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Motivation

“Bookshelf with 5 shelves”

Need to transfer from prior experience

Key Idea: Use a high-level task description to identify
relevant knowledge for transfer in lifelong learning
» Improve task performance
» Zero-shot transfer

* Task descriptors used for pairwise transfer by Sinapov et al. (2015)
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Time

Lifelong Machine Learning

[Bou Ammar, Eaton, et al. ICML14]

oreviously learned tasks ~ current task future learning tasks
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Lifelong Machine Learning
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Our Contribution

previously learned tasks ~ current task future learning tasks
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Background: Policy Gradient Methods for Control

Agent interacts with environment, taking consecutive actions

— Continuous state and action spaces

— Demonstrated in robotic control kober & peters “11: peters & Schaal ‘08: Sutton '00]
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reward function
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Sharing Knowledge Between Tasks
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Batch Optimization Online Optimization

(all tasks are given) (tasks arrive consecutively)

Multi-Task Learning Lifelong Learning (PG-ELLA)

[Bou Ammar, Eaton, et al., ICML ‘14]
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Incorporating Task Descriptors

Coupled dictionaries relate policy parameters and task descriptors
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Incorporating Task Descriptors

Coupled dictionaries relate policy parameters and task descriptors
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Multi-Task Learning: TaDeMTL
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Lifelong Learning: TaDelL
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Zero-Shot Transfer

task descriptor

descriptor
dictionary
(pretrained)

é(tnew>

predicted policy
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Given: descriptor for new task

1. Use descriptor and descriptor
dictionary to recover sparse
coefficients via LASSO:
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2. Use recovered coefficients
and policy dictionary to
predict policy parameters

O(trew) — [, 5(tnew)
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Lifelong Learning on Dynamical Systems

* Train on 40 tasks, predict the policy on a new task
 Warm Start: Zero-shot predicted policy used as an initialization
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Application to Quadroter Control
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Effective zero-shot transfer to controlling new quadrotor systems
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Runtime Comparison

 TaDelL scales effectively to numerous tasks
e Sinapov et al. has quadratic complexity in the number of tasks
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Thank you!

Questions?

Using Task Features for Zero-Shot Knowledge
Transfer in Lifelong Learning
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