
Modeling Consecutive Task Learning with Task Graph Agendas
Extended Abstract

David Isele, Eric Eaton
University of Pennsylvania

{isele,eeaton}@seas.upenn.edu

Mark Roberts, David W. Aha
Navy Center for Applied Research in AI

Naval Research Laboratory, Washington, DC
{mark.roberts,david.aha}@nrl.navy.mil

ACM Reference Format:
David Isele, Eric Eaton and Mark Roberts, David W. Aha. 2018. Modeling
Consecutive Task Learning with Task Graph Agendas. In Proc. of the 17th
International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), Stockholm, Sweden, July 10–15, 2018, IFAAMAS, 3 pages.

Recent advances in transfer, multi-task, and lifelong learning have
demonstrated that agents can efficiently learn a challenging tar-
get task through a curriculum of simpler-to-harder tasks [15]. Yet
relatively little work examines how learning can be self-directed,
especially when there can be multiple underspecified targets, or
when the environment combines their rewards, creating ambiguity.

Transitioning between tasks works best when they are simi-
lar [1] and can be done efficiently if easier (but related) tasks are
learned first [2, 12]. The task graph, introduced for classification
and regression problems by Eaton et al. [6] and applied to rein-
forcement learning (RL) by Svetlik et al. [19], is a general model of
inter-task transferability. Task graphs make the relations between
different tasks explicit, and provide methods for reasoning over the
entire domain. But computing a task graph can be costly.

Instead of measuring transferability directly we use task descrip-
tors, which provide an efficient and clearly defined mechanism
to reason about transfer [3, 5, 9, 16, 19]. While task descriptors
have been used to model transfer, they have primarily been used to
transfer to a single target task, although a single target (and often a
single source) may not always be appropriate. For example, goal
reasoning agents may be tasked with many simultaneous goals
[20]. We show that task descriptors can also be used to efficiently
construct and navigate a task graph.

Agents may not always be provided a well-defined target task
or may be asked to switch between multiple tasks in dynamic or
otherwise demanding environments. For example, an agent may
be guided to select related tasks to promote generalization [4] or
to search through task space to identify a niche where it is most
useful. We extend a transfer learning agent with an agenda, which
is a general mechanism that can handle multiple guiding principles
for how the agent should move through the space of tasks.

1 TASK GRAPHS AND AGENDAS
We assume a domain D of a set of Markov Decision Processes
(MDPs) where each MDP can be described by a collection of fea-
tures. Each task is an MDP: ⟨S,A, P ,R,γ ⟩, where S is the set of
states, and A is the set of actions that the agent may execute

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15, 2018,
Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

P : S ×A × S → [0, 1] is a transition function describing the sys-
tem’s dynamics, R : S × A × S → R is the reward function, and
γ ∈ (0, 1] is a discount factor. Informally, D captures the universe
of possible tasks an agent can encounter.

We adapt notation from Narvekar et al. [13] to define a task
graph, except we assume some attributes (e.g., degrees of freedom,
restrictions) can be expressed as features. Let T(t ) ∈ D be the t th

task from domain D . Further, let Φ(t ) ∈ Zm be the task descriptor
describing task T(t ), wherem is the number of task features. Each
feature ϕ(t )i ∈ Φ(t ) is an element in a discrete set representing a
property in D . Using features assumes that task differences can be
described directly (e.g., in Minecraft, the room for the task contains
lava or not), or indirectly (e.g., the room has more orange pixels
indicating a higher temperature).

We assume tasks are embedded in a task space that models the
transfer relationships between tasks. Tasks with a high amount of
transfer are close to each other in task space, and tasks that have
low or negative transfer are far apart. We define the transferability
from T(i) to T(j) as the change in performance on T(j) that results
from learning with and without transfer from T(i). We assume that
the tasks vary smoothly along a latent manifold that underlies the
task space; the task graph represents a discrete approximation of
this task manifold.

Let G = ⟨V ,E⟩ be a graph where the tasks V ∈ D are the
set of vertices and E ∈ V × V is the set of edges. Each edge can
be weighted by a (dis)similarityw(T(i),T(j)) between tasks. If we
assume the distance between tasks is correlated with the distance
between descriptors, we can estimate the distance between tasks
asw(Φ(i),Φ(j)).

Task Graph Agendas generalize the notion of curricula in RL
where the curriculum is an agenda of source tasks terminating in a
target task. Given a set of tasks T ⊆ D , an agenda is a sequence
of tasks T0,T1, . . . ,Tk ∈ T on which an agent trains. A walk
is the sequenceW = v0, e1,v1, e2,v2, . . . , ek ,vk , whose terms are
alternately vertices and edges, such that for 1 ≤ i ≤ k the edge ei
connects the previous vertex to the current vertex, ei = vi−1 ∼ vi .
An agenda is any valid walk on the task graph, so a curriculum
is a special case of an agenda. In the following experiments, we
examine mechanisms for an agent to manage its own agenda.

2 EXPERIMENTS
We train agents with different capabilities to optimize reward over
both policies and tasks in a search problem. We then demonstrate
how task graphs can be used to more efficiently learn a difficult
task in our agenda problem. Although we have carried out a wider
set of experiments, we report on results from the game of Minecraft

Main Track Extended Abstract AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1965



Figure 1: Left: Performance on search by task space for the fighter (red) and runner (green); brighter color indicates better
performance. Center: Performance on search problem by distance from the task where the agent spent the most time. Right:
Reward for agenda; the top curve offset by training on the earlier task.

[10], which allows for the flexible creation of a variety of scenarios
and tasks. In both problems, we consider agents that obtain reward
by collecting apples or defeating zombies. The agent is rewarded for
collecting apples and injuring zombies, and its goal is to optimize
the cumulative reward.

Search: Consider an agent that is trying to maximize its reward
when it has the freedom to learn policies and select its tasks for
applying those policies. We can frame this as a search problem
on the task graph where an agent seeks to find the task/policy
combination that maximizes reward.

We formalize this as a Semi-Markov Decision Process (SMDP)
following the options framework [14, 18]. The MDP as defined
earlier forms the basis of the SMDP, while the options framework
formalizes temporally extended actions as a Markovian option
ω ∈ Ω, whereω is triple ⟨Iω ,πω , βω ⟩, Iω ⊆ S is the initiation set,
πω is the intra-option policy, and βω : S → [0, 1] is the termination
function. For the task graph, options consist of steps on the task
graph or training on a task. The state of the SMDP includes the
current knowledge of the agent and the position on the task graph.
The reward is a transition step cost for switching tasks, or the
average cumulative reward from training on the current task.

We present results for two agents: a runner and a fighter. The
runner has only motion commands and uses dynamic frame skip-
ping to increase its exploration range [17]. The fighter has motion
commands and the ability to attack. Tasks are encoded using the
task descriptors [lava,distance, zombies] ∈ {0, 1, 2}3, where higher
values in each feature indicate greater challenge. Higher lava and
distance increase the number of apples present, and fighting zom-
bies is more rewarding than collecting apples.

Each agent uses cumulative reward to select among neighboring
tasks as they walk through the task graph. A greedy epsilon strategy
is used to balance the exploration versus exploitation trade-off in
the task graph [21]. Agents are allowed to revisit prior tasks. We
use a deep Q-network augmented to preserve experiences across
tasks [8] as our learning agent.

Figure 1 (left) shows the performance of the runner and fighter
overlaid. The runner’s performance is in green and the fighter’s
in red. The runner spent more time on task [0, 2, 0] (no lava, high
distance, no zombies) as seen in the bottom row, while the fighter

spent the most time on task [0, 0, 2] (two zombies) shown on the
top row. Brighter color indicates higher reward, and darker is lower
reward. This demonstrates that zombies and lava together compli-
cate the runner’s task, while the fighter gets more hits in when
there are two zombies. Figure 1 (center) shows how performance
varies with distance measured from the task on which the agent
spent the most time; the colors match the runner (green) and fighter
(red) as above. We found that the agent performs well on the task
where it spent the most time, confirming that the search was effec-
tive. We also found a clear decrease in performance as a function
of distance from the preferred task. Eventually, the runner agent
received the most reward on task [1, 2, 0], but learned this task later
as a result of its agenda, confirming the hypothesis that the agent
cannot immediately jump to the hardest task.

Agenda Generation: Now suppose the runner must now learn to
defend itself or consider an agent that has many simultaneous goals
and must master tasks to achieve those goals (e.g., a self-motivated
agent [7, 20]). Given a desired target task, an agent could create its
own agenda through the task graph.

We present results from Minecraft where the agent is rewarded
for collecting an apple positioned behind a zombie. The feature
dimensions control the amount of lava and the x and z positions of
the apple. We use an A3C network [11] as our learning agent. Since
performance on only the final task matters, there is no need for the
system to preserve ability on prior tasks as it moves through the
curriculum.

Figure 1 (right) shows the improvement that results from follow-
ing an agenda. The agent shown in blue first trains on easier tasks
where the apple is closer to the agent. Because the apple is easier to
collect, the agent more quickly learns the importance of collecting
the apple. The agent that trained directly on the target task (shown
in orange) takes longer to discover the apple, and instead focuses
exclusively on killing the zombie. At around 11, 000 iterations, the
agent starts to collect the apple on occasion, but by this time the
agent following the curriculum is more accomplished at killing the
zombie and proceeding to collect the reward.

ACKNOWLEDGMENTS
Supported by NRL and NREIP internship program.

Main Track Extended Abstract AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1966



REFERENCES
[1] Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira. 2007. Anal-

ysis of representations for domain adaptation. Advances in Neural Information
Processing Systems (NIPS) 19 (2007), 137–144.

[2] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. 2009.
Curriculum learning. Proc. ICML (2009), 41–48. https://doi.org/10.1145/1553374.
1553380

[3] Edwin V Bonilla, Felix V Agakov, and Christopher Williams. 2007. Kernel multi-
task learning using task-specific features. International Conference on Artificial
Intelligence and Statistics (2007), 43–50.

[4] Rich Caruana. 1997. Multitask Learning. Machine Learning 28 (1997), 41–75.
[5] Bruno Da Silva, George Konidaris, and Andrew Barto. 2012. Learning parameter-

ized skills. arXiv:1206.6398 (2012).
[6] Eric Eaton, Marie desJardins, and Terran Lane. 2008. Modeling transfer relation-

ships between learning tasks for improved inductive transfer. In Joint European
Conf. on Mach. Learn. and Knowledge Discovery in Databases. Springer, 317–332.

[7] Nick Hawes. 2011. A survey of motivation frameworks for intelligent systems.
Art. Intel. J. 175, 5-6 (April 2011), 1020–1036.

[8] David Isele and Akansel Cosgun. 2018. Selective Experience Replay for Lifelong
Learning. Proc. AAAI (2018).

[9] David Isele, Mohammad Rostami, and Eric Eaton. 2016. Using task features for
zero-shot knowledge transfer in lifelong learning. Proc. IJCAI (2016).

[10] Matthew Johnson, Katja Hofmann, Tim Hutton, and David Bignell. 2016. The
Malmo Platform for Artificial Intelligence Experimentation.. In Proc. IJCAI. 4246–
4247.

[11] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timo-
thy P Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asyn-
chronous methods for deep reinforcement learning. In Proc. ICML.

[12] Sanmit Narvekar, Jivko Sinapov, Matteo Leonetti, and Peter Stone. 2016. Source
task creation for curriculum learning. In Proc. AAMAS. 566–574.

[13] Sanmit Narvekar, Jivko Sinapov, and Peter Stone. 2017. Autonomous Task Se-
quencing for Customized Curriculum Design in Reinforcement Learning. (2017).

[14] Doina Precup. 2000. Temporal abstraction in reinforcement learning. (2000).
[15] Mark B Ring. 1997. CHILD: A first step towards continual learning. Machine

Learning 28, 1 (1997), 77–104.
[16] Jivko Sinapov, Sanmit Narvekar, Matteo Leonetti, and Peter Stone. 2015. Learning

inter-task transferability in the absence of target task samples. In Proc. AAMAS.
725–733.

[17] Aravind Srinivas, Sahil Sharma, and Balaraman Ravindran. 2017. Dynamic Action
Repetition For Deep Reinforcement Learning. Proc. AAAI (2017).

[18] Richard S Sutton, Doina Precup, and Satinder Singh. 1999. Between MDPs and
semi-MDPs: A framework for temporal abstraction in reinforcement learning.
Artificial intelligence 112, 1-2 (1999), 181–211.

[19] Maxwell Svetlik, Matteo Leonetti, Jivko Sinapov, Rishi Shah, Nick Walker, and
Peter Stone. 2017. Automatic Curriculum Graph Generation for Reinforcement
Learning Agents.. In Proc. AAAI. 2590–2596.

[20] S. Vattam, M. Klenk, M. Molineaux, and D.W. Aha. 2013. Breadth of approaches to
goal reasoning: A research survey. In Goal Reasoning: Papers from the ACS Work-
shop (Technical Report CS-TR-5029). College Park, MD: University of Maryland,
Department of Computer Science., 222–231.

[21] Joannes Vermorel and Mehryar Mohri. 2005. Multi-armed bandit algorithms and
empirical evaluation. In ECML, Vol. 3720. Springer, 437–448.

Main Track Extended Abstract AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

1967

https://doi.org/10.1145/1553374.1553380
https://doi.org/10.1145/1553374.1553380

	1 Task Graphs and Agendas
	2 Experiments
	References



