
Continual Learning of Compositional Structures

Appendices to
“A General Framework for

Continual Learning of Compositional Structures”
by Jorge A. Mendez and Eric Eaton

A. Experimental setting
Below, we give details of our experimental setting.

A.1. Data Sets

Linear models We used three data sets for experiment-
ing with the linear models that have previously been used
for evaluating linear continual learning models (Ruvolo &
Eaton, 2013). The Landmine data set consists of Tmax = 29
tasks, each of which requires detecting land mines in radar
readings from a different geographical region. The Facial
Recognition (FERA) data set tasks involve recognizing
one of three facial expressions for one of seven individ-
uals, for a total of Tmax = 21 tasks. Finally, the Lon-
don Schools (Schools) data set contains Tmax = 139 tasks,
each corresponding to exam score prediction in a different
school. For these three data sets, we used the same data
pre-processing and train/test split used by Ruvolo & Eaton
(2013).

Deep models We used five data sets for evaluating our
deep models. Binary MNIST (MNIST) is a common bench-
mark for continual learning algorithms, where each task
is a binary classification problem between a pair of dig-
its. We constructed Tmax = 10 tasks by randomly sam-
pling the digits, allowing digits to be reused across tasks.
The Binary Fashion MNIST (Fashion) data set is equiva-
lent in format to MNIST, but labels correspond to items
of clothing. For these two data sets, all models used a
task-specific input transformation layer E(t) initialized at
random and kept fixed throughout training, to ensure that
the input spaces were sufficiently different (Meyerson &
Miikkulainen, 2018). A more complex continual learn-
ing problem commonly used in the literature is Split CUB-
200 (CUB), where the agent must classify bird species. We
created Tmax = 20 tasks by randomly sampling ten species
for each, without replacement across tasks. CUB images
were cropped by the bounding boxes available with the data
set, and resized to 224× 224, and all agents used a frozen
ResNet-18 pre-trained on ImageNet as a feature extractor
shared across all tasks. For these first three data sets, all
architectures were simple fully-connected networks. To
show that our framework supports more complex convolu-
tional architectures, we used two additional data sets. We
constructed a continual learning version of CIFAR-100 (CI-

FAR) with Tmax = 20 tasks by randomly sampling five
classes per task, without replacement across tasks. Finally,
we used the Omniglot data set, which consists of Tmax = 50
multi-class classification problems, each corresponding to
detecting handwritten symbols in a given alphabet. The
inputs to all architectures for CIFAR and Omniglot were the
images directly, without any transformation E(t). Details
are summarized in Table A.1. For MNIST, Fashion, CUB,
and CIFAR we used the standard train/test split, and further
divided the training set into 80% for training and 20% for
validation. For Omniglot, we split the data into 80% for
training, 10% for validation, and 10% for test, for each task.
Validation sets were only used by dynamic + compositional
learners for selecting whether to keep a new components.

Details are summarized in Table A.1.

A.2. Network Architectures

We used k = 4 components for all compositional algorithms
with fixed k. This is the only architecture parameter for
linear models.

We based our soft layer ordering architectures on those used
by Meyerson & Miikkulainen (2018), whenever possible.
For MNIST and Fashion, we used a random and fixed linear
input transformation E(t) for each task, and each component
was a fully-connected layer of 64 units. For CUB, all tasks
shared a fixed ResNet-18 pre-trained on ImageNet1 to ex-
tract features, followed by a task-specific input transforma-
tion E(t) given by a linear trained layer, and each component
was a fully-connected layer of 256 units. For CIFAR, there
was no input transformation, and each component was a
convolutional layer of 50 channels with 3× 3 kernels and
padding 1, followed by a max-pooling layer of size 2× 2.
Finally, for Omniglot, there was also no input input transfor-
mation, and each component was a convolutional layer of
53 channels with 3× 3 kernels and no padding, followed by
max-pooling of 2× 2 patches. The input images to the con-
volutional nets in CIFAR and Omniglot were padded with
all-zero channels in order to match the number of channels
required by all component layers (50 and 53, respectively).
All component layers were followed by ReLU activation

1The pre-trained ResNet-18 is provided by Pytorch, and we fol-
lowed the pre-processing recommended at https://pytorch.
org/docs/stable/torchvision/models.html.

https://pytorch.org/docs/stable/torchvision/models.html
https://pytorch.org/docs/stable/torchvision/models.html


Continual Learning of Compositional Structures

Table A.1: Data set details summary.

FERA Landmine Schools MNIST Fashion CUB CIFAR Omniglot
tasks 21 29 139 10 10 20 20 50
classes 2 2 — 2 2 10 5 14–55
features 100 9 27 784 784 512 32×32×3 105×105
feat. extract. PCA — — — — ResNet-18 — —
train 225–499 222–345 11–125 ∼9500 ∼9500 ∼120 ∼2000 224–880
val — — — ∼2500 ∼2500 ∼30 ∼500 28–110
test 225–500 223–345 11–126 ∼2000 2000 ∼150 500 28–110

and a dropout layer with dropout probability p = 0.5. The
output of each network was a linear task-specific output
transformation D(t) trained individually on each task. The
architectures for jointly trained baselines were identical to
these, and those for no-components baselines had the same
layers but no mechanism to select the order of the layers.

A.3. Algorithm Details

All agents trained for 100 epochs on each task, with a mini-
batch of size 32. Compositional agents used the first 99
epochs solely for assimilation and the last epoch for accom-
modation (1). Dynamic + compositional agents followed
this same process, but every assimilation step was concur-
rently done with and without addition of a new component;
after the accommodation (1) step, the agent kept the new
component if its validation performance with the added com-
ponent represented at least a 5% relative improvement over
the performance without the additional component. Joint
agents trained all components and the structure for the cur-
rent task jointly during all 100 epochs, keeping the structure
for the previous tasks fixed, while no-components agents
trained the whole model at every epoch.

ER-based algorithms used a replay buffer of a single mini-
batch per task. Similarly, EWC-based algorithms used a
single mini-batch to compute the approximate Fisher infor-
mation matrix required for regularization, which we approx-
imated as a Kronecker-factored matrix (Kirkpatrick et al.,
2017; Ritter et al., 2018), and used a fixed regularization
parameter λ = 10−3.

To ensure a fair comparison, all algorithms, including our
baselines, used the same initialization procedure by training
the first ninit = 4 tasks jointly, in order to encourage the net-
work to generalize across tasks. For soft ordering networks,
the order of modules for the initial tasks was initialized as
a random one-hot vector for each task at each depth, ensur-
ing that each component was selected at least once. The
structures over initial tasks were kept fixed during training,
modifying only the weights of the components.

B. Number of learned components
In our experiments, it was in many cases necessary to incor-
porate an accommodation (2) step in order for our algorithm
to be sufficiently flexible to handle the stream of incoming
tasks. This accommodation (2) step enables our methods
to dynamically add new components if the existing ones
are insufficient to achieve good performance in the new
task. Table B.2 shows the number of components learned by
each dynamic algorithm using soft layer ordering, averaged
across all ten trials. Notably, in order for our methods to
work on the CIFAR data set, they required learning almost
one component per task. This explains why compositional
algorithms without dynamic component additions were in-
capable of performing well on CIFAR. Moreover, FM adds
far more components than other methods for MNIST and
Fashion, which was the only way it was able to achieve high
performance without adapting existing components.

Table B.2: Number of learned components. Standard errors
reported after the ±.

Base MNIST Fashion CUB CIFAR Omniglot
ER 5.2±0.3 4.9±0.3 5.9±0.3 19.1±0.3 9.3±0.3
EWC 5.0±0.3 4.7±0.2 5.7±0.3 19.5±0.2 10.1±0.4
VAN 5.0±0.2 4.8±0.3 6.1±0.3 17.7±0.3 10.0±0.7
FM 10.0±0.0 8.8±0.2 6.5±0.4 19.1±0.4 10.2±0.6


