

Using Task Features for Zero-Shot Knowledge Transfer in Lifelong Learning

David Isele*

Mohammad Rostami*

Eric Eaton

University of Pennsylvania

* Authors contributed equally

International Joint Conference on Artificial Intelligence 2016

Motivation

"Bookshelf with 5 shelves"

Need to transfer from prior experience

Key Idea: Use a high-level task description to identify relevant knowledge for transfer in lifelong learning

- Improve task performance
- Zero-shot transfer
- Task descriptors used for pairwise transfer by Sinapov et al. (2015)

Lifelong Machine Learning

[Bou Ammar, Eaton, et al. ICML14]

Lifelong Machine Learning

[Bou Ammar, Eaton, et al. ICML14]

Our Contribution

Our Contribution

Background: Policy Gradient Methods for Control

Agent interacts with environment, taking consecutive actions

- Continuous state and action spaces
- Demonstrated in robotic control [Kober & Peters '11; Peters & Schaal '08; Sutton '00]

Goal: find policy π_{θ} that maximizes $\mathcal{J}(\theta) = \int_{\pi} p_{\theta}(\boldsymbol{\tau}) \mathcal{R}(\boldsymbol{\tau}) d\boldsymbol{\tau}$

$$p_{\theta}(\boldsymbol{\tau}) = p_0(\mathbf{x}_0) \prod_{h=1}^{H} p(\mathbf{x}_{h+1} | \mathbf{x}_h, \mathbf{a}_h) \pi_{\boldsymbol{\theta}}(\mathbf{a}_h | \mathbf{x}_h) \qquad \qquad \mathcal{R}(\boldsymbol{\tau}) = \frac{1}{H} \sum_{h=0}^{H} r_{h+1}$$
probability of trajectory reward function

Sharing Knowledge Between Tasks

Incorporating Task Descriptors

Coupled dictionaries relate policy parameters and task descriptors

Incorporating Task Descriptors

Coupled dictionaries relate policy parameters and task descriptors

Multi-Task Learning: TaDeMTL

Lifelong Learning: TaDeLL

Zero-Shot Transfer

Given: descriptor for new task

 Use descriptor and descriptor dictionary to recover sparse coefficients via LASSO:

 $\tilde{\boldsymbol{s}}^{(t_{new})} \leftarrow \arg\min_{\boldsymbol{s}} \left\| \phi(\boldsymbol{m}^{(t)}) - \boldsymbol{D} \boldsymbol{s} \right\|_{2}^{2} + \mu \left\| \boldsymbol{s} \right\|_{1}$

2. Use recovered coefficients and policy dictionary to predict policy parameters

 $ilde{oldsymbol{ heta}}^{(t_{new})} = L ilde{s}^{(t_{new})}$

Lifelong Learning on Dynamical Systems

- Train on 40 tasks, predict the policy on a new task
- Warm Start: Zero-shot predicted policy used as an initialization

TaDeLL predicts effective policies for unseen tasks

Application to Quadroter Control

Effective zero-shot transfer to controlling new quadrotor systems

Runtime Comparison

- TaDeLL scales effectively to numerous tasks
- Sinapov et al. has quadratic complexity in the number of tasks

Thank you! Questions?

Using Task Features for Zero-Shot Knowledge Transfer in Lifelong Learning

David Isele*

Mohammad Rostami*

Eric Eaton

* Authors contributed equally

This research was supported by ONR grant #N00014-11-1-0139 and AFRL grant #FA8750-14-1-0069