
Using	Task	Features	for	Zero-Shot	Knowledge	Transfer	in	Lifelong	Learning	
David	Isele*	
University	of	Pennsylvania	

Eric	Eaton	
University	of	Pennsylvania	

Summary	
Knowledge	transfer	between	tasks	requires	an	accurate	es=mate	of	the	
inter-task	rela=onships,	which	is	inefficient	in	lifelong	learning	seDngs.	
We	develop	a	lifelong	reinforcement	learning	method	that	incorporates	
high-level	task	descriptors	to	model	the	inter-task	rela=onships.		
	

à	Improves	the	performance	of	the	learned	task	policy	
à	Accurately	predicts	the	policy	for	a	new	task	via	zero-shot	learning,	

given	only	the	task	descrip=on	

Mo@va@on	
	
	
Lifelong	learning	accelerates	training	of	each	consecu=ve	new	task	by	
building	upon	previously	acquired	knowledge	via	transfer	
	à	Relevant	knowledge/tasks	must	be	iden=fied	before	transfer	can	occur	
à Requires	interac=ng	with	the	new	task	(i.e.,	sampling	trajectories,	

learning,	etc.)	to	characterize	it		

Alterna@ve	Idea:		Can	we	use	a	high-level	descrip=on	of	the	task	to	
iden=fy	relevant	knowledge	for	transfer	in	lifelong	learning?	

Example	task	descriptor:	physical	specifica=on	of	a	quadrotor		 Incorpora@ng	Task	Descriptors	into	Lifelong	Learning	
Key	Idea:	Relate	policy	parameters	and	task	descriptors	via		

coupled	dic=onary	learning	
	
	
	
	
	
	
	
	
	

Update	the	objec=ve	func=on	to	learn	both	dic=onaries:	
	
	
	
	
	
Mul@-Task	Learning	(TaDeMTL)		
•  Fit	via	alterna=ng	op=miza=on	

Lifelong	Learning	(TaDeLL)	
1. Merge	L	and	D	into	single		

dic=onary	K	
2.  Es=mate	policy									via		

single-task	learning	
3.  Sparse	code	es=mated	policy	and		

descriptor	in	K	
4.  Update	L	and	D		
	
	

		

Zero-Shot	Transfer	via	Task	Descriptors	

Acknowledgements	and	Notes	
This	research	was	supported	by	ONR	grant	#N00014-11-1-0139	and	
AFRL	grant	#FA8750-14-1-0069.		
*	Authors	contributed	equally	

Mohammad	Rostami*	
University	of	Pennsylvania	

Lifelong	Machine	Learning	with	Task	Descriptors	

Lifelong	Learning	System	

2.)	Knowledge	is		
transferred	from		
previously		
learned	tasks	

3.)	New	
knowledge		
is	stored	for	
future	use	

4.)	Exis>ng	
knowledge		
is	refined	

learned	policy

previously	learned	
knowledge

previously	learned	tasks	 future	learning	tasks t t-1 t-2 t-3 t+1 t+2 t+3

trajectories!

current	task!

⇡✓tj

Time	

1.)	Tasks	are	received		
consecu>vely	

descriptor!

model	of	
descriptor

	
	

	
	

	
	

	
	

	
		

	
	

	
	

	
	

	
		
	

	
	

ft

Background:		Policy	Gradient	(PG)	Methods	
•  Agent	interacts	with	environment,	taking	consecu=ve	ac=ons	
•  PG	methods	support	con=nuous	state	and	ac=on	spaces	
-  Have	shown	recent	success	in	applica=ons	to	robo=c	control	

	

	

Goal:	find	policy								that	minimizes		
probability	of	trajectory		 cost	of	trajectory	

Trajectories	

Policy	Gradient	
Learner	

Policy	
x1

x2

J (✓) =

Z

T
p✓(⌧)R(⌧)d⌧

p✓(⌧) = p0(x0)
HY

h=1

p(xh+1|xh,ah)⇡✓(ah|xh) R(⌧) =
1

H

HX

h=0

rh+1

⇡✓ : X ⇥A 7! [0, 1]

⇡✓

a1 a2

… … … …

Time	 Current	Task	

Sharing	Knowledge	Between	Mul@ple	Tasks	
•  Policy	for	task	t:	
•  Factor	the	policy	as	
	

Online	Op=miza=on	
(tasks	arrive	consecu=vely)	

Batch	Op=miza=on	
(all	tasks	are	given)	

Mul@-Task	Learning	

eT (L) =
1

T

TX

t=1

min
s(t)

h
�J

⇣
✓(t)

⌘
+ µ

���
���s(t)

���
���
1

i
+ �||L||2F

fit	to	each	task	 sparsity	of	
coefficients	

regularize	basis	
complexity	

Mul=-Task	
Obj.	Fn.	

Lifelong	Learning	(PG-ELLA) 		
[Bou	Ammar,	Eaton,	et	al.,	ICML	‘14]	

	
	

⇡✓(t) : X ⇥A 7! [0, 1]
✓(t) = Ls(t)

s(t)

=

policy	dic)onary	

po
lic
y	
pa
ra
m
et
er
s	

✓(t) L D s(t)

=

descriptor	
dic+onary	

ta
sk
	d
es
cr
ip
to
r	

�(m(t))

same	

policy	fit	 descriptor	fit	 sparsity	 complexity	

min
L,D,S

1

T

X

t

���↵(t) �Ls(t)
���
2

�(t)
+ ⇢

����
�
m(t)

�
�Ds(t)

���
2

2
+ µ

���s(t)
���
1

�
+ �(kLk2F + kDk2F)

Obj.	Fn.	

↵(t)

Algorithm 1 TaDeLL (k, �, µ)
1: T 0

2: L RandomMatrixd,k, D RandomMatrixm,k

3: while some task
�
Z(t),�

�
m

(t)
��

is available do
4: if isNewTask(Z(t)) then
5: T T + 1

6: T(t) sampleRandomTrajectories(Z(t))
7: else
8: T(t) sampleTrajectories(Z(t), ⇡↵(t))
9: end if

10: Compute ↵

(t) and �(t) from T(t)

11: s

(t) argmins

��
�

(t)�Ks

��2
A(t) + µksk

1

12: L updateL(L, s(t),↵(t),�(t),�)
13: D updateD(D, s(t),�

�
m

(t)
�
, ⇢Idm ,�)

14: for t 2 {1, . . . , T} do: ✓

(t) Ls

(t)

15: end while

et al., 2010], which optimizes the dictionaries for multiple
feature spaces that share a joint sparse representation. This
notion of coupled dictionary learning has led to high per-
formance algorithms for image super-resolution [Yang et al.,
2010], allowing the reconstruction of high-res images from
low-res samples, and for multi-modal retrieval [Zhuang et al.,
2013] and cross-domain retrieval [Yu et al., 2014].

Given the factorization in Eq. 6, we can re-formulate the
multi-task objective (Eq. 1) for the coupled dictionaries as

min

L,D,S

1

T

X

t


�J

⇣
✓

(t)
⌘
+ ⇢

����
�
m

(t)
�
�Ds

(t)
���
2

2

+ µ
���s(t)

���
1

�
+ �(kLk2F + kDk2F) ,

(7)

where ⇢ balances the policy’s fit to the task descriptor’s fit.
To solve Eq. 7 online, we approximate J (·) by a second-

order Taylor expansion around ↵

(t), the minimizer for the
PG lower bound of J (·) (i.e., ⇡↵(t) is the single-task policy
for Z(t) based on the observed trajectories), following Bou
Ammar et al. [2014]. This simplifies Eq. 7 to

min

L,D,S

1

T

X

t

���↵(t) �Ls

(t)
���
2

�(t)
+ ⇢

����
�
m

(t)
�
�Ds

(t)
���
2

2

+ µ
���s(t)

���
1

�
+ �(kLk2F + kDk2F) . (8)

We can merge pairs of terms in Eq. 8 by choosing:

�

(t)
=


↵

(t)

�
�
m

(t)
�
�

K=


L

D

�
A

(t)
=


�(t) 0
0 ⇢Idm

�
,

where 0 is the zero matrix, letting us rewrite (8) concisely as

min

K,S

1

T

X

t

����(t)�Ks

(t)
���
2

A(t)
+ µ

���s(t)
���
1

�
+�kKk2F . (9)

This objective can now be solved efficiently online, as a se-
ries of per-task update rules given in Algorithm 1. L and D

are updated independently using Equations 3–5, following a
recursive construction based on an eigenvalue decomposition.

The complete implementation of our approach is available
on the third author’s website.

Algorithm 2 Zero-Shot Transfer to a New Task Z(tnew)

1: Inputs: task descriptor m(tnew), learned bases L and D

2: ˜

s

(tnew) argmins

���
�
m

(tnew)
�
�Ds

��2
2

+ µ ksk
1

3: ˜

✓

(tnew) L

˜

s

(tnew)

4: Return: ⇡
˜✓(tnew)

5.2 Zero-Shot Transfer Learning
In a lifelong setting, when faced with a new task, the agent’s
goal is to learn an effective policy for that task as quickly
as possible. At this stage, previous multi-task and lifelong
learners incurred a delay before they could produce a decent
policy, since they needed to acquire data from the new task in
order to identify related knowledge and train the new policy.

Incorporating task descriptors enables our approach to pre-
dict a policy for the new task immediately, given only the
descriptor. This ability to perform zero-shot transfer is en-
abled by the use of coupled dictionary learning, which allows
us to observe a data instance in one feature space (i.e., the
task descriptor), and then recover its underlying latent signal
in the other feature spaces (i.e., the policy parameters) using
the dictionaries and sparse coding [Yang et al., 2010].

Given only the descriptor m(tnew) for a new task Z(tnew),
we can estimate the embedding of the task in the latent de-
scriptor space via LASSO on the learned dictionary D:

˜

s

(tnew) argmin

s

����
�
m

(t)
�
�Ds

���
2

2

+ µ ksk
1

. (10)

Since the estimate given by s

(tnew) also serves as the coef-
ficients over the latent policy space L, we can immediately
predict a policy for the new task as: ˜

✓

(tnew)
= L

˜

s

(tnew). This
zero-shot transfer learning procedure is given as Algorithm 2.

5.3 Theoretical Analysis
This section discusses why incorporating task descriptors
through coupled dictionaries can improve performance of the
learned policies and enable zero-shot transfer to new tasks. In
the Appendix2, we also prove the convergence of TaDeLL. A
full sample complexity analysis is beyond the scope of this
paper, and, indeed, remains an open problem for zero-shot
learning [Romera-Paredes & Torr, 2015].

To analyze the policy improvement, since the policy pa-
rameters are factored as ✓(t)

= Ls

(t), we proceed by show-
ing that incorporating the descriptors through coupled dic-
tionaries can improve both L and S. In this analysis, we
employ the concept of mutual coherence, which has been
studied extensively in the sparse recovery literature. Mutual
coherence measures the similarity of a dictionary’s elements
as M(Q) = max

1i 6=jn

⇣
|q>

i qj |
kqik2kqjk2

⌘
2 [0, 1], where qi is

the ith column of a dictionary Q 2 Rd⇥k. If M(Q) = 0,
then Q is an invertible orthogonal matrix and so sparse recov-
ery can be solved directly by inversion; M(Q) = 1 implies
that Q is not full rank and a poor dictionary. Intuitively, low
mutual coherence indicates that the dictionary’s columns are
considerably different, and thus such a “good” dictionary can
represent many different policies, potentially yielding more
knowledge transfer. This intuition is shown in the following:

✓̃(tnew) = Ls̃(tnew)

s̃(tnew) argmin
s

����
�
m(t)

�
�Ds

���
2

2
+ µ ksk1

2.	Use	recovered	coefficients	
and	policy	dic=onary	to	
predict	policy	parameters	

	

1.		Use	descriptor	and	descriptor	
dic=onary	to	recover	sparse	
coefficients	via	LASSO:	

Given:	descriptor	for	new	task	
(e.g.,	quadrotor	specs)	

task	descriptor	

D s(t)

=
descriptor		
dic+onary	
(pretrained)	

ta
sk
	d
es
cr
ip
to
r	

�(m(t)) ✓̃(tnew) = Ls̃(tnew)�
�
m(tnew)

�
D

s(t)

=

policy	dic)onary	
(pretrained)	

pr
ed

ic
te
d	
po

lic
y	

✓(t) L✓̃(tnew) = Ls̃(tnew)L✓̃(tnew) = Ls̃(tnew)

Experimental	Results	on	Dynamical	Systems	
	

•  Train	on	40	different	consecu=ve	control	tasks,	transfer	to	new	tasks	
	

Task	descriptors	improve	policies	from	mul@-task	and	lifelong	learning	
	
	
	
	
	
	

Effec@ve	zero-shot	transfer	to	new	tasks	
•  Zero-shot	policies	used	as	warm-start	for	learning,	improved	via	PG	
	
	
	
	
	
	
	

	

Iteration
0 10 20 30

R
ew
ar
d

-3.5

-3.0

-2.5

-2.0

TaDeMTL
GO-MTL
TaDeLL
PG-ELLA
PG

(a) Simple Mass
Iteration

0 10 20 30

R
ew
ar
d

-20

-15

-10

-5

TaDeMTL
GO-MTL
TaDeLL
PG-ELLA
PG

(b) Cart Pole
Iteration

0 10 20 30

R
ew
ar
d

-20

-15

-10

-5

0

TaDeMTL
GO-MTL
TaDeLL
PG-ELLA
PG

(c) Bicycle

Figure 1: Performance of multi-task (solid lines), lifelong (dashed), and single-task learning
(dotted) on benchmark dynamical systems. (Best viewed in color.)

SM CP BK Quad

R
un

tim
e

(s
ec

on
ds

)

20

40

60

80

100

120
TaDeLL
Sinapov et al.

Figure 2: Runtime comparison.

Spring Mass

N
eg

at
iv

e
R

ew
ar

d

2.2

2.3

2.4

2.5
Worse

Better
Bicycle

2

4

6

8

10

TaDeMTL
TaDeLL
Sinapov et al.
PG (trained)

Cart Pole

6

8

10

12

14

16

(a) Jumpstart
Iteration

0 10 20 30

R
ew
ar
d

-3.5

-3.0

-2.5

-2.0

TaDeMTL
TaDeLL
Sinapov et al.
PG

(b) Warm Start: Simple Mass
Iteration

0 10 20 30

R
ew
ar
d

-20

-15

-10

TaDeMTL
TaDeLL
Sinapov et al.
PG

(c) Warm Start: Cart Pole
Iteration

0 10 20 30

R
ew
ar
d

-20

-15

-10

-5

0

TaDeMTL
TaDeLL
Sinapov et al.
PG

(d) Warm Start: Bicycle

Figure 3: Zero-shot transfer to new tasks. Figure (a) shows the initial “jumpstart” improvement on each task domain; Figures
(b)–(d) depict the result of using zero-shot policies as warm start initializations for PG. (Best viewed in color.)

via GO-MTL in the SM and BK domains. The difference
between TaDeLL and TaDeMTL is also negligible for all do-
mains except CP (which had very diverse tasks), demonstrat-
ing the effectiveness of our online optimization.

Figure 3 shows that task descriptors are effective for zero-
shot transfer to new tasks. We generated an additional 40
tasks for each domain to measure zero-shot performance, av-
eraging results over these new tasks. Figure 3a shows that our
approach improves the initial performance (i.e., the “jump-
start” [Taylor & Stone, 2009]) on new tasks, outperforming
Sinapov et al. [2015]’s method and single-task PG, which
was allowed to train on the task. We attribute the espe-
cially poor performance of Sinapov et al. on CP to the fact
that the CP policies differ substantially; in domains where
the source policies are vastly different from the target poli-
cies, Sinapov et al.’s algorithm does not have an appropriate
source to transfer. Their approach is also much more compu-
tationally expensive (quadratic in the number of tasks) than
our approach (linear in the number of tasks), as shown in Fig-
ure 2; details of the runtime experiments are included in the
Appendix2. Figures 3b–3d show that the zero-shot policies
can be used effectively as a warm start initialization for a PG
learner, which is then allowed to improve the policy.

6.4 Application to Quadrotor Control
We also applied our approach to the more challenging do-
main of quadrotor control, focusing on zero-shot transfer to
new stability tasks. To ensure realistic dynamics, we use the
model of Bouabdallah and Siegwart [2005], which has been
verified on physical systems. The quadrotors are character-

Iteration
0 50 100

R
ew
ar
d

-3.0

-2.8

-2.6

-2.4

-2.2

TaDeMTL
TaDeLL
Sinapov et al.
PG

Figure 4: Warm start learning on quadrotor control.

ized by three inertial constants and the arm length, with their
state consisting of roll/pitch/yaw and their derivatives.

Figure 4 shows the results of our application, demonstrat-
ing that TaDeLL can predict a controller for new quadrotors
through zero-shot learning that has equivalent accuracy to
PG, which had to train on the system. As with the bench-
marks, TaDeLL is effective for warm start learning with PG.

7 Conclusion
We proposed a coupled dictionary method for incorporating
task descriptors into lifelong learning, showing that descrip-
tors improve learned policy performance, and enable us to
predict policies for new tasks before observing training data.
Experiments demonstrate that our method outperforms other
approaches on dynamical control problems, and requires sub-
stantially less computational time than similar methods.

Spring-Mass-Damper	 Cart	Pole	 Bicycle	

Iteration
0 10 20 30

R
ew
ar
d

-3.5

-3.0

-2.5

-2.0

TaDeMTL
GO-MTL
TaDeLL
PG-ELLA
PG

(a) Simple Mass
Iteration

0 10 20 30

R
ew
ar
d

-20

-15

-10

-5

TaDeMTL
GO-MTL
TaDeLL
PG-ELLA
PG

(b) Cart Pole
Iteration

0 10 20 30

R
ew
ar
d

-20

-15

-10

-5

0

TaDeMTL
GO-MTL
TaDeLL
PG-ELLA
PG

(c) Bicycle

Figure 1: Performance of multi-task (solid lines), lifelong (dashed), and single-task learning
(dotted) on benchmark dynamical systems. (Best viewed in color.)

SM CP BK Quad

R
un

tim
e

(s
ec

on
ds

)

20

40

60

80

100

120
TaDeLL
Sinapov et al.

Figure 2: Runtime comparison.

Spring Mass

N
eg

at
iv

e
R

ew
ar

d

2.2

2.3

2.4

2.5
Worse

Better
Bicycle

2

4

6

8

10

TaDeMTL
TaDeLL
Sinapov et al.
PG (trained)

Cart Pole

6

8

10

12

14

16

(a) Jumpstart
Iteration

0 10 20 30

R
ew
ar
d

-3.5

-3.0

-2.5

-2.0

TaDeMTL
TaDeLL
Sinapov et al.
PG

(b) Warm Start: Simple Mass
Iteration

0 10 20 30

R
ew
ar
d

-20

-15

-10

TaDeMTL
TaDeLL
Sinapov et al.
PG

(c) Warm Start: Cart Pole
Iteration

0 10 20 30

R
ew
ar
d

-20

-15

-10

-5

0

TaDeMTL
TaDeLL
Sinapov et al.
PG

(d) Warm Start: Bicycle

Figure 3: Zero-shot transfer to new tasks. Figure (a) shows the initial “jumpstart” improvement on each task domain; Figures
(b)–(d) depict the result of using zero-shot policies as warm start initializations for PG. (Best viewed in color.)

via GO-MTL in the SM and BK domains. The difference
between TaDeLL and TaDeMTL is also negligible for all do-
mains except CP (which had very diverse tasks), demonstrat-
ing the effectiveness of our online optimization.

Figure 3 shows that task descriptors are effective for zero-
shot transfer to new tasks. We generated an additional 40
tasks for each domain to measure zero-shot performance, av-
eraging results over these new tasks. Figure 3a shows that our
approach improves the initial performance (i.e., the “jump-
start” [Taylor & Stone, 2009]) on new tasks, outperforming
Sinapov et al. [2015]’s method and single-task PG, which
was allowed to train on the task. We attribute the espe-
cially poor performance of Sinapov et al. on CP to the fact
that the CP policies differ substantially; in domains where
the source policies are vastly different from the target poli-
cies, Sinapov et al.’s algorithm does not have an appropriate
source to transfer. Their approach is also much more compu-
tationally expensive (quadratic in the number of tasks) than
our approach (linear in the number of tasks), as shown in Fig-
ure 2; details of the runtime experiments are included in the
Appendix2. Figures 3b–3d show that the zero-shot policies
can be used effectively as a warm start initialization for a PG
learner, which is then allowed to improve the policy.

6.4 Application to Quadrotor Control
We also applied our approach to the more challenging do-
main of quadrotor control, focusing on zero-shot transfer to
new stability tasks. To ensure realistic dynamics, we use the
model of Bouabdallah and Siegwart [2005], which has been
verified on physical systems. The quadrotors are character-

Iteration
0 50 100

R
ew
ar
d

-3.0

-2.8

-2.6

-2.4

-2.2

TaDeMTL
TaDeLL
Sinapov et al.
PG

Figure 4: Warm start learning on quadrotor control.

ized by three inertial constants and the arm length, with their
state consisting of roll/pitch/yaw and their derivatives.

Figure 4 shows the results of our application, demonstrat-
ing that TaDeLL can predict a controller for new quadrotors
through zero-shot learning that has equivalent accuracy to
PG, which had to train on the system. As with the bench-
marks, TaDeLL is effective for warm start learning with PG.

7 Conclusion
We proposed a coupled dictionary method for incorporating
task descriptors into lifelong learning, showing that descrip-
tors improve learned policy performance, and enable us to
predict policies for new tasks before observing training data.
Experiments demonstrate that our method outperforms other
approaches on dynamical control problems, and requires sub-
stantially less computational time than similar methods.

Spring-Mass-Damper	 Cart	Pole	 Bicycle	

Iteration
0 10 20 30

R
ew
ar
d

-3.5

-3.0

-2.5

-2.0

TaDeMTL
GO-MTL
TaDeLL
PG-ELLA
PG

(a) Simple Mass
Iteration

0 10 20 30

R
ew
ar
d

-20

-15

-10

-5

TaDeMTL
GO-MTL
TaDeLL
PG-ELLA
PG

(b) Cart Pole
Iteration

0 10 20 30

R
ew
ar
d

-20

-15

-10

-5

0

TaDeMTL
GO-MTL
TaDeLL
PG-ELLA
PG

(c) Bicycle

Figure 1: Performance of multi-task (solid lines), lifelong (dashed), and single-task learning
(dotted) on benchmark dynamical systems. (Best viewed in color.)

SM CP BK Quad

R
un

tim
e

(s
ec

on
ds

)

20

40

60

80

100

120
TaDeLL
Sinapov et al.

Figure 2: Runtime comparison.

Spring Mass
N

eg
at

iv
e

R
ew

ar
d

2.2

2.3

2.4

2.5
Worse

Better
Bicycle

2

4

6

8

10

TaDeMTL
TaDeLL
Sinapov et al.
PG (trained)

Cart Pole

6

8

10

12

14

16

(a) Jumpstart
Iteration

0 10 20 30

R
ew
ar
d

-3.5

-3.0

-2.5

-2.0

TaDeMTL
TaDeLL
Sinapov et al.
PG

(b) Warm Start: Simple Mass
Iteration

0 10 20 30

R
ew
ar
d

-20

-15

-10

TaDeMTL
TaDeLL
Sinapov et al.
PG

(c) Warm Start: Cart Pole
Iteration

0 10 20 30

R
ew
ar
d

-20

-15

-10

-5

0

TaDeMTL
TaDeLL
Sinapov et al.
PG

(d) Warm Start: Bicycle

Figure 3: Zero-shot transfer to new tasks. Figure (a) shows the initial “jumpstart” improvement on each task domain; Figures
(b)–(d) depict the result of using zero-shot policies as warm start initializations for PG. (Best viewed in color.)

via GO-MTL in the SM and BK domains. The difference
between TaDeLL and TaDeMTL is also negligible for all do-
mains except CP (which had very diverse tasks), demonstrat-
ing the effectiveness of our online optimization.

Figure 3 shows that task descriptors are effective for zero-
shot transfer to new tasks. We generated an additional 40
tasks for each domain to measure zero-shot performance, av-
eraging results over these new tasks. Figure 3a shows that our
approach improves the initial performance (i.e., the “jump-
start” [Taylor & Stone, 2009]) on new tasks, outperforming
Sinapov et al. [2015]’s method and single-task PG, which
was allowed to train on the task. We attribute the espe-
cially poor performance of Sinapov et al. on CP to the fact
that the CP policies differ substantially; in domains where
the source policies are vastly different from the target poli-
cies, Sinapov et al.’s algorithm does not have an appropriate
source to transfer. Their approach is also much more compu-
tationally expensive (quadratic in the number of tasks) than
our approach (linear in the number of tasks), as shown in Fig-
ure 2; details of the runtime experiments are included in the
Appendix2. Figures 3b–3d show that the zero-shot policies
can be used effectively as a warm start initialization for a PG
learner, which is then allowed to improve the policy.

6.4 Application to Quadrotor Control
We also applied our approach to the more challenging do-
main of quadrotor control, focusing on zero-shot transfer to
new stability tasks. To ensure realistic dynamics, we use the
model of Bouabdallah and Siegwart [2005], which has been
verified on physical systems. The quadrotors are character-

Iteration
0 50 100

R
ew
ar
d

-3.0

-2.8

-2.6

-2.4

-2.2

TaDeMTL
TaDeLL
Sinapov et al.
PG

Figure 4: Warm start learning on quadrotor control.

ized by three inertial constants and the arm length, with their
state consisting of roll/pitch/yaw and their derivatives.

Figure 4 shows the results of our application, demonstrat-
ing that TaDeLL can predict a controller for new quadrotors
through zero-shot learning that has equivalent accuracy to
PG, which had to train on the system. As with the bench-
marks, TaDeLL is effective for warm start learning with PG.

7 Conclusion
We proposed a coupled dictionary method for incorporating
task descriptors into lifelong learning, showing that descrip-
tors improve learned policy performance, and enable us to
predict policies for new tasks before observing training data.
Experiments demonstrate that our method outperforms other
approaches on dynamical control problems, and requires sub-
stantially less computational time than similar methods.

Quadrotor	

Iteration
0 10 20 30

R
ew
ar
d

-3.5

-3.0

-2.5

-2.0

TaDeMTL
GO-MTL
TaDeLL
PG-ELLA
PG

(a) Simple Mass
Iteration

0 10 20 30

R
ew
ar
d

-20

-15

-10

-5

TaDeMTL
GO-MTL
TaDeLL
PG-ELLA
PG

(b) Cart Pole
Iteration

0 10 20 30

R
ew
ar
d

-20

-15

-10

-5

0

TaDeMTL
GO-MTL
TaDeLL
PG-ELLA
PG

(c) Bicycle

Figure 1: Performance of multi-task (solid lines), lifelong (dashed), and single-task learning
(dotted) on benchmark dynamical systems. (Best viewed in color.)

SM CP BK Quad

R
un

tim
e

(s
ec

on
ds

)

20

40

60

80

100

120
TaDeLL
Sinapov et al.

Figure 2: Runtime comparison.

Spring Mass

N
eg

at
iv

e
R

ew
ar

d

2.2

2.3

2.4

2.5
Worse

Better
Bicycle

2

4

6

8

10

TaDeMTL
TaDeLL
Sinapov et al.
PG (trained)

Cart Pole

6

8

10

12

14

16

(a) Jumpstart
Iteration

0 10 20 30

R
ew
ar
d

-3.5

-3.0

-2.5

-2.0

TaDeMTL
TaDeLL
Sinapov et al.
PG

(b) Warm Start: Simple Mass
Iteration

0 10 20 30
R
ew
ar
d

-20

-15

-10

TaDeMTL
TaDeLL
Sinapov et al.
PG

(c) Warm Start: Cart Pole
Iteration

0 10 20 30

R
ew
ar
d

-20

-15

-10

-5

0

TaDeMTL
TaDeLL
Sinapov et al.
PG

(d) Warm Start: Bicycle

Figure 3: Zero-shot transfer to new tasks. Figure (a) shows the initial “jumpstart” improvement on each task domain; Figures
(b)–(d) depict the result of using zero-shot policies as warm start initializations for PG. (Best viewed in color.)

via GO-MTL in the SM and BK domains. The difference
between TaDeLL and TaDeMTL is also negligible for all do-
mains except CP (which had very diverse tasks), demonstrat-
ing the effectiveness of our online optimization.

Figure 3 shows that task descriptors are effective for zero-
shot transfer to new tasks. We generated an additional 40
tasks for each domain to measure zero-shot performance, av-
eraging results over these new tasks. Figure 3a shows that our
approach improves the initial performance (i.e., the “jump-
start” [Taylor & Stone, 2009]) on new tasks, outperforming
Sinapov et al. [2015]’s method and single-task PG, which
was allowed to train on the task. We attribute the espe-
cially poor performance of Sinapov et al. on CP to the fact
that the CP policies differ substantially; in domains where
the source policies are vastly different from the target poli-
cies, Sinapov et al.’s algorithm does not have an appropriate
source to transfer. Their approach is also much more compu-
tationally expensive (quadratic in the number of tasks) than
our approach (linear in the number of tasks), as shown in Fig-
ure 2; details of the runtime experiments are included in the
Appendix2. Figures 3b–3d show that the zero-shot policies
can be used effectively as a warm start initialization for a PG
learner, which is then allowed to improve the policy.

6.4 Application to Quadrotor Control
We also applied our approach to the more challenging do-
main of quadrotor control, focusing on zero-shot transfer to
new stability tasks. To ensure realistic dynamics, we use the
model of Bouabdallah and Siegwart [2005], which has been
verified on physical systems. The quadrotors are character-

Iteration
0 50 100

R
ew
ar
d

-3.0

-2.8

-2.6

-2.4

-2.2

TaDeMTL
TaDeLL
Sinapov et al.
PG

Figure 4: Warm start learning on quadrotor control.

ized by three inertial constants and the arm length, with their
state consisting of roll/pitch/yaw and their derivatives.

Figure 4 shows the results of our application, demonstrat-
ing that TaDeLL can predict a controller for new quadrotors
through zero-shot learning that has equivalent accuracy to
PG, which had to train on the system. As with the bench-
marks, TaDeLL is effective for warm start learning with PG.

7 Conclusion
We proposed a coupled dictionary method for incorporating
task descriptors into lifelong learning, showing that descrip-
tors improve learned policy performance, and enable us to
predict policies for new tasks before observing training data.
Experiments demonstrate that our method outperforms other
approaches on dynamical control problems, and requires sub-
stantially less computational time than similar methods.

