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Abstract. Multi-view learning algorithms typically assume a complete bipartite map-
ping between the different views in order to exchange information during the learning
process. However, many applications provide only a partial mapping between the views,
creating a challenge for current methods. To address this problem, we propose a multi-
view algorithm based on constrained clustering that can operate with an incomplete
mapping. Given a set of pairwise constraints in each view, our approach propagates
these constraints using a local similarity measure to those instances that can be mapped
to the other views, allowing the propagated constraints to be transferred across views
via the partial mapping. It uses co-EM to iteratively estimate the propagation within
each view based on the current clustering model, transfer the constraints across views,
and then update the clustering model. By alternating the learning process between
views, this approach produces a unified clustering model that is consistent with all
views. We show that this approach significantly improves clustering performance over
several other methods for transferring constraints and allows multi-view clustering to
be reliably applied when given a limited mapping between the views. Our evaluation
reveals that the propagated constraints have high precision with respect to the true
clusters in the data, explaining their benefit to clustering performance in both single-
and multi-view learning scenarios.
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1. Introduction

Using multiple different views often has a synergistic effect on learning, improv-
ing the performance of the resulting model beyond learning from a single view.
Multi-view learning is especially relevant to applications that simultaneously col-
lect data from different modalities, with each unique modality providing one or
more views of the data. For example, a textual field report may have associated
image and video content, and an Internet web page may contain both text and
audio. Each view contains unique complementary information about an object;
only in combination do the views yield a complete representation of the original
object. Concepts that are challenging to learn in one view (e.g., identifying im-
ages of patrons at an Italian restaurant) may be easier to recognize in another
view (e.g., via the associated textual caption), providing an avenue to improve
learning. Multi-view learning can share learning progress in a single view to im-
prove learning in the other views via the direct correspondences between views.

Current multi-view algorithms typically assume that there is a complete bi-
partite mapping between instances in the different views to represent these corre-
spondences, denoting that each object is represented in all views. The predictions
of a model in one view are transferred via this mapping to instances in the other
views, providing additional labeled data to improve learning. However, what hap-
pens if we have only a partial mapping between the views, where only a limited
number of objects have multi-view representations?

This problem arises in many industrial and military applications, where data
from different modalities are often collected, processed, and stored independently
by specialized analysts. Consequently, the mapping between instances in the dif-
ferent views is incomplete. Even in situations where the connections between
views are recorded, sensor availability and scheduling may result in many iso-
lated instances in the different views. Although it is feasible to identify a partial
mapping between the views, the lack of a complete bipartite mapping presents
a challenge to most current multi-view learning methods. Without a complete
mapping, these methods will be unable to transfer any information involving an
isolated instance to the other views.

To address this problem, we propose a method for multi-view learning with
an incomplete mapping in the context of constrained clustering. Constrained
clustering (Basu et al., 2008) is a class of semi-supervised learning methods that
cluster data, subject to a set of hard or soft constraints that specify the relative
cluster membership of pairs of instances. These constraints serve as background
information for the clustering by specifying instance pairs that belong in either
the same cluster (a must-link constraint) or different clusters (a cannot-link con-
straint). Given a set of constraints in each view, our approach transfers these
constraints to affect learning in the other views. With a complete mapping, each
constraint has a direct correspondence in the other views, and therefore can
be directly transferred between views using current methods. However, with a
partial mapping, these constraints may be between instances that do not have
equivalences in the other views, presenting a challenge to multi-view learning,
especially when the mapping is very limited.

This article proposes the first multi-view constrained clustering algorithm
that considers the use of an incomplete mapping between views. Given an in-
complete mapping, our approach propagates the given constraints within each
view to pairs of instances that have equivalences in the other views. Since these
propagated constraints involve only instances with a mapping to the other views,
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Fig. 1. An illustration of multi-view constrained clustering between two disjoint data views:
text and images. We are given a very limited mapping between the views (solid black lines) and
a set of pairwise constraints in the images view: two must-link constraints (thick solid green
lines) and one cannot-link constraint (thick dashed red line). Based on the current clustering,
each given constraint is propagated to pairs of images that are in close proximity to the given
constraint and can be mapped to the text view. These propagated must-link and cannot-link
constraints (thin solid green and dashed red lines, respectively) are then directly transferred
via the mapping to form constraints between text documents and influence the clustering in
the next co-EM iteration. (Best viewed in color.)

they can be directly transferred to instances in those other views and affect the
clustering. The weight of each propagated constraint is given by its similarity to
the original constraint, as measured by a local radial basis weighting function
that is based on the current estimate of the clustering. This process is depicted
in Figure 1. Our approach uses a variant of co-EM (Nigam and Ghani, 2000) to
iteratively estimate the propagation within each view, transfer the constraints
across views, and update the clustering model. Our experiments show that using
co-EM with constraint propagation provides an effective mechanism for multi-
view learning under an incomplete mapping between views, yielding significant
improvement over several other mechanisms for transferring constraints across
views. We also demonstrate that constraint propagation can improve clustering
performance even in single-view scenarios, further demonstrating the precision
of the inferred constraints and the utility of constraint propagation.

We first survey related work on constrained clustering and multi-view learn-
ing in Section 2, and then present details in Section 3 on the specific constrained
clustering and co-EM algorithms on which we base our approach. Section 4 de-
scribes our problem setting and mathematical notation. We develop our multi-
view constrained clustering algorithm in Section 5, describing the constraint
propagation and clustering processes in Sections 5.1–5.2, its extension to more
than two views in Section 5.3, and implementation efficiency in Section 5.4. Sec-
tion 6 evaluates the performance of our approach in several multi-view scenarios
(Section 6.3), and then analyzes the performance of constraint propagation inde-
pendently through traditional single-view (Section 6.4) clustering. We conclude
with a brief discussion of constraint propagation and future work in Section 7.
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2. Related Work

Our approach combines constrained clustering with multi-view learning. In this
section, we briefly review related work on both of these topics.

2.1. Constrained clustering

Constrained clustering algorithms (Basu et al., 2008) incorporate side informa-
tion to influence the resulting clustering model. Most constrained clustering re-
search has focused on using side information given as a set of constraints that
specify the relative cluster membership of sets of instances. Typically, these al-
gorithms use both must-link constraints, which specify sets of instances that
belong in the same cluster, and cannot-link constraints, which specify instances
that belong in different clusters. Depending on the algorithm, this labeled knowl-
edge may be treated as either hard constraints that cannot be violated, or soft
constraints that can be violated with some penalty.

These types of constraints have been successfully integrated into a wide va-
riety of clustering methods (Basu et al., 2008), including K-Means, mixture-
models, hierarchical clustering, spectral clustering, and density-based techniques.
Although our approach can use most current constrained clustering algorithms,
we focus on using K-Means variants and so concentrate our survey on these
methods. COP-Kmeans (Wagstaff et al., 2001; Wagstaff, 2002), the first con-
strained clustering algorithm based on K-Means, performs K-Means clustering
while ensuring that all constraints are honored in the cluster assignments. PCK-
Means (Basu et al., 2004) performs soft constrained clustering by combining
the K-Means objective function with penalties for constraint violations. The
MPCK-Means algorithm (Bilenko et al., 2004) builds on PCK-Means to learn
the distance metrics for each cluster during the clustering process. We use the
PCK-Means and MPCK-Means algorithms as the base clustering methods in our
experiments, and describe these two algorithms in more detail in Section 3.1.

Kulis et al. (2009) explore the connections between several different formu-
lations of constrained clustering, showing that semi-supervised weighted kernel
K-Means, graph clustering, and spectral clustering are closely related. Based on
these connections, they develop a kernel-based constrained clustering approach
that can operate on either vector- or graph-based data, unifying these two areas.
Domeniconi et al. (2011) propose an alternative formulation of semi-supervised
clustering using composite kernels that is suitable for heterogeneous data fusion.

The models generated by PCK-Means/MPCK-Means are equivalent to par-
ticular forms of Gaussian mixtures (Bilenko et al., 2004; Basu et al., 2002), and
so our work is also closely related to research in constrained mixture modeling.
Shental et al. (2004) incorporate hard constraints into Gaussian mixture models
using an equivalence set formulation, and Lu et al. (2005) learn a soft constrained
Gaussian mixture model using constraints to influence the prior distribution of
instances to clusters. More recent work has focused on incorporating constraints
into nonparametric mixture models (Vlachos et al., 2009; Mallapragada, 2010).

Due to the intuitive nature of must-link and cannot-link constraints for user
interaction, constrained clustering has been applied to the problem of interac-
tive clustering, where the system and user collaborate to generate the model.
Cohn et al. (2009) and desJardins et al. (2008) present interactive approaches in
which a user iteratively provides feedback to improve the quality of a proposed
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clustering. In both of these cases, the user feedback is incorporated in the form of
constraints. This interactive process is a useful extension that could permit user
knowledge to be brought into a multi-view clustering algorithm. Additionally, as
we discuss in Section 7, a user could specify these constraints in one view of the
data where interaction is quick and intuitive (such as images). Our multi-view
clustering algorithm could then be used to automatically propagate and transfer
these constraints to affect the clustering of other views where interaction may
be more difficult (such as text or other data modalities). Interaction could be
further improved by the use of active learning to query the users for specific
constraints (Wang and Davidson, 2010; Zhao et al., 2012).

2.2. Multi-view learning

Multi-view learning was originated by Blum and Mitchell (1998) in the co-
training algorithm for semi-supervised classification. Co-training uses the model
for each view to incrementally label the unlabeled data. Labels that are predicted
with high confidence are transferred to the corresponding unlabeled instances in
the other views to improve learning, and the process iterates until all instances
are labeled. Co-training assumes independence between the views, and shows de-
creased performance when this assumption is violated (Nigam and Ghani, 2000).
Dasgupta et al. (2001) provide a PAC generalization analysis of the co-training
algorithm that bounds the error of co-training based on the observed disagree-
ment between the partial rules. This analysis relies on the independence of the
views, which is often violated in real-world domains.

As an alternative to co-training, Nigam and Ghani (2000) present the co-EM
algorithm, an iterative multi-view form of expectation maximization (EM). The
co-EM algorithm probabilistically labels all data and transfers those labels to
the other view each iteration, repeating this process until convergence. Unlike
co-training, it does not require independence between the views in order to per-
form well. The co-EM algorithm forms the foundation for our approach, and is
described in detail in Section 3.2.

Clustering with multiple views was introduced by Bickel and Scheffer (2004),
who developed a multi-view EM algorithm that alternates between the views
used to learn the model parameters and estimate the cluster assignments. The
typical goal of multi-view clustering is to learn models that exhibit agreement
across multiple views of the data. Chaudhuri et al. (2009) develop a multi-view
approach to support clustering in high-dimensional spaces. They use canoni-
cal correlation analysis to construct low-dimensional embeddings from multiple
views of the data, then apply co-training to simultaneously cluster the data in
these multiple lower-dimensional spaces. de Sa (2005) extends spectral clustering
to a multi-view scenario, in which the objective is to minimize the disagreement
between views.

In Kumar and Daumé’s work, an EM co-training approach is used to per-
form spectral clustering within one view and use this as a constraint on the sim-
ilarity graph in another view (Kumar and Daumé, 2011). In subsequent work,
they used a regularization approach to optimize the shared clustering (Kumar
et al., 2011). In effect, these approaches are propagating the entire cluster-
ing across views, in contrast to our method, which only propagates the ex-
plicit constraints to nearby pairs of instances. Also, unlike our approach, these
works assume a complete bipartite mapping between views. Other multi-view
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clustering variations are based on cross-modal clustering between perceptual
channels (Coen, 2005) and information-theoretic frameworks (Sridharan and
Kakade, 2008; Gao et al., 2007; Tang et al., 2009).

Recently, several researchers have studied ways to develop mappings between
alternative views. Harel and Mannor (2011) describe a method for learning from
what they refer to as multiple outlooks. Outlooks are similar to views in that
they each have different feature spaces; however, there is no assumption that
instances would appear in multiple outlooks. (Harel and Mannor mention the
possibility of shared instances but do not present any results.) They learn an
affine mapping that scales and rotates a given outlook into another outlook
by matching the moments of the empirical distributions within the outlooks.
This work assumes that the outlooks can be mapped to each other globally
with a single affine mapping, whereas our work assumes only local, potentially
nonlinear mappings between the views, based on the learned clustering structure.
Quadrianto and Lampert (2011) introduce a technique for projecting multiple
views into a common, shared feature space, producing a joint distance function
across the views. Their work assumes that each instance appears in every view.
They use a neighborhood relationship that defines “similar” instances to optimize
a similarity function in the shared feature space that respects the neighborhood
relationships. The problem setting in their work is rather different from ours,
since they assume a complete bipartite mapping between views, and the provided
input consists of neighborhood sets rather than pairwise constraints.

There has been a significant amount of recent research on applying co-training
to perform clustering in relational data. These methods generally use the at-
tributes of the objects in a relational network as one view, and the relations as
another view (or as multiple views). Greene and Cunningham (2009), for ex-
ample, combine text similarity (the attribute view) with co-citation data (the
relational view) to identify communities in citation data. Banerjee et al. (2007)
introduce a general framework for co-clustering of attributes and relations, using
an approach that finds the clustering with the minimal information loss. Baner-
jee et al.’s framework can be applied with any single or combination of Bregman
loss functions, permitting it to be applied in a variety of different contexts.

Bhattacharya and Getoor (2009) show how the problem of entity resolution
(identifying objects in a relational network that refer to the same entity) can be
seen as a constrained clustering problem. The way in which information is com-
bined by equating multiple objects in entity resolution can be seen as analogous
to multi-view clustering, where each role that the entity plays in the relational
network can be thought of as a “view” on that object.

Other applications of multi-view clustering include image search (Chi et al.,
2007), biomedical data analysis (Kailing et al., 2004), audio-visual speech and
gesture analysis (Christoudias et al., 2008), multilingual document clustering
(Kim et al., 2010), word sense disambiguation (Yarowsky, 1995), and e-mail
classification (Kiritchenko and Matwin, 2001).

3. Background

In this section, we present background on the basic methods on which our ap-
proach builds: the PCK-Means and MPKC-Means constrained clustering meth-
ods, and the co-EM algorithm.
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3.1. Constrained clustering methods

Constrained clustering algorithms take as input a set of constraints C to inform
the clustering process. A pairwise constraint 〈xi, xj , w, type〉 ∈ C denotes the
relative clustering of instances xi and xj , where the non-negative weight of the
constraint is given by w ∈ R

+
0 (the set of non-negative real numbers) and type ∈

{must -link , cannot -link} specifies whether xi and xj belong in either the same
cluster (a must-link constraint) or different clusters (a cannot-link constraint).
In soft constrained clustering, w can be viewed as the penalty for violating the
constraint. Throughout this article, wherever the weight or type of constraint are
obvious from context, we will omit them and indicate a pairwise constraint as
simply 〈xi, xj〉 or 〈xi, xj , w〉. For convenience, we refer to the sets of all must-link
and cannot-link constraints as, respectively, Cml and Ccl .

As mentioned earlier, our approach can be combined with any constrained
clustering method. Our current implementation supports the PCK-Means (Basu
et al., 2004) and MPCK-Means (Bilenko et al., 2004) algorithms; we give results
for both methods in Section 6. In the remainder of this section, we provide a brief
overview of these methods; further details are available in the original papers.

We first describe the MPCK-Means algorithm, and then show the simpli-
fications that yield PCK-Means. The MPCK-Means algorithm generates a k-
partitioning of the data X ⊆ R

d by minimizing the following objective function,
which combines the K-Means model with penalties for violating must-link and
cannot-link constraints:

JMPCK =
∑

xi∈X

(

‖xi − µxi
‖2
Mxi

− log(det(Mxi
))
)

+
∑

〈xi,xj ,w〉∈Cml

wfml(xi, xj)1(µxi
6= µxj

)

+
∑

〈xi,xj ,w〉∈Ccl

wfcl (xi, xj)1(µxi
= µxj

) ,

(1)

where

fml(xi, xj) =
1
2‖xi − xj‖2Mxi

+ 1
2‖xi − xj‖2Mxj

(2)

fcl(xi, xj) = ‖x′
xi

− x′′
xi
‖2Mxi

− ‖xi − xj‖2Mxi
, (3)

µxi
and Mxi

are respectively the centroid and metric of the cluster to which xi

belongs, x′
xi

and x′′
xi

are the points with the greatest separation according to
the Mxi

metric, the function 1(b) = 1 if predicate b is true and 0 otherwise,

and ‖xi − xj‖M =
√

(xi − xj)TM(xi − xj) is the Mahalanobis distance between
xi and xj using the metric M. The first term of JMPCK attempts to maximize
the log-likelihood of the K-Means clustering, while the second and third terms
incorporate the costs of violating constraints in C.

MPCK-Means uses expectation maximization (EM) to locally minimize the
objective function JMPCK to generate the clustering. The E-step consists of as-
signing each point to the cluster that minimizes JMPCK from the perspective
of that data point, given the previous assignments of points to clusters. The
M-step consists of two parts: re-estimating the cluster centroids given the E-step
cluster assignments, and updating the metric matrices {Mh}Kh=1 to decrease
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Algorithm 1 The co-EM algorithm of Nigam and Ghani (2000)

Input: first view XA of the data, second view XB of the data, and
an incomplete vector of labels Y over the data.

1: Initialize Ỹ = Y .

2: repeat

3: for V ∈ {A,B} do

4: Learn model MV using the data XV with labels Ỹ . // M-step

5: Use MV to label XV , obtaining predicted labels Y V . // E-step

6: Set Ỹi =

{

Yi if label Yi is provided
Y V
i otherwise

.

7: end for

8: until MA and MB have both internally converged

Output: The two models MA and MB.

JMPCK . The latter step enables MPCK-Means to learn the metrics for each
cluster in combination with learning the constrained clustering model. Learn-
ing a Mahalanobis metric has also been considered by Xing et al. (2003) and
Bar-Hillel et al. (2005). The PCK-Means algorithm is a simplified form of this
approach that minimizes the same objective function as MPCK-Means, but elim-
inates the metric learning aspect and assumes an identity distance metric, setting
fml(xi, xj) = fcl(xi, xj) = 1.

3.2. The co-EM algorithm

Co-EM (Nigam and Ghani, 2000) is an iterative algorithm based on expectation
maximization that learns a model from multiple views of data. At each iteration,
co-EM estimates the model for a view and uses it to probabilistically label all of
the data; these labels are then transferred to train another view during the next
iteration. Co-EM repeats this process until the models for all views converge.
The co-EM algorithm of Nigam and Ghani is given as Algorithm 1; note that
this algorithm assumes a complete bipartite mapping between the two views in
order to transfer the labels.

Unlike co-training, co-EM does not require the views to be independent in
order to perform well. The co-EM algorithm also learns from a large set of data
with noisy labels each iteration, in contrast to co-training, which adds few la-
beled instances to the training set at each iteration. For this reason, Nigam and
Ghani (2000) argue that the co-EM algorithm is closer in spirit to the original
framework for multi-view learning described by Blum and Mitchell (1998) than
the co-training algorithm. The approach we explore in this article uses a vari-
ant of co-EM to iteratively infer constraints in each view and to transfer those
constraints to affect learning in the other views.
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4. Preliminaries

Our multi-view constrained clustering approach (described in the next section)
takes as input multiple views of the data X = {XA, XB, . . .}. Each view V
of the data is given by a set of instances XV = {xV

1 , x
V
2 , . . . , x

V
nV

}, with each

xV
i ∈ R

dV . The feature set and dimensionality dV may differ between the views.
We will initially focus on the case of two views, given by XA and XB, and extend
our approach to handle an arbitrary number of views in Section 5.3.

Within X , there are pairs of instances that correspond to different views of
the same objects. We denote this connection between two instances xA

u and xB
v

in different views by a relation ri = 〈xA
u , x

B
v 〉 ∈ XA ×XB. The set of relations

RA×B = {r1, r2, . . .} ⊆ XA × XB defines a bipartite graph between XA and
XB. Most other work on multi-view learning (Nigam and Ghani, 2000; Blum
and Mitchell, 1998; Bickel and Scheffer, 2004; Chaudhuri et al., 2009; Kumar
and Daumé, 2011) assumes that RA×B defines a complete bipartite mapping
between the two views. We relax this assumption and consider the case in which
RA×B provides only a partial mapping between the views. We also consider
situations where the partial mapping is extremely limited, with many more data
instances than relations between views (i.e., |RA×B | ≪ min(|XA|, |XB|)).

We also have a set of pairwise must-link and cannot-link constraints for each
view V , given by CV ⊂ CV , where CV = XV×XV×R

+
0 ×{must -link , cannot -link}

denotes the space of all possible pairwise constraints in view V . Depending on
the application, these constraints may be either manually specified by the user
or extracted automatically from labeled data. Note that the constraints describe
relationships between instances within a single view, while the mapping RA×B

defines connections between instances in different views.

5. Multi-View Constrained Clustering

Our multi-view constrained clustering approach takes as input multiple views
of the data X = {XA, XB, . . .}, their associated sets of pairwise constraints
CA, CB, . . ., and a (potentially incomplete) mapping RU×V between each pair of
different views U and V . Although we focus primarily on the case of two views
A and B, we also generalize our approach to multiple views, as described in
Section 5.3. The objective of our approach is to determine a k-partitioning of
the data for each view that respects both the constraints within each view and
the mapping between the views.

Our approach, given as Algorithm 2, iteratively clusters each view, infers
new constraints within each view, and transfers those inferred constraints across
views via the mapping. Through this process, progress in learning the model
for one view will be rapidly transmitted to other views, making this approach
particularly suited for problems where different aspects of the model are easy to
learn in one view but difficult to learn in others.

The base constrained clustering algorithm is given by the CKmeans subfunc-
tion, which computes the clustering that maximizes the log-likelihood of the data
X given the set of must- and cannot-link constraints C. Our implementation uses
either the PCK-Means or MPCK-Means algorithms as the CKmeans subfunction
due to their native support for soft constraints and, for MPCK-Means, metric
learning. However, our approach can utilize other constrained K-Means cluster-
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Algorithm 2 Multi-view Constrained Clustering with Constraint Propagation

Input: first view XA and constraints CA,
second view XB and constraints CB,
thresholds tA ∈ (0, 1] and tB ∈ (0, 1],
the set of cross-view relations RA×B, and
the number of clusters k.

1: Compute the transitive closure of CA
⋃ CB

⋃RA×B.

2: Augment CA, CB, and RA×B with additional constraints from the transitive
closure involving only instances from, respectively, XA×XA, XB×XB, and
XA ×XB.

3: Let X̂A ⊆ XA be the set of instances from XA involved in RA×B ; similarly
define X̂B ⊆ XB.

4: Define constraint mapping functions fA 7→B and fB 7→A across views via the
set of cross-view relations RA×B .

5: Initialize the sets of propagated constraints PV = ∅ for V ∈ {A,B}.
6: repeat

7: for V ∈ {A,B} do

8: Let U denote the opposite view from V .

// M-step

9: Define the unified set of constraints, mapped with respect to view V :

C̃V = CV
max
⋃

fU 7→V (PU )

10: Update the clustering using constrained K-Means:
(PV ,MV ) = CKmeans(XV , C̃V , k)

// E-step

11: Estimate the set of propagated constraints:

PV =
{

〈xV
i , x

V
j 〉 : xV

i , x
V
j ∈ X̂V ∧

〈xV
u , x

V
v 〉 ∈ CV ∧

W
(

〈xV
i , x

V
j 〉, 〈xV

u , x
V
v 〉
)

≥ tV

}

12: end for

13: until PA and PB have both internally converged

Output: the clustering PA and PB.

Subfunction: (P,M) = CKmeans(X, C, k)
Function prototype for constrained K-Means.

Input: data X , must-link and cannot-link constraints C,
and the number of clusters k.

Output: the partitioning P and set of metrics for each
cluster M = {M1, . . . ,Mk}.
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Fig. 2. The relationship between the E-steps and M-steps in the different views.

ing algorithms, provided that they meet the criteria for the CKmeans function
listed above.

We fit the clustering model across both views using a variant of the co-
EM algorithm (Nigam and Ghani, 2000), described in Section 3.2. In the E-
step, we propagate the set of given constraints based on the current clustering
models to those instances (X̂A and X̂B) with direct mappings to the other views
(Step 11, further described in Section 5.1). These propagated constraints can
then be directly transferred to the other views via the mapping RA×B (Steps 4–
9, further described in Section 5.2) to influence clustering during the M-step
(Step 10). Note that instead of taking the direct union of all of the constraints,
we keep only the maximally weighted constraint of each type (must-link and
cannot-link) for every pair of instances; this operation is notated by the max⋃

operator in Step 9.
Following previous work on co-EM and multi-view clustering (Nigam and

Ghani, 2000; Bickel and Scheffer, 2004), we iterate the E-step in one view to
propagate the constraints followed by the M-step in the other view to transfer
those constraints and update the clustering. Each iteration of the co-EM loop
(Steps 6–13) contains two iterations of both the E-step and the M-step, one for
each view. The relationship between these steps is illustrated in Figure 2. The
co-EM process continues until each view has internally converged. We assume
that convergence has occurred when the PCK-Means/MPCK-Means objective
function’s value differs by less than ǫ = 10−6 between successive iterations. Like
Nigam and Ghani (2000), we observed that our co-EM variant converged in very
few iterations in practice. The iterative exchange of constraints between the views
ensures a consistent clustering that respects both the constraints within and the
mapping between views. The next two sections describe each step of the co-EM
process in detail.

5.1. E-step: Constraint propagation

In our model, the sets of pairwise constraints are the sole mechanisms for guiding
the resulting clustering. We can directly map a constraint 〈xu, xv〉 between views
only if the mapping is defined in RA×B for both endpoints xu and xv of the
constraint. When RA×B is incomplete, the number of constraints with such a
direct mapping for both endpoints is likely to be small. Consequently, we will be
unable to directly map many of the constraints between views; each constraint
that we cannot map represents lost information that may have improved the
clustering.
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Let X̂V ⊆ XV be the set of instances for view V that are mapped to another
view. Given the initial constraints in CV , we infer new constraints between pairs
of instances in X̂V based on their local similarity to constraints in CV . We
define this local similarity metric based on the current clustering model for view
V , and propagate a constraint 〈xV

u , x
V
v 〉 ∈ CV to a pair of points xV

i , x
V
j ∈

X̂V if the pair is sufficiently similar to the original constraint. This process
essentially considers these as spatial constraints (Klein et al., 2002) that affect not
only the endpoints, but local neighborhoods of the instance space around those
endpoints. Any effect on a pair of points in the neighborhood can be realized
as a weighted constraint between those instances. Our constraint propagation
method infers these constraints between instances in X̂V with respect to the
current clustering model. Since this set of new constraints (which we refer to
as propagated constraints) is between instances with a direct mapping to other
views, these constraints can be directly transferred to those other views via the
mapping RA×B. This approach can also be interpreted as inferring two weighted
must-link constraints 〈xV

u , x
V
i 〉 and 〈xV

v , x
V
j 〉 and taking the transitive closure of

them with 〈xV
u , x

V
v 〉 to obtain 〈xV

i , x
V
j 〉.

The propagation process occurs with respect to the current clustering model
for view V . Since we use K-Means variants as the base learning algorithm, the
learned model is essentially equivalent to a Gaussian mixture model, under par-
ticular assumptions of uniform mixture priors and conditional distributions based
on the set of constraints (Bilenko et al., 2004; Basu et al., 2002). Therefore, we
can consider that each cluster h is generated by a Gaussian with a covariance
matrix Σh. For base clustering algorithms that support metric learning (e.g.,
MPCK-Means), the cluster covariance is related to the inverse of the cluster
metric Mh learned as part of the clustering process. Bar-Hillel et al. (2005) note
that, in practice, metric learning typically constructs the metric modulo a scale
factor αh. Although this scale factor does not affect clustering, since only rela-
tive distances are required, constraint propagation requires absolute distances.
Therefore, we must rescale the learned covariance matrix M−1

h by αh to match
the data.

We compute αh based on the empirical covariance Σ̃h of the data Ph ⊂ XV

assigned to cluster h, given by

Σ̃h =
1

|Ph|
∑

x∈Ph

(x− µh)(x− µh)
T + γI , (4)

adding a small amount of regularization γI to ensure that Σ̃h is non-singular for
small data samples. Given M−1

h and Σ̃h, we compute αh as the scale such that
the variances of the first principal component of each matrix are identical. We
take the eigendecomposition of each matrix

M−1
h = Q

M
−1

h
Λ

M
−1

h
QT

M
−1

h

Σ̃h = Q
Σ̃h

Λ
Σ̃h

QT

Σ̃h
(5)

to yield diagonal matrices of eigenvalues in Λ
M

−1

h
and Λ

Σ̃h
. To derive the scale

factor αh, we ensure that both first principal components have equal variances,
which occurs when

αh =
max

(

Λ
Σ̃h

)

max
(

Λ
M

−1

h

) , (6)
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yielding Σh = αhM
−1
h as the covariance matrix for cluster h. When the base

learning algorithm does not support metric learning, as with PCK-Means, we
can instead use Σh = Σ̃h as cluster h’s covariance matrix. The model for cluster
h is then given by

Gh(x
V ) = exp

(

− 1
2

∥

∥xV − µV
h

∥

∥

2

Σh
−1

)

, (7)

where

∥

∥xV − µV
h

∥

∥

2

Σh
−1 = (xV − µV

h )
TΣh

−1(xV − µV
h ) (8)

is the squared Mahalanobis distance between xV and µV
h according to the clus-

ter’s rescaled metric Σh
−1.

We assume that each constraint should be propagated with respect to the
current clustering model, with the shape (i.e., covariance) of the propagation
being equivalent to the shape of the respective clusters (as given by their covari-
ance matrices). Additionally, we assume that the propagation distance should be
proportional to the constraint’s location in the cluster. Intuitively, a constraint
located near the center of a cluster can be propagated a far distance, up to the
cluster’s edges, since being located near the center of the cluster implies that
the model has high confidence in the relationship depicted by the constraint.
Similarly, a constraint located near the edges of a cluster should only be prop-
agated a short distance, since the relative cluster membership of these points is
less certain at the cluster’s fringe.

We propagate a given constraint 〈xV
u , x

V
v 〉 ∈ CV to two other points xV

i , x
V
j ∈

XV according to a Gaussian radial basis function (RBF) of the distance as
〈xV

i , x
V
j 〉 moves away from 〈xV

u , x
V
v 〉. Under this construction, the weight of

the propagated constraint decreases according to the RBF centered in 2dV -
dimensional space at the original constraint’s endpoints

[

xV
u xV

v

]

∈ R
2dV with a

covariance matrix ΣV
uv based on the respective clusters’ covariance matrices.

To form the propagation covariance matrices for each endpoint, we scale the
covariance matrix associated with endpoint xV

u by the weight assigned to that
endpoint according to the clustering model (Equation 7). This ensures that the
amount of propagation falls off with increasing distance from the centroid, in
direct relation to the model’s confidence in the cluster membership of xV

u . The
covariance matrix for the constraint propagation function is then given by

ΣV
uv =

[

Gcu

(

xV
u

)

Σcu 0
0 Gcv

(

xV
v

)

Σcv

]

, (9)

where cu denotes the cluster of xu and 0 denotes the dV × dV zero matrix. This
construction assumes independence between xV

u and xV
v . While this assumption

is likely to be violated in practice, we empirically show that it yields good results.
For convenience, we represent the covariance matrices associated with each end-
point by ΣxV

u
= Gcu

(

xV
u

)

ΣV
cu for xV

u and ΣxV
v
= Gcv

(

xV
v

)

ΣV
cv for xV

v . Figure 3
illustrates the results of this process on an example cluster.

Given a constraint 〈xV
u , x

V
v , w, type〉 ∈ CV and two candidate points xV

i ∈ XV

and xV
j ∈ XV , we can now estimate the weight of the propagated constraint
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Fig. 3. Constraint propagation applied to a single example cluster h, showing the learned
covariance matrix Σh (dashed blue ellipse) rescaled to fit the data, two constraints (solid black
lines), and the weighting functions centered at each endpoint (dotted green ellipses), which
decrease in variance as they move farther from the centroid µh.

〈xV
i , x

V
j 〉 as

W
(

〈xV
i , x

V
j 〉, 〈xV

u , x
V
v 〉
)

= w ×max
(

W ′
(

〈xV
i , x

V
j 〉, 〈xV

u , x
V
v 〉
)

,

W ′
(

〈xV
j , x

V
i 〉, 〈xV

u , x
V
v 〉
)

) (10)

where

W ′
(

〈xV
i , x

V
j 〉, 〈xV

u , x
V
v 〉
)

=exp

(

− 1
2

∥

∥xV
i − xV

u

∥

∥

2

Σ
−1

xV
u

)

×

exp

(

− 1
2

∥

∥xV
j − xV

v

∥

∥

2

Σ
−1

xV
v

)

.

(11)

Since the ordering of the instances matters in the propagation, we compute both
possible pairings of constraint endpoints (xV

u and xV
v ) to target endpoints (xV

i

and xV
j ), taking the maximum value of the propagation in Equation 10 to deter-

mine the best match. Under this propagation scheme, a constraint propagated
to its own endpoints is given a weight of w (since the second term of the RHS
of Equation 10 will be 1); the weight of the propagated constraint decreases as
the endpoints xV

i and xV
j move farther from xV

u and xV
v . Section 5.4 describes

mechanisms for implementing constraint propagation efficiently, taking advan-
tage of the independence assumption between the two endpoints of a constraint
and memoization of repeated computations.

The E-step of Algorithm 2 (Step 11) uses Equation 10 to propagate all given

constraints within each view to those instances X̂V with cross-view mappings,
thereby inferring the expected value of constraints between those instances given
the current clustering. Using this set of expected constraints PV , we then update
the current clustering model in the M-step, as described in the next section.
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5.2. M-step: Updating the clustering model

Given the expected constraints PU between instances in X̂U , we transfer those
constraints to the other views and then update the clustering model to reflect
these new constraints. These steps together constitute the M-step of Algorithm 2.

Any propagated constraint where both endpoints are in X̂U can be trans-
ferred to another view V via the bipartite mapping RU×V . We define a mapping
function fU 7→V : CU 7→ CV that takes a given constraint 〈xU

i , x
U
j , w, type〉 ∈ PU

and maps it to constrain instances in XV by:

fU 7→V

(

〈xU
i , x

U
j , w, type〉

)

=
{

〈xV
u , x

V
v , w, type〉 : 〈xU

i , x
V
u 〉 ∈ RU×V ∧

〈xU
j , x

V
v 〉 ∈ RU×V

}

.
(12)

Using this construction, we can define the mapping functions fB 7→A and
fA 7→B in Algorithm 2. We then use these functions fA 7→B and fB 7→A to map
propagated constraints between views in Step 9, transferring constraints inferred
in one view to the other related views. These transferred constraints (from view
U) can then be combined with the original constraints in each view V to inform
the clustering. Instead of taking the direct union of these constraints, we keep
only the maximally weighted constraint between each pair of instances to form
the set

C̃V = CV
max
⋃

fU 7→V (PU ) , (13)

since each inferred constraint represents an estimate of the minimal strength of
the pairwise relationship.

The partitioning for view V can then be computed by clustering the data XV

subject to the constraints in C̃V (Step 10). The CKmeans subfunction computes
the clustering that maximizes the log-likelihood of the data subject to the set of
constraints, thereby completing the M-step of Algorithm 2.

5.3. Extension to multiple views

Algorithm 2 can be easily extended to support more than two views. Each view
XV independently maintains its own sets of given constraints CV , threshold tV ,
data X̂V ⊆ XV involved in any cross-view relations, current partitioning PV ,
current cluster metrics MV , and propagated constraints PV . To handle more
than two views, we maintain separate mappings RU×V for each pair of views
XU and XV and use each mapping to define pairwise mapping functions fU 7→V

and fV 7→U between views. For D views, X(1), . . . , X(D), this approach will yield
D2 −D mapping functions.

To generalize our approach to more than two views, we hold each set of
propagated constraints fixed, and iteratively update the clustering (M-step), then
recompute the set of propagated constraints (E-step) for one view. The unified
sets of constraints for each view V becomes (Step 9):

C̃V = CV
max
⋃

D

U=1
fU 7→V (PU ) , (14)

under the convention that fU 7→U (PU ) = ∅. Each iteration of co-EM loops over
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the E-steps and M-steps for all views, and proceeds until the clustering for each
view converges. The order of the views may either be fixed or chosen randomly
at each iteration.

5.4. Implementation efficiency

The overall computational complexity of Algorithm 2 is determined by the maxi-
mum number of EM iterations and by the complexity of the CKMeans function,
which depends on the chosen clustering algorithm. Besides these aspects, the
constraint propagation step (Step 11) incurs the greatest computational cost.
To make this step computationally efficient, our implementation relies on the
independence assumption inherent in Equation 11 between the two endpoints of
the constraint. To efficiently compute the weight of all propagated constraints,
we memoize the value of each endpoint’s propagation

G(xV
i , x

V
u ) = exp

(

−1

2
(xV

i − xV
u )

TΣ−1
xV
u

(xV
i − xV

u )

)

(15)

for xV
i ∈ X̂V and xV

u ∈ X̄V , where X̄V is the set of points involved in CV .

Through memoization, we reduce the constraint propagation step to |X̂V |×|X̄V |
Gaussian evaluations. Memoization applies similarly to all other views. Each
constraint propagation is inherently independent from the others, making this
approach suitable for parallel implementation using Hadoop/MapReduce (Dean
and Ghemawat, 2008).

When the covariance matrix ΣxV
u
is diagonal, we can further reduce the com-

putational cost through early stopping of the Gaussian evaluation once we are
certain that the endpoint’s propagation weight will be below the given threshold
tV . When ΣxV

u
is diagonal, given by ΣxV

u
= diag(σ2

1 , σ
2
2 , . . . , σ

2
dV

),

G(xV
i , x

V
u ) = exp

(

−1

2

dV
∑

k=1

(xV
i,k − xV

u,k)
2

σ2
k

)

. (16)

Since a constraint is only propagated when the weight exceeds tV > 0 and the
maximum propagation for each Gaussian weight G(xV

i , x
V
u ) ∈ [0, 1], we only need

to evaluateW ′
(

〈xV
i , x

V
j 〉, 〈xV

u , x
V
v 〉
)

when both G(xV
i , x

V
u ) ≥ tV and G(xV

j , x
V
v ) ≥

tV . Therefore, we must ensure that

tV ≤ exp

(

−1

2

dV
∑

k=1

(xV
i,k − xV

u,k)
2

σ2
k

)

(17)

−2 ln tV ≥
dV
∑

k=1

(xV
i,k − xV

u,k)
2

σ2
k

. (18)

Since all terms in the RHS summation are positive, we can compute them in-
crementally and stop early once the sum exceeds −2 ln tV , since we will never
need to evaluate any propagation weight W ′(·) involving G(xV

i , x
V
u ). In our im-

plementation, we set G(xV
i , x

V
u ) = 0 in any cases where we can guarantee that

G(xV
i , x

V
u ) < tV .
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6. Evaluation

We evaluated multi-view constrained clustering on a variety of data sets, both
synthetic and real, showing that our approach improves multi-view learning un-
der an incomplete mapping as compared to several other methods. Our results
reveal that the constraints inferred by propagation have high precision with re-
spect to the true clusters in the data. We also examined the performance of
Constraint Propagation in the individual views, revealing that Constraint Prop-
agation can also improve performance in single-view clustering scenarios.

6.1. Data sets

In order to examine the performance of our approach under various data distri-
butions, we use a combination of synthetic and real data in our experiments. We
follow the methodology of Nigam and Ghani (2000) to create these multi-view
data sets by pairing classes together to create “super-instances” consisting of
one instance from each class in the pair. The two original instances then rep-
resent two different views of the super-instance, and their connection forms a
mapping between the views. This methodology can be trivially extended to an
arbitrary number of views. These data sets are described below and summarized
in Table 1.

Four Quadrants is a synthetic data set composed of 200 instances drawn
from four Gaussians in R

2 space with identity covariance. The Gaussians
are centered at the coordinates (±3,±3), one in each of the four quadrants.
Quadrants I and IV belong to the same cluster and quadrants II and III
belong to the same cluster. The challenge in this simple data set is to identify
these clusters automatically, which requires the use of constraints to improve
performance beyond random chance. To form the two views, we drew 50
instances from each of the four Gaussians, divided them evenly between
views, and created mappings between nearest neighbors that were in the
same quadrant but different views.

Protein includes 116 instances divided among six classes of proteins, denoted
{c1, c2, . . . , c6}. This data set was previously used by Xing et al. (2003).
To create multiple views of this data set, we partition it into two views
containing respectively instances from classes {c1, c2, c3} and {c4, c5, c6}.
We connect instances between the following pairs of classes to create the
two views: c1 & c4, c2 & c5, and c3 & c6. Through this construction, a
model learned for clustering {c1, c2, c3} in one view can be used to inform
the clustering of {c4, c5, c6} in the other view. Since the clusters do not
contain the same numbers of instances, some instances within each view are
isolated in the mapping.

Letters/Digits uses the letters-IJL and digits-389 data sets previously used
by Bilenko et al. (2004). These are subsets of the letters and digits data sets
from the UCI machine learning repository (Asuncion and Newman, 2007)
containing only the letters {I, J, L} and the digits {3, 8, 9}, respectively. We
map instances between views according to the following pairings: I & 3,
J & 8, and L & 9, leaving those instances without a correspondence in the
other view isolated in the mapping.
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Name nA nB #dims k tV

Four Quadrants 200 200 2 2 0.75
Protein 67 49 20 3 0.50
Letters/Digits 227 317 16 3 0.95
Rec/Talk 100 94 50 2 0.75

Table 1. Properties of each data set and the values of all parameters used in the experiments.

Rec/Talk is a subset of the 20 Newsgroups data set (Rennie, 2003), contain-
ing 5% of the instances from the newsgroups {rec.autos, rec.motorcycles} in
the rec view, and 5% of the instances from the newsgroups {talk.politics.guns,
talk.politics.mideast} in the talk view. We process each view independently,
removing stop words and representing the data as a binary vector of the 50
most discriminatory words as determined by Weka’s string-to-wordvector
filter (Witten and Frank, 2005). As in the previous data sets, we form the
mapping between views by pairing clusters in order.

We create a low-dimensional embedding of each data set using the spectral
features (Ng et al., 2001) in order to improve clustering, with the exception of
Four Quadrants, for which we use the original features because the dimensional-
ity is already low. For each view V , we compute the pairwise affinity matrix A
between the instances xi and xj using a radial basis function of their distance,
given by Ai,j = exp(−||xi − xj ||2/2σ2). We use σ = 1 as the rate at which the
affinity falls off with increasing distance. From A, we form the normalized Lapla-

cian matrix (Chung, 1994) for the data set, given by L = I−D− 1

2AD− 1

2 , where
D is the diagonal degree matrix Di,i =

∑nV

j=1 Ai,j and I is the identity matrix.

The eigendecomposition of the normalized Laplacian matrix L = QΛQT yields
the spectral features for the data set in the columns of the eigenvector matrix Q.
We keep the 2nd through d+1th eigenvectors (corresponding to the 2nd through
d + 1th lowest eigenvalues in Λ) as the features for clustering; we discard the
first eigenvector since it is constant and therefore does not discriminate between
the instances. In this article, we use d =

⌈√
dV
⌉

for Protein and Letters/Digits,
and d = 5 for the Rec/Talk data set. Additionally, we standardize all features
to have zero mean and unit variance. These spectral features are computed in-
dependently between the different views, further emphasizing that the mapping
is the only connection between views.

6.2. Methodology

Within each view, we use the true cluster labels on the instances to sample a set
of pairwise constraints, ensuring equal proportions of must-link and cannot-link
constraints. The weight of all sampled constraints w is set to 1. We also sample
a portion of the mapping to use for transferring constraints between views. Both
the sets of constraints and the mapping between views are resampled each trial.

We compareConstraint Propagation against several other potential meth-
ods for transferring constraints:

Direct Mapping transfers only those constraints that already exist between
instances in X̂V . This approach is equivalent to other methods for multi-
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view learning that are only capable of transferring labeled information if
there is a direct mapping between views.

Cluster Membership can be used to infer constraints between instances in
X̂V . This approach simply considers the relative cluster membership for
each pair of instances in X̂V and infers the appropriate type of constraint
with a weight of 1. It represents the direct application of co-EM to infer and
transfer constraints between views via the partial mapping.

Single View performs constrained clustering on each of the individual views
in isolation and serves as a lower baseline for the experiments.

For the base constrained clustering algorithms, we use the PCK-Means and
MPCK-Means implementations provided in the WekaUT extension1 to the Weka
machine learning toolkit (Witten and Frank, 2005) with their default values. For
PCK-Means, Constraint Propagation uses the full empirical covariance for each
cluster; for MPCK-Means, it uses the diagonal weighted Euclidean metrics that
are learned on a per-cluster basis by MPCK-Means.

We measure performance using the pairwise F-measure – a version of the
information-theoretic F-measure adapted to measure the number of same-cluster
pairs for clustering (Basu, 2005). The pairwise F-measure is the harmonic mean
of precision and recall, given by

F-measure =
2 · precision · recall
precision + recall

(19)

precision =
|Pcorrect |
|Ppred |

recall =
|Pcorrect |
|Psame |

,

where Ppred is the set of entity pairs predicted to be in the same community,
Psame is the set of entity pairs actually in the same community, and Pcorrect =
Ppred

⋂Psame is the set of correct predictions. We take the mean of the F-
measure performance for all views, yielding a single performance measure for
each experiment.

In each trial, we consider performance as we vary the number of constraints
used for learning and the percentage of instances in each view that are mapped
to the other views. Our results are shown in Figure 4, averaged over 100 trials.

6.3. Discussion of multi-view clustering results

As shown in Figure 4, Constraint Propagation clearly performs better than the
baseline of Single View clustering, and better than Cluster Membership for in-
ferring constraints in all cases, except for when learning with few constraints
on Letters/Digits. Constraint Propagation also yields an improvement over Di-
rect Mapping for each percentage of instances mapped between views, as shown
in Figure 5. Unlike Direct Mapping, Constraint Propagation is able to transfer
those constraints that would otherwise be discarded, increasing the performance
of multi-view clustering. The performance of both Constraint Propagation and
Direct Mapping improve as the mapping becomes more complete between the
views, with Constraint Propagation still retaining an advantage over Direct Map-
ping even with a complete mapping, as shown in all data sets. We hypothesize

1 http://www.cs.utexas.edu/users/ml/risc/code/
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Fig. 4. Comparison of multi-view constrained clustering performance. The percentage of in-
stances mapped between views (e.g., 20%, 40%, 100%) is denoted by the type of the line
(dotted, dashed, solid), and the constraint transfer method is denoted by the color and marker
shape. In several plots, we truncated the key due to space limitations; those plots use the same
markers and colors to depict the constraint transfer methods as the other plots. (Best viewed
in color.)



Multi-View Constrained Clustering with an Incomplete Mapping Between Views 21

0 %

2 %

4 %

6 %

8 %

10 %

Four Q
uadrants

(M
PC

K-M
eans)

Protein (M
PC

K-M
eans)

Protein (PC
K-M

eans)

Letters/D
igits (PC

K-M
eans)

R
ec/Talk (M

PC
K-M

eans)

P
e
rf

o
rm

a
n
c
e
 i
m

p
ro

v
e
m

e
n
t

0% 20% 40% 60% 80% 100%

Cross-view Mapping

Fig. 5. The performance improvement of Constraint Propagation over Direct Mapping in
Figure 4, averaged over the learning curve. The peak whiskers depict the maximum percentage
improvement.2

that in the case of a complete mapping, Constraint Propagation behaves sim-
ilarly to spatial constraints (Klein et al., 2002), warping the underlying space
with the inference of new constraints that improve performance.

On these data sets, the number of constraints inferred by Constraint Propa-
gation is approximately linear in the number of original constraints, as shown in
Figure 6. Clearly, as the mapping between views becomes more complete, Con-
straint Propagation is able to infer a larger number of constraints between those
instances in X̂V .

The improvement in clustering performance is due to the high precision of
the propagated constraints. Figure 7 shows the average weighted precision of the
propagated constraints for the 100% mapping case, measured against the com-
plete set of pairwise constraints that can be inferred from the true cluster labels.
The proportion that each propagated constraint contributed to the weighted
precision is given by the constraint’s inferred weight w. We also measured the
precision of propagated constraints for various partial mappings, and the results
were comparable to those for the complete mapping. The constraints inferred
through propagation show a high average precision of 98–100% for all data sets,
signifying that the propagation method infers very few incorrect constraints.

Interestingly, the constraint propagation method works slightly better for
cannot-link constraints than for must-link constraints. This phenomenon can be
explained by a counting argument that there are many more chances for a cannot-
link constraint to be correctly propagated than a must-link constraint. For exam-
ple, with k clusters where each cluster contains n/k instances, each given must-

2 We omit the Four Quadrants (PCK-Means) results from Figure 5 due to the relatively high
performance gain of Constraint Propagation, which averages a 21.3% improvement over Direct
Mapping with peak gains above 30%. The much greater scale of these improvements are obvious
and would make the smaller (but still significant) gains in the other domains less discernible
in the figure.
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link constraint can be correctly propagated to numMLprop =
(

n/k
2

)

− 1 other
pairs of instances in the same cluster. However, each given cannot-link constraint

can be correctly propagated to numCLprop =
(

n
2

)

− k
(

n/k
2

)

− 1 other pairs of
instances that belong in different clusters. The number of propagated cannot-
link constraints is computed by taking the number of possible different con-
straints,

(

n
2

)

− 1, and subtracting off the total number of possible must-link con-

straints, k
(

n/k
2

)

. Note that numCLprop is much greater than numMLprop (e.g.,
for n = 1, 000 and k = 10, numCLprop = 449, 999 ≫ 4, 949 = numMLprop),
implying that a must-link constraint has much less chance of being propagated
correctly than a cannot-link constraint.

We found that for high-dimensional data, the curse of dimensionality causes
instances to be so far separated that Constraint Propagation is only able to
infer constraints with a very low weight. Consequently, it works best with a
low-dimensional embedding of the data, motivating our use of spectral feature
reduction. Other approaches could also be used for creating the low-dimensional
embedding, such as principal components analysis or manifold learning.

Additionally, like other multi-view algorithms, we found Constraint Propa-
gation to be somewhat sensitive to the cutoff thresholds tV , but this problem
can be remedied by using cross-validation to choose tV . Too high a threshold
yields performance identical to Direct Mapping (since no constraints would be
inferred), while too low a threshold yields the same decreased performance as
exhibited by other co-training algorithms. For this reason, we recommend setting
tV to optimize cross-validated performance over the set of constrained instances.

We ran several additional experiments on multi-view data sets with poor
mappings and distributions that violated the mixture-of-Gaussians assumption
of K-Means clustering. On these data sets, Constraint Propagation decreased
performance in some cases, due to inferring constraints that were not justified
by the data. This would occur, for example, in clusters with a nested half-moon
shape or concentric rings, where Constraint Propagation would incorrectly infer
constraints between instances in the opposing cluster. In these cases, clustering
using only the directly mapped constraints yielded the best performance.
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6.4. Constraint propagation within single views

To dissect the benefits of Constraint Propagation independently from multi-
view learning, we evaluated the use of Constraint Propagation in traditional
single-view clustering scenarios. We found that using the constraints inferred
by propagation can also improve performance in single-view clustering, further
explaining its performance in multi-view scenarios and also demonstrating the
high quality of the inferred constraints.

Instead of propagating constraints across views, we used Constraint Prop-
agation to infer additional constraints within a single view A, employed those
constraints to inform the clustering for that view, and then used the resulting
clusters to guide the propagation for the next iteration of clustering. This pro-
cess was repeated until the clustering model for view A converged. To implement
this approach, we modified Algorithm 2 to use only a single view by eliminat-
ing all steps involving view B, altering step 3 to set X̂A = XA, and altering

step 9 to compute the unified set of constraints as C̃V = CV
max∪ PV . With these

modifications, the algorithm alternates the M-step clustering and E-step Con-
straint Propagation to learn a model for the single view A. We then evaluated
the performance of this single-view clustering method on individual data sets.

Figure 8 depicts the performance of single-view clustering with Constraint
Propagation on a sample of the data sets, averaged over 100 trials. All parameters
were specified as described in Table 1, with the exceptions of using tV = 0.7 for
protein and tV = 0.98 for digits, since we now set tV for each individual view.
We compare single-view clustering with Constraint Propagation against standard
constrained clustering. Our analysis omits the other two methods tested in the
multi-view experiments, since Direct Mapping has no analogous case for single-
view scenarios, and constraints inferred by Cluster Membership in a single view
will not alter the resulting model.

These results show that the constraints inferred by propagation within a
single view can also be used to improve clustering performance in that view.
Both MPCK-Means and PCK-Means show improved performance using the con-
straints inferred by propagation to augment the original constraints. The maxi-
mum improvement from Constraint Propagation occurs with a moderate number
of constraints; as we would expect, Constraint Propagation provides little benefit
when the number of original constraints is either very small or very large. Even in
the single-view case, the number of constraints inferred by propagation is roughly
linear in the number of original constraints (Figure 9). We also found that the
inferred constraints have very high precision with the true cluster assignments
in all single-view scenarios (Figure 10). As in the multi-view experiments, the
inferred cannot-link constraints have slightly higher precision than the inferred
must-link constraints.

As mentioned in the previous section, we found that Constraint Propagation
can decrease performance when applied to data sets that violate the assump-
tions of K-Means clustering. The two conditions assumed by K-Means that are
most necessary for successful Constraint Propagation are that: (1) the clusters
are globular under the cluster metrics, and (2) the clusters are separable (i.e.,
have little overlap). However, it may be difficult to determine a priori whether a
particular data set meets these conditions, and is therefore an appropriate can-
didate for Constraint Propagation. For this reason, it is important to determine
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whether the data set satisfies these conditions during the clustering process; we
next discuss two potential methods for making this determination.

In cases where the data set does violate these conditions, we have observed
that the clustering is primarily driven by the provided constraints rather than
the K-Means component. One of the strengths of the MPCK-Means and PCK-
Means algorithms is that in situations where K-Means does poorly on the data,
large numbers of constraints can overcome the K-Means component and ensure
the proper clustering. In terms of the PCK-Means/MPCK-Means objective func-
tion (Equation 1), the second and third terms of the equation (those involving
the must- and cannot-link constraints) dominate the first term (K-Means) in
these situations. When the data set does not meet these conditions, the cluster
distributions specified by the learned centroids and metrics have little in com-
mon with the resulting partitions. During the clustering process, we can examine
the learned cluster distributions for disagreement with the resulting partitions;
the presence of a large disagreement is one indication that the data set may be
inappropriate for Constraint Propagation.

To determine whether the data set meets the second condition, we can also
directly examine the resulting clusters for overlap. Since constraints are propa-
gated based on RBF distance from the given constraint and the relative cluster
membership of the endpoints, Constraint Propagation may not infer constraints
correctly between points belonging to overlapping clusters. We can detect over-
lap in the clusters by measuring the KL divergence (Kullback and Leibler, 1951)
between their learned distributions; the presence of significant overlap is another
indication that the data set may violate the conditions necessary for successful
Constraint Propagation. Currently, we simply alert the user if the data set may
be inappropriate for Constraint Propagation based on either indicator; we leave
the robust determination of whether Constraint Propagation is guaranteed to
improve performance to future work.

7. Conclusion

Constraint Propagation has the ability to improve multi-view constrained clus-
tering when the mapping between views is incomplete. Besides improving perfor-
mance, Constraint Propagation also enables information supplied in one view to
be propagated and transferred to improve learning in other views. This is espe-
cially beneficial for applications in which it is more natural for users to interact
with particular views of the data. For example, users may be able to rapidly
and intuitively supply constraints between images, but may require a lengthy
examination of other views (e.g., text or audio) in order to infer constraints. In
other cases, users may not have access to particular views (or even data within a
view) due to privacy restrictions. In these scenarios, our approach would be able
to propagate user-supplied constraints both within and across views to maximize
clustering performance.

Beyond our approach, there are a variety of other methods that could be
adapted for learning with a partial mapping between views, such as manifold
alignment and transfer learning. Further work on this problem will improve the
ability to use isolated instances that do not have a corresponding multi-view
representation to improve learning, and enable multi-view learning to be used
for a wider variety of applications.
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