Meyerson
& Miikkulainen, 2018; Alet et al., 2018; Chang et al., 2019).

Approaches above assume access to a large batch of tasks,
making it possible to evaluate numerous combinations of
components and structures on all tasks simultaneously.
More realistically, the agent will face tasks in a continual
learning fashion. Most work in this line assumes that each
component can be fully learned by training on a single task,
and then can be reused for other tasks (Reed & de Freitas,
2016; Fernando et al., 2017; Valkov et al., 2018). Unfortu-
nately, this is infeasible if the agent has access to little data
for each task. One exception was proposed by Gaunt et al.
(2017), which improves early components with experience
in new tasks, but is limited to very simplistic settings.

In contrast, we continually learn compositional structures
without a large batch of tasks or the ability to learn definitive
components after training on a single task. Instead, we train
on a small initial batch of tasks, and then autonomously
update the existing components to accommodate new tasks.

3. The Continual Learning Problem

We frame continual learning as online multi-task learning.
The agent (Figure 1) will face a sequence of tasks over
its lifetime. Each task will be a learning problem defined
by a cost function £()(f*)), where the agent must learn a
prediction function ) € F : X® — Y to minimize the
cost. The solution to each task is parameterized by 8(*), such
that f(*) = fo(v). The goal of the continual learner is to find

the set of parameters {81, ..., 0(T=>)} that minimizes
the cost across all tasks: 71— S ime £ (f1), The total

number of tasks, the order in which these tasks will arrive,
and the task relationships are all unknown.
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Figure 1: In continual compositional learning, a set of com-
ponents are initialized from a small set of tasks (1). Each
new task is learned by composing the relevant pieces of
knowledge (2), improving imperfect components (3), and
adding any new components that were discovered (4).

The agent will have access to limited data for each task,
and will strive to discover any relevant information to 1)
relate it to previously stored knowledge in order to permit
transfer and 2) store any new knowledge for future reuse.
At any time, the agent may be evaluated on any previous
task, requiring the agent to perform well on all tasks, so it
must strive to retain knowledge from even the earliest tasks.

4. The Continual Compositional Learning
Framework

Our framework for continual learning of compositional
structures will store knowledge in a set of shared compo-
nents M = {my,...,my}. Each component m; € M is
a self-contained, reusable function parameterized by ¢;
(m; = mg,) that can be combined with other compo-
nents. Given these components, the agent will reconstruct
each task’s predictive function via a task-specific structure
s X x M* s F,suchthat £ (z) = s®) (2, M)(z),
where s is parameterized by a vector 1), The structure
functions select components from M to execute for the cur-
rent task and input, and the order in which to execute them.
Concrete examples are described in Section 4.1.

Intuitively, at any point in the lifetime of an agent, it will
have acquired a strong set of components. If these compo-
nents, with minor adaptations, can be combined to solve the
current task, the agent should first learn how to reuse them
before making any modifications to them: modifications
in the early stages of training, before acquiring sufficient
knowledge about the current task, could be damaging to



Continual Learning of Compositional Structures

existing components. Once the structure has been learned,
we consider that the agent has captured sufficient knowledge
about the current task, and it would be sensible to update the
components to better accommodate it. If it is not possible to
capture the current task with the existing components, then
new components should be added. Our framework is split
into the following four steps.

Initialization = Components should be initialized to be
reusable, both across tasks and across “positions” within
a task. The latter means, for example, that the modules in
deep nets could be used at different depths. One way to
achieve this is to enforce a random structure for an initial set
of tasks that reuses components both at different positions
and across different tasks, and train these initial tasks jointly.

Assimilation  Approaches to finding compositional struc-
tures treat component selection as a reinforcement learning
problem, learn it via stochastic search, or define it as a
differentiable gating network or softmax selector and train
it jointly with the components via backpropagation. Our
framework will use any of these approaches to assimilate the
current task by keeping the components M fixed and learn-
ing only the structure s(*), decoupling the learning of the
structure from the learning of the components themselves.

Accommodation (1) The first step of accommodation
is incorporating newly discovered knowledge into existing
components, simultaneously avoiding catastrophic forget-
ting and incorporating new knowledge about the current
task. In non-compositional learning, approaches fine-tune
models on the current task, impose regularization to freeze
weights, or use experience replay to avoid forgetting. We
will instantiate our framework by using any of these methods
to accommodate new knowledge into existing components
once the current task has been assimilated.

Accommodation (2) In the second step of accommoda-
tion, the learner must incorporate novel components that
encode distinct knowledge than that already available. Au-
tonomously discovering new components adds the flexibility
required to handle a lifetime of learning. One way to achieve
this is to train the agent with some additional components,
and choose to keep these components only if they substan-
tially benefit the agent’s performance on the current task.

4.1. Compositional Structures

We now present two different instantiations of our frame-
work with varying compositional structures.

Linear combinations of models In the simplest setting,
each component is a linear model, composed via linear com-
binations. Specifically, we assume that X¥*) C R%, and each
task-specific function is given by fg) () = G(t)Ta:, with
0) € R%. The predictive functions are constructed from a
set of linear component functions: mg, () = ¢; ' x with

¢; € R?, by linearly combining them via a task-specific
weight vector: f()(x) = sy (@, M)(z) = ¢(t)T({>Tm)
where () ¢ R* and we have constructed the matrix
P = [¢1, ..., @] to collect all k¥ components.

Soft layer ordering To handle more complex models,
we construct modular deep nets that compute each layer’s
output as a linear combination of the outputs of multiple
modules. We assume that each module is one layer, the
number of components matches the network’s depth, and all
components share the input and output dimensions (Meyer-
son & Miikkulainen, 2018). Concretely, each component is
alayer mg, () = o(¢p; ' ), where o is any activation and
¢; € R4, Given input (€@ : X® - R?) and output
(D : R% — Y1) transformations, a matrix 1) € RF*F
weights the output of the components at each depth
s — D) o Z§:1 ’l/J(tl)mi 0---0 E?:l 1/’5277% 0 &)

i,

The weights are restricted to sum to one at each depth.

5. Experimental Evaluation

Instantiations We evaluated our framework with the ar-
chitectures of Section 4.1, varying the method for accommo-
dation (1). VAN updates components via backpropagation
with data for the current task, ignoring past tasks. EWC
quadratically penalizes deviations from the previous tasks’
parameters and carries out backpropagation on the penalized
objective. ER takes backpropagation steps with data from
a replay buffer along with the current task’s data. All algo-
rithms assimilate the current task ¢ via backpropagation on
the structure’s parameters 1) . For soft layer ordering, ac-
commodation (2) considers adding one new component for
each task, keeping it only if it yields a substantial improve-
ment in validation accuracy. Assimilation and accommoda-
tion (1) alternate backpropagation steps with and without
the new component. Intermittently bypassing the new com-
ponent ensures that, if the agent discards it, the structure
over only existing components is optimal. We denote algo-
rithms with and without accommodation (2) as dynamic +
compositional and compositional, respectively.

Baselines For each accommodation (1) method, 1) joint
baselines use compositional structures, but train components
and structures jointly, while no-components (i.e., vanilla)
baselines optimize a single architecture for all tasks. We
also trained an ablated version of our framework that keeps
all components fixed after initialization (FM), only taking
assimilation steps for each new task.

See App. A for details of data sets and empirical settings.

5.1. Linear combinations of models

Table 1 summarizes results with linear models. Compo-
sitional variants clearly outperformed joint versions, sug-
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Table 1: Average final performance across tasks using factored linear models—accuracy for FERA and Landmine (higher is

better) and RMSE for Schools (lower is better). Standard errors after +.

Base ‘ Algorithm ‘ FERA ‘ Landmine Schools
Compositional | 79.0 £0.4% | 93.6 £0.1% | 10.65 £ 0.04
ER Joint 78.2+0.4% | 90.5+0.3% 11.55 £ 0.09
No Comp. 66.4+0.3% | 93.5+0.1% | 10.34 +0.02
Compositional | 79.0 +£0.4% | 93.7+0.1% | 10.55 + 0.03
EWC | Joint 67.9+06% | 73.0+£24% | 23.324+1.99
No Comp. 57.0+0.9% | 92.7 £+ 0.4% 18.02 +1.04
Compositional | 79.0 £0.4% | 93.7 +£0.1% | 10.87 + 0.07
VAN | Joint 67.9+0.6% | 72.8+2.5% 25.80 £ 2.35
No Comp. 57.0+0.9% | 92.7 £+ 0.4% 18.01 +1.04

Table 2: Average final accuracy across tasks using soft layer ordering. Standard errors after 4.

Base ‘Algorithm \ MNIST \ Fashion \ CUB \ CIFAR \ Omniglot
Dyn. + Comp. | 97.7 £0.2% [ 96.3 £ 0.4% | 77.6 £0.8% |75.9+£0.5% | 69.0 £ 0.7%
ER Compositional | 96.5 £ 0.2% | 95.3 £0.7% | 79.2 £0.7% | 56.0 £ 0.8% | 67.8 + 1.0%
Joint 94.24+0.3% | 94.7+0.7% | 76.8 +0.5% | 63.8 £0.6% | 67.9 +£0.5%
No Comp. 91.24+0.3% | 93.1 £ 0.6% | 43.1 £ 1.0% | 49.5 +£0.8% | 40.0 £ 3.9%
Dyn. + Comp. | 97.3 £0.2% [ 96.1 £0.4% | 72.7+0.9% | 71.7 £ 0.9% | 67.7 £ 0.6%
EWC Compositional | 96.7 £0.2% | 95.3 £0.6% | 72.4+1.2% | 43.4 £ 1.1% | 52.2 + 7.3%
Joint 66.3+1.4% | 69.1+1.4% | 65.3+0.7% | 41.9+0.8% | 61.9 £ 1.1%
No Comp. 64.3+0.8% | 58.5+2.9% | 47.7+1.4% | 35.3+0.7% | 66.2 +1.0%
Dyn. + Comp. | 97.4 +0.3% | 96.0 £ 0.4% | 72.5+0.8% |69.6 £ 1.2% |67.1 + 0.6%
VAN Compositional | 96.4 £ 0.2% | 95.3 £0.6% | 73.7 £1.1% | 52.5 £ 1.3% | 65.3 £ 1.2%
Joint 67.4+1.4% | 66.1 £2.4% | 64.4+0.8% | 41.4+0.8% | 60.2 +1.1%
No Comp. 644+ 1.1% | 59.4+2.7% | 48.3 £1.9% | 34.1£0.8% | 64.7 £ 1.0%
M Dyn. + Comp. | 99.1 +£0.0% |97.0 £ 0.3% | 78.2+0.4% |74.3 +£0.9% |67.7T+0.7%
Compositional | 84.1 +0.8% | 85.9+1.3% |79.2 +0.6% | 46.0 + 1.6% | 58.3 = 3.0%

gesting that separating the learning into assimilation and
accommodation stages enables the agent to better capture
the structure of the problem. No-components variations,
which learn a single linear model for all tasks, performed
better than joint versions in two out of the three data sets,
and even outperformed our compositional ER algorithm in
one case. This indicates that the tasks in those two data sets
are so closely related that a single model can capture them.

5.2. Soft layer ordering

We then evaluated how different algorithms performed when
learning deep nets with soft layer ordering. Results in Ta-
ble 2 show that all the algorithms conforming to our frame-
work outperformed the joint and no-components learners.
In four out of the five data sets, the dynamic addition of
new components yielded either no or marginal improve-
ments. However, in the CIFAR data set, it was crucial for the
agent to be capable of detecting when new components were
needed. This added flexibility enables our learners to handle
more varied tasks, where new problems may not be solved

without substantially new knowledge. Algorithms with ac-
commodation (1) outperformed the ablated compositional
FM agent, showing that it is necessary to accommodate new
knowledge into the set of components in order to handle a
diversity of tasks. When FM was allowed to dynamically
add new components (keeping old ones fixed), it yielded
the best performance on MNIST and Fashion by adding far
more components than methods with accommodation (1),
as we show in Appendix B.

6. Conclusion

We presented a framework for learning compositional struc-
tures in a continual learning setting. The key piece of our
framework is the separation of the learning into two stages:
assimilation of new problems with existing components, and
accommodation of newly discovered knowledge into the set
of components. We showed the flexibility of our framework
instantiating it into six different algorithms, and demon-
strated empirically that algorithms within our framework
are stronger continual learners than existing approaches.
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