
Work in Progress: Lifelong Learning for
Disturbance Rejection on Mobile Robots

David Isele, José Marcio Luna, Eric Eaton
University of Pennsylvania

{isele, joseluna, eeaton}@seas.upenn.edu

Gabriel V. de la Cruz, James Irwin, Brandon Kallaher, Matthew E. Taylor
Washington State University

{gabriel.delacruz, james.irwin, brandon.kallaher, matthew.e.taylor}@wsu.edu

ABSTRACT
No two robots are exactly the same — even for a given
model of robot, different units will require slightly different
controllers. Furthermore, because robots change and de-
grade over time, a controller will need to change over time
to remain optimal. This paper leverages lifelong learning in
order to learn controllers for different robots. In particular,
we show that by learning a set of control policies over robots
with different (unknown) motion models, we can quickly
adapt to changes in the robot, or learn a controller for a
new robot with a unique set of disturbances. Further, the
approach is completely model-free, allowing us to apply this
method to robots that have not, or cannot, be fully mod-
eled. These preliminary results are an initial step towards
learning robust fault-tolerant control for arbitrary robots.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning;
I.2.9 [Artificial Intelligence]: Robotics

General Terms
algorithms, experimentation

Keywords
Lifelong Learning, Policy Gradients, Reinforcement Learn-
ing, Robotics, Fault-Tolerant Control

1. INTRODUCTION
As robots become more common, there are an increasing

number of tasks they will be asked to perform. These tasks
may not be specified, or even envisioned, at design time. It
is therefore critical that robots be able to learn these task
autonomously. Reinforcement learning [11, 20] (RL) is one
popular method for such autonomous learning, but it may
be slow in practice, requiring numerous interactions with the
environment to achieve decent performance. Recent work in
transfer learning [22] can alleviate some of this burden by
using knowledge learned from previous tasks to accelerate

Appears in: Proceedings of the 15th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2016), John Thangarajah, Karl Tuyls, Stacy Marsella,
Catholijn Jonker (eds.), May 9–13, 2016, Singapore.
Copyright c© 2016, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

learning on a new target task. In this work, we take a lifelong
learning approach [23], in which the learner faces multiple
consecutive tasks and must learn each rapidly by building
upon its learned knowledge through transfer, while simulta-
neously maximizing performance across all known tasks. In
particular, we consider a set of similar robots that all have
slightly different motion models, each with their own dis-
turbances. This setting is motivated by the inherent differ-
ences between robots from small variations in their physical
or electrical components.

If the model of the robot was fully known, or could be
quickly learned, the dynamics of the system could be sta-
bilized with control theory approaches. However, in many
cases such a model is not known, or is complicated enough
(or changes quickly enough) that indirect learning of the
model is infeasible. Instead, this paper directly learns poli-
cies for the different robots through lifelong RL.

Our recent work on lifelong RL [5, 6] has showed that
this approach is able to accelerate learning of control poli-
cies using policy gradient [21, 26] (PG) methods. Lifelong
RL succeeds even when the different systems are encoun-
tered consecutively, and it preserves and possibly improves
the policies for the earliest encountered tasks (in contrast to
transfer methods which typically only optimize performance
on the new target system). However, so far this work has
been applied only to benchmark problems with known dy-
namics to demonstrate knowledge sharing, and not yet to
more complex robotic control problems. This paper signifi-
cantly scales up the complexity of experiments by applying
lifelong learning techniques to a set of Turtlebot 2 robots,
each with their own control disturbances, in the high-fidelity
Gazebo simulator. As such, this paper represents an impor-
tant step to validating lifelong learning on physical robot
platforms. The long-term goal of this work is to apply these
methods not only to quickly learn controllers for robots with
slightly different dynamics, but also to achieve fault-tolerant
control by handling minor system failures online.

2. RELATED WORK
Reinforcement learning (RL) is often used to learn con-

trollers in a model-free setting. Amongst RL algorithms,
policy gradient methods are popular in robotic applications
[12, 17] since they accommodate continuous state/action
spaces and can scale well to high dimensional problems. The
goal of lifelong learning is to learn a set of policies from con-
secutive tasks. By exploiting similarities between the tasks,

it should be possible to learn the set of tasks much faster
than if each task was learned independently. Our previous
work showed that lifelong learning could successfully lever-
age policy gradient methods [5, 6], but had been applied
only to simple benchmark dynamical systems and not more
complex robotic control problems. There have been some
successful examples of lifelong learning on robots, but they
tend to focus in skill refinement on a single robot [10, 24]
rather than sharing information across multiple robots.

When mathematical models that describe the behavior of
physical systems can be constructed, they can be used to an-
alyze, predict and control a robot’s behavior. Well-known
techniques for modeling physical systems include partial, or-
dinary differential and difference equations [9, 16], and Dis-
crete Event Systems (DES) such as queuing networks [15,
25] and Petri networks [7]. Typical problems in controlling
such systems are regulation, trajectory tracking, disturbance
rejection, and robustness [9, 14, 16]. All of these problems
are associated with the analysis of the stabilizability of the
system, as well as the design of controllers to stabilize it.

Most similar to our setting is that of disturbance rejec-
tion, where a controller is designed to complete a task while
compensating for a disturbance that modifies its nominal
dynamics. As long as there is an accurate model of the
robot, current methods can handle constant, time-varying,
and even stochastic disturbances [8, 9, 14]. However, such
methods are generally inapplicable when the robot model is
unknown, even if the disturbances are relatively simple. Our
work is motivated by control theory approaches, but focuses
on leveraging model-free RL techniques.

3. BACKGROUND
This section provides an overview of background material

to understand the techniques used in our experiments.

3.1 Reinforcement Learning
An RL agent must sequentially select actions to max-

imize its expected return. Model-free RL approaches do
not require previous knowledge of the system dynamics and
control policies are learned directly through the interac-
tions with the system. RL problems are typically formal-
ized as Markov Decision Processes (MDPs) with the form
〈X ,A, P,R, γ〉 where X ⊂ Rdx is the set of states, A is the
set of actions, P : X × A × X → [0, 1] is the state transi-
tion probability describing the systems dynamics with initial
state distribution P0, R : X ×A → R is the reward function,
and γ ∈ [0, 1) is the reward discount factor. At each time
step h, the agent is in the state xh ∈ X and must choose
an action ah ∈ A so that it transitions to a new state xh+1

with state transition probability P (xh+1 | xh,ah), yielding
a reward rh according to R. The action is selected according
to a policy πθ : X ×A → [0, 1], which specifies a probability
distribution over actions given the current state and is pa-
rameterized by θ. The goal of an RL algorithm is to find an
optimal policy π∗ that maximizes the expected reward.

PG methods are well suited for solving high dimensional
problems with continuous state and action spaces, such as
robotic control [17]. The goal of PG is to use gradient steps
based on a set of observed state-action-reward trajectories
of length H to optimize the expected average return of πθ:
J (θ) =

∫
T pθ(τ)R(τ)dτ , where T is the set of all trajecto-

ries, pθ(τ) = P0(x0)
∏H
h=0 p(xh+1 | xh,ah)πθ(ah | xh) is the

probability of trajectory τ , and R(τ) = 1
H

∑H
h=0 rh is the

average per-step reward. Most PG methods (e.g., episodic
REINFORCE [26], Natural Actor Critic [17], and PoWER
[12]) optimize the policy by maximizing a lower bound on the
return, comparing trajectories generated by different can-
didate policies πθ̂. In this particular application, the PG
method we use in our experiments is finite differences [11]
(FD) which optimizes the return directly.

3.2 Finite Differences for Policy Search
The Finite Differences method [11], which has shown past

success in robotic control, optimizes the policy πθ directly
by computing small changes ∆θ in the policy parameters
that will increase the expected reward. This process esti-
mates the expected return for each policy parameter varia-
tion (θm + ∆θp) given the sampled trajectories via

∆Ĵp ≈ J (θm + ∆θp)− Jref , (1)

where the estimate is taken over n small perturbations in
the policy parameters {∆θp}np=1, the policy parameters at
timestep m are given by θm, and Jref is a reference return,
which is usually taken as the return of unperturbed parame-
ters J (θ). The FD gradient method then updates the policy
parameters, following the gradient of the expected return J
with a step-size δ, as given by

θm+1 = θm + δ∇θJ . (2)

For efficiency, we can estimate the gradient ∇θJ using
linear regression as

∇θJ ≈
(
∆ΘT∆Θ

)−1

∆ΘT∆Ĵp , (3)

where ∆Ĵp contains all the stacked samples of ∆Ĵp and ∆Θ
contains the stacked perturbations ∆θp. This approach is
sensitive to the type and magnitude of the perturbations,
as well as to the step size δ. Since the number of perturba-
tions needs to be as large as the number of parameters, this
method is considered to be noisy and inefficient for problems
with large sets of parameters [11], although we found it to
work well and reliably in our setting.

The process is capable of optimizing a policy for a single
RL task via repeatedly sampled trajectories (n trajectories
for each m ∈ {1, . . . ,M} iteration). In order to share infor-
mation between different policies that are learned consecu-
tively, we incorporate the PG learning process using FD into
a lifelong learning setting, as described next.

4. LIFELONG MACHINE LEARNING
In this section, we describe the framework we use to share

knowledge between multiple, consecutive tasks.

4.1 Problem Setting
In the lifelong learning setting [19, 24], the learner opti-

mizes policies for multiple tasks consecutively, rapidly learn-
ing each new task policy by building upon its previously
learned knowledge. At each time step, the learner observes a
task Z(t), represented as an MDP 〈X (t),A(t), P (t), R(t), γ(t)〉,
building on top of the knowledge learned from previous tasks.
The task Z(t) may be new, or it may be a repetition of a
known task. After observing T tasks (1 ≤ T ≤ Tmax), the
goal of the learner is to optimize policies for all known tasks
{Z(1), . . . ,Z(T)} without knowing a priori the total number
of tasks Tmax , their order, or their distribution.

In our application, we use a centralized lifelong learner
that is shared between multiple robots; each task corre-
sponds to an RL problem for an individual robot. The policy
πθ(t) for task Z(t) is parameterized by θ(t) ∈ Rd. To facil-
itate transfer between the task policies, we assume there is
a shared basis L ∈ Rd×k that underlies all policy parameter
vectors, and that each θ(t) can be represented as a sparse lin-
ear combination of the basis vectors, given by θ(t) = Ls(t),
with coefficients s(t) ∈ R. Research has shown this factor-
ized model to be effective for transfer in both multi-task [13,
18] and lifelong learning [19] settings.

4.2 Lifelong Learning with Policy Gradients
In our previous work [5], we developed an efficient algo-

rithm for learning in this lifelong setting with policy gra-
dients, known as PG-ELLA. Here, we briefly review this
algorithm, which we apply to the multi-robot setting in our
experiments. For details, please see the original paper. The
one major difference from our previous work is that we em-
ploy Finite-Difference methods as the base learner in this
paper; our previous work used episodic REINFORCE [26]
and natural actor critic [17]. We found FD to be easier to
tune and produced better results for our application.

The lifelong learner’s goal of optimizing all known policies
after observing T tasks is given by the multi-task objective:

argmin
L,S

1

T

∑
t

[
−J

(
θ(t)
)

+ λ
∥∥∥s(t)∥∥∥

1

]
+ µ‖L‖2F , (4)

where S =
[
s(1) · · · s(T)

]
is the matrix of all coefficients, the

L1 norm ‖ · ‖1 enforces sparsity of the coefficients, and the
Frobenious norm ‖ · ‖F regularizes the complexity of L with
regularization parameters µ, λ ∈ R. To solve Equation 4
efficiently, PG-ELLA: 1.) replaces J (·) with an upper bound
(as done in typical PG optimization), 2.) approximates the
first term with a second-order Taylor expansion around an
estimate α(t) of the single-task policy parameters for task
Z(t), and 3.) optimizes s(t) only when training on task Z(t).
These steps reduce the learning problem to a series of online
update equations that constitute PG-ELLA [5]:

s(t) ← arg min
s

∥∥∥α(t) −Ls
∥∥∥2

Γ(t)
+ µ ‖s‖1 , (5)

A←A+
(
s(t)s(t)T

)
⊗ Γ(t) , (6)

b←b+ vec
(
s(t) ⊗

(
α(t)TΓ(t)

))
, and (7)

L←mat

((
1

T
A+ λIl×dθ,l×dθ

)−1
1

T
b

)
. (8)

where ‖v‖2A = v>Av, Γ(t) is the Hessian of the PG lower

bound on J (α(t)), ⊗ is the Kronecker product operator,
Im,n is the m×n identity matrix, andA and b are initialized
to be zero matrices. PG-ELLA is given as Algorithm 1.

5. DISTURBANCE REJECTION FOR
ROBOTICS VIA LIFELONG LEARNING

This paper’s goal is to present our progress adapting PG-
ELLA to learn policies for robotic control, using simulated
Turtlebot 2’s in ROS. In our previous work, PG-ELLA was
only ever evaluated on the control of simple dynamical sys-
tems with well-known models, such as inverted pendulums.

Algorithm 1 PG-ELLA (k, λ, µ) [5]

1: T ← 0
2: A← zerosk×d,k×d, b← zerosk×d,1
3: L← RandomMatrixd,k
4: while some task Z(t) is available do
5: if isNewTask(Z(t)) then
6: T ← T + 1

7:
(
T(t), R(t)

)
← getRandomTrajectories()

8: else
9:

(
T(t), R(t)

)
← getTrajectories

(
α(t)

)
10: A← A−

(
s(t)s(t)T

)
⊗ Γ(t)

11: b← b− vec
(
s(t)T ⊗

(
α(t)TΓ(t)

))
12: end if
13: Compute α(t) and Γ(t) from T(t) using PG

14: s(t) ← arg mins

∥∥∥α(t) −Ls
∥∥∥2

Γ(t)
+ µ ‖s‖1

15: A← A +
(
s(t)s(t)T

)
⊗ Γ(t)

16: b← b + vec
(
s(t)T ⊗

(
α(t)TΓ(t)

))
17: L← mat

((
1
T

A + λIk×d,k×d
)−1 1

T
b
)

18: for t ∈ {1, . . . , T} do: θ(t) ← Ls(t)

19: end while

Specifically, we focus on the well-known problem of distur-
bance rejection in robotics. In disturbance rejection, it is as-
sumed that the nominal dynamics of the plant (i.e., system)
are additively disturbed by a signal ω. The system dynam-
ics are given by ẋ = f(x) + ω, where f : Rdx × R → Rdx ,
and ω ∈ Rdx . The goal is to determine the control input
that minimizes the effect of the disturbance in the return
function, so that the plant can execute this task.

There are well-known optimal control [8, 14] techniques
to solve this problem, if there is an available mathematical
model. However, if such a model is not available, or there is
a partial knowledge of the model, formal solutions are not
effective. RL offers one alternative solution to this prob-
lem, but in a single-task setting, it would require numerous
interactions with the environment to learn an effective con-
trol policy to compensate for the disturbance. However, in
a lifelong learning setting, the learner could build upon its
existing knowledge in controlling other systems (each with
their own disturbances) to rapidly learn a control for a sys-
tem with a novel disturbance. We assume that the learner
attempts to optimize control policies for a set of robots, all of
which have the same nominal dynamics, given by ẋ = f(x).
Each robot is affected by a different disturbance function
ω(t). All ω(t)’s share the same structure but different pa-
rameters, e.g., all the disturbances are constant but differ-
ent, are sinusoidal with different phases or amplitudes, etc.

Lifelong machine learning takes advantage of the potential
for knowledge transfer among different tasks. After learning
how to compensate for the disturbance without requiring a
mathematical model, a general structure of the policy can
be proposed. Then a reward function is designed so that
the lifelong learner penalizes the effect of the disturbance
over either a realistic simulated robot or an actual one. In
the next section, we present our preliminary application of
lifelong learning to this problem of robotic control under
disturbances.

6. EXPERIMENTS
This section describes our initial experiments applying

lifelong learning to the problem of disturbance rejection for
robotics, using the Turtlebot 2 platform [3] (Figure 1a). In
order to simulate a wide variety of Turtlebots, each with
their own disturbances, we conducted the experiments us-
ing the high-fidelity Gazebo simulator [1, 2]. However, our
experimental setup allows us to use the same code in both
simulation and on physical Turtlebots. The implementation
of our approach uses Python and the Hydro version of ROS.

In our disturbance rejection scenario, we focused on learn-
ing control policies for driving the Turtlebots to a goal lo-
cation as they experience disturbances in their wheel ac-
tuators. This disturbance emulates a bias on the angular
velocity of each robot that forces the robot to compensate
for the induced failure. Note that this type of disturbance
in actuation is common in physical robots and autonomous
ground vehicles, stemming from a variety of sources, such
as calibration issues, wear in the drive train, or interference
from debris. To simulate these disturbances, we induce a
random and constant disturbance to the control signal that
is drawn uniformly from [−0.1, 0.1] and measured in m/s
for each robot. These limits were selected to provide a large
noise that was still within the bounds of the Turtlebot con-
trol system. Although we use a constant difference for now,
the difficulty of the learning problem can easily be increased
later by introducing time-varying stochastic disturbances.

We assume little knowledge of the Turtlebot’s dynam-
ics. In our application, each robot’s state is defined as
x = (ρ, γ, ψ)T, with ρ, γ and ψ as illustrated in Fig. 1b.
To extract state features for learning, we use the following
nonlinear transformation of the position and heading angle:

φ(x) =


ρ cos(γ)

γ
cos(γ) sin(γ)

γ
(γ + ψ)

1

 . (9)

Given the stochastic policy πθ(t) ∼ N (a(t),Σ) for the t-

th Turtlebot, the control action is then specified by a(t) =

θ(t)
T
φ(x) = (u,w)T where u and w are the linear and an-

gular velocities of the robots. This particular choice of non-
linear transformation is inspired by a simplified kinematic
model for unicycle-like vehicles in polar coordinates [4]. In
this model, the state space is given by X ⊂ R3 and the
action space is described by A ⊂ R2. This simplified kine-
matics model ignores contributions to the dynamics of the
system from the robot’s mass, damping and friction coeffi-
cients, as well as inputs such as forces and torques.

In these preliminary experiments, we use FD [11] as the
base learner in PG-ELLA for its simplicity and good per-
formance in simulation, despite its known stability issues
(which we did not experience). In future work, we plan to
compare this approach with different base learners, such as
natural actor critic [17] and episodic REINFORCE [26].

6.1 Methodology
We generated 20 simulated Turtlebots, each with a differ-

ent constant disturbance and a unique goal, both selected
uniformly. This number of robots provided a large task di-
versity, while still being small enough to simulate practically.

We used FD as our PG method to train each robot’s ini-
tial policy for M = 20 iterations with n = 15 roll-outs per

(a) Turtlebot

ψ

γ

ρ X

Y

w
u

}{G

}{P

Initial

Final

(b) State variables

Figure 1: (a) The Turtlebot 2 model in Gazebo, and (b) its
state variables in the simplified go-to-goal problem.

iteration and H = 50 time steps per roll-out. If the robot
reached the goal in less than 50 time steps, the experiment
continues to run to completion ensuring that a good policy
reaches the goal and stops. These initial policies were then
used as the α(t)’s for PG-ELLA. Note that all systems in
our experiment require more than 20 iterations to converge
to a good controller, so subsequent policy improvement is
essential for decent performance. The number of roll-outs
and time steps were selected to allow for successful learning
while minimizing the runtime.

PG-ELLA trains the shared knowledge repository L and
sparse policy representations s(t) using the update equations
given by Equations 5–8. Tasks were encountered randomly
with repetition and learning stopped once every task was ob-
served once. For our experiments, we approximate the Hes-
sian with the identity matrix because it was found to work
well in practice and reduced the number of rollouts. For the
parameters unique to PG-ELLA, we use k = 8 columns in
the shared basis, and use sparsity coefficient µ = 1 × 10−3

and regularization coefficient λ = 1 × 10−8. These coeffi-
cients were tuned manually, and were found to be relatively
easy to tune, being largely insensitive to changes within an
order of magnitude. It is worth noting that similar perfor-
mance was shown for k ∈ {4, . . . , 12} and k = 8 was selected
as the mean. The learning rate was set to δ = 1× 10−6 and
the standard deviation of the policy was set to σ = 0.001.

Figure 2 compares the reward for policies learned by PG-
ELLA against PG, averaged over all 20 robots over 6 simula-
tion trials. We start measuring performance at 20 iterations,
since the initial seed policies for PG-ELLA were learned us-
ing those first 20 iterations; we then plot the learning curves
as the polices are improved by either FD or PG-ELLA for
an additional 80 learning iterations. We see that PG-ELLA
is successfully able to reconstruct the control policies and
provide a slight improvement in performance through posi-
tive transfer. Figure 3 depicts the gain in reward, showing
positive transfer between tasks. Although these preliminary
results show only a slight improvement currently, we suspect
further refinements will enable us to achieve larger transfer.

7. CONCLUSIONS
We demonstrate the use of lifelong learning for distur-

bance rejection on Turtlebots. This preliminary work is in-
tended to lay the foundation for fault-tolerant control in
multi-agent systems. The results show that PG-ELLA can

Iteration

20 40 60 80 100

R
e

w
a

r
d

-110

-105

-100

-95

-90

-85

-80

-75

PG-ELLA

PG

Figure 2: Learning curves for PG and PG-ELLA using a
finite-difference base learner. Using PG-ELLA to transfer
information between tasks improves performance over PG.

Iteration
20 40 60 80 100

C
h

a
n

g
e
 i
n

 R
e
w

a
rd

-2

0

2

4

6

8

Figure 3: The positive transfer achieved by lifelong learning.

be successfully implemented on simulated and complex 3D
environments, yielding an improvement over standard PG
methods. This suggests that PG-ELLA can benefit real
robotic systems. The implementation on real Turtlebots and
quadrotors is part of our future research agenda.

Acknowledgments
Research at Penn was partially supported by grants ONR
N00014-11-1-0139 and AFRL FA8750-14-1-0069. Research
at Washington State University was supported in part by
grants AFRL FA8750-14-1-0069, AFRL FA8750-14-1-0070,
NSF IIS-1149917, NSF IIS-1319412, USDA 2014-67021-22174,
and a Google Research Award.

REFERENCES
[1] Gazebo. http://gazebosim.org/, 2016.

[2] Ros.org: Powering the world’s robots. [Online]:
http://www.ros.org/, 2016.

[3] Turtlebot 2. http://www.turtlebot.com/, 2016.

[4] M. Aicardi, G. Casalino, A. Balestrino, & A. Bicchi.
Closed loop smooth steering of unicycle-like vehicles.
In Proc. of the IEEE Conference on Decision and
Control, pp. 2455–2458, 1994.

[5] H. Bou Ammar, E. Eaton, & P. Ruvolo. Online
multi-task learning for policy gradient methods.
International Conference on Machine Learning, 2014.

[6] H. Bou Ammar, E. Eaton, P. Ruvolo, & M. E. Taylor.
Unsupervised cross-domain transfer in policy gradient
reinforcement learning via manifold alignment.
International Joint Conference on Artificial
Intelligence, 2015.

[7] C. G. Cassandras & S. Lafortune. Introduction to
Discrete Event Systems, 2nd ed. Springer, NY, 2008.

[8] P. Dorato, C. Abdallah, & V. Cerone. Linear
Quadratic Control. Krieger, 2000.

[9] H. Khalil. Nonlinear Systems. Prentice Hall, 2002.

[10] A. Kleiner, M. Dietl, & B. Nebel. Towards a life-long
learning soccer agent. In RoboCup 2002: Robot Soccer
World Cup VI, pp. 126–134. Springer, 2002.

[11] J. Kober, J. A. Bagnell, & J. Peters. Reinforcement
learning in robotics: A survey. The International
Journal of Robotics Research, 2013.

[12] J. Kober & J. Peters. Policy search for motor
primitives in robotics. Advances in Neural Information
Processing Systems, pp. 849–856, 2009.

[13] A. Kumar & H. Daume III. Learning task grouping
and overlap in multi-task learning. International
Conference on Machine Learning, 2012.

[14] F. L. Lewis & V. L. Syrmos. Optimal Control. John
Wiley & Sons, 3rd edition, 2012.

[15] J. M. Luna, C. T. Abdallah, & G. Heileman.
Performance optimization and regulation for multitier
servers. In Proc. of IEEE International Conference on
Decision and Control, pp. 1026–1032, 2015.

[16] N. S. Nise. Control Systems Engineering. John Wiley
& Sons, 7th edition, 2010.

[17] J. Peters & S. Schaal. Natural actor-critic.
Neurocomputing, 71(7):1180–1190, 2008.

[18] B. Romera-Paredes, H. Aung, N. Bianchi-Berthouze,
& M. Pontil. Multilinear multitask learning.
International Conference on Machine Learning,
pp. 1444–1452, 2013.

[19] P. Ruvolo & E. Eaton. ELLA: An efficient lifelong
learning algorithm. International Conference on
Machine Learning, 28:507–515, 2013.

[20] R. S. Sutton & A. G. Barto. Reinforcement learning:
An introduction. MIT press, 1998.

[21] R. S. Sutton, D. A. McAllester, S. P. Singh, &
Y. Mansour. Policy gradient methods for
reinforcement learning with function approximation.
Advances in Neural Information Processing Systems,
99:1057–1063, 1999.

[22] M. E. Taylor & P. Stone. Transfer learning for
reinforcement learning domains: A survey. Journal of
Machine Learning Research, 10:1633–1685, 2009.

[23] S. Thrun. Is learning the n-th thing any easier than
learning the first? Advances in Neural Information
Processing Systems, pp. 640–646, 1996.

[24] S. Thrun & T. M. Mitchell. Lifelong robot learning.
Springer, 1995.

[25] B. Urgaonkar, G. Pacifi, P. Shenoy, M. Spreitzer, &
A. Tantawi. Analytic modeling of multitier internet
applications. ACM Trans. on the Web, 1(1), May 2007.

[26] R. J. Williams. Simple statistical gradient-following
algorithms for connectionist reinforcement learning.
Machine learning, 8(3-4):229–256, 1992.

