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Problem 1:  Without prior knowledge, RL 
in a new task is slow

Idea:  Reuse knowledge from previously 
learned tasks
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We focus on the lifelong learning case:
Agent learns multiple tasks consecutively
Want stability guarantees as the number of tasks grows large
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Background
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•Agent interacts with environment, taking consecutive actions
•PG methods support continuous state and action spaces

–Have shown recent success in applications to robotic control [Kober & Peters 2011; 

Peters & Schaal 2008; Sutton et al. 2000]
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Agent makes sequential decisions

Background: Policy Gradient Methods for Control

•Formalized as a Markov Decision Process (MDP)
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Background: Policy Gradient Methods for Control

•Agent interacts with environment, taking consecutive actions
•PG methods support continuous state and action spaces

–Have shown recent success in applications to robotic control
–[Kober & Peters 2011; Peters & Schaal 2008; Sutton et al. 2000]
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Background: Policy Gradient Methods for Control

•Agent interacts with environment, taking consecutive actions
•PG methods support continuous state and action spaces

–Have shown recent success in applications to robotic control
–[Kober & Peters 2011; Peters & Schaal 2008; Sutton et al. 2000]

n trajectories

Policy Gradient
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Policy

probability of trajectory reward function 

Goal: find policy       that minimizes 
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Background: Finite Difference Policy Gradients 

Isele, Luna, Eaton, Cruz, Irwin, Kallaher, Taylor 8

Approximate the change in reward with sampled disturbances
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Background: Finite Difference Policy Gradients
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Approximate the change in reward with sampled disturbances

Use the pseudo-inverse to find the gradient

Update the current policy



Lifelong PG Learning
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Lifelong Machine Learning
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Issue:  the objective is dependent on all trajectories

PG-ELLA Objective
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Issue:  the objective is dependent on all trajectories

PG-ELLA Objective

Hessian
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Verification on Robots

Experiments
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Results for Robot Go-to-Goal Task
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• Run RL on a new robot (goal and disturbance) for a small number of iterations
• Use PG-ELLA to adjust policy according to known solutions
• Continue training 

PG-ELLA improves Learning



Better Results Incorporating Prior
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• Initialization with average policy of other robots improves benefit

PG-ELLA improves Learning
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Thank you!
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