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Summary

Knowledge transfer between tasks requires an accurate estimate of the
inter-task relationships, which is inefficient in lifelong learning settings.
We develop a lifelong reinforcement learning method that incorporates
high-level task descriptors to model the inter-task relationships.

- Improves the performance of the learned task policy
— Accurately predicts the policy for a new task via zero-shot learning,
given only the task description

Motivation
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Current Task

Lifelong learning accelerates training of each consecutive new task by
building upon previously acquired knowledge via transfer

- Relevant knowledge/tasks must be identified before transfer can occur

- Requires interacting with the new task (i.e., sampling trajectories,
earning, etc.) to characterize it

Alternative Idea: Can we use a high-level description of the task to
identify relevant knowledge for transfer in lifelong learning?

Example task descriptor: physical specification of a quadrotor

Lifelong Machine Learning with Task Descriptors
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Zero-Shot Transfer via Task Descriptors
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Background: Policy Gradient (PG) Methods

 Agent interacts with environment, taking consecutive actions
* PG methods support continuous state and action spaces
— Have shown recent success in applications to robotic control
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Goal: find policy g that minimizes J(0) = /pe(T)R(T)dT
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Sharing Knowledge Between Multiple Tasks
* Policy for task t: mgr) : X X A — [0, 1]
* Factor the policy as 9" — Ls®)
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Online Optimization
(tasks arrive consecutively)

Batch Optimization

(all tasks are given)

Lifelong Learning (PG-ELLA)

[Bou Ammar, Eaton, et al., ICML ‘14]

Multi-Task Learning

Incorporating Task Descriptors into Lifelong Learning
Key Idea: Relate policy parameters and task descriptors via

coupled dlctlonary learning same
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Update the objective function to learn both dictionaries:
Obj. Fn. policy fit descriptor fit sparsity complexity
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Algorithm 1 TaDeLL (k, A\, u)

Multi-Task Learning (TaDeMTL)
* Fit via alternating optimization

1: T+ 0
2: L < RandomMatrixg , D < RandomMatrix,,

3: while some task (Z(), ¢(m (")) is available do

Lifelong Learning (TaDelLL) . ifisﬁef%sﬁf(t))then
1. I\/Ierge L and D into Single 6: T®) « sampleRandomTrajectories(Z ("))
.« L. 7: else
dICFIOnary K . 8: T « sampleTrajectories(Z®), 7))
2. Estimate policy a'®) via 9:  endif

ingl k | I 10: Compute a®) and T'™®) from T®)
S|ng e-tas earnlng 11: st) arg ming HIB(t)_KsHi(t) + 184

3. Sparse code estimated policy and |12z L « updateL(L,s®,a®, T® \)
descriptor in K 13: D +updateD(D, s, ¢(m)), pI; ,\)

4. Update L and D 14 forte {l,...,T} do: ) « Ls®

15: end while

Experimental Results on Dynamical Systems

 Train on 40 different consecutive control tasks, transfer to new tasks

Task descriptors improve policies from multi-task and lifelong learning
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Effective zero-shot transfer to new tasks
e Zero-shot policies used as warm-start for learning, improved via PG
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