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This supplement to the paper “Selective Transfer Between
Learning Tasks Using Task-Based Boosting,” which ap-
peared in Proceedings of the Twenty-Fifth AAAI Conference
on Artificial Intelligence (AAAI’11), provides the proof to
Theorem 1 stated in the paper:

Theorem 1. The training error εT = 1
|T |
∣∣{j : H(xj) 6=yj}

∣∣
on the target task for TransferBoost is bounded by

εT ≤
|D|
|T |

K∏
t=1

Zt

(∑
j∈T

wK+1(xj)

)
.

Proof.

This proof generally follows Schapire and Singer’s (1998)
method for bounding AdaBoost’s training error.

Let f(x) =
∑K

t=1 βtht(x), so that H(x) = sign(f(x)).
The update rule (Algorithm 1, line 7) can be unraveled to
determine the instance weights after the last boosting itera-
tion K. Let S0 = T and α0

t = 0. The update rule can be
concisely rewritten for xj ∈ Si as:

wt+1(xj) =
wt(xj) exp(−βtyjht(xj) + αi

t)

Zt
. (1)

Repeatedly applying the update rule for t = 1, . . . ,K yields

wK+1(xj) = w0(xj)

K∏
t=1

exp
(
−βtyjht(xj) + αi

t

)
Zt

=
exp

(
−
∑K

t=1 βtyjht(xj) +
∑K

t=1 α
i
t

)
|D|
∏K

t=1 Zt

=
exp (−yjf(xj)) exp

(∑K
t=1 α

i
t

)
|D|
∏K

t=1 Zt

.
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It follows that

k∑
i=0

∑
j∈Si

exp (−yjf(xj)) exp

(
K∑
t=1

αi
t

)

=

k∑
i=0

∑
j∈Si

|D|wK+1(xj)

K∏
t=1

Zt

k∑
i=0

exp

(
K∑
t=1

αi
t

)∑
j∈Si

exp (−yjf(xj))

= |D|
K∏
t=1

Zt

(
k∑

i=0

∑
j∈Si

wK+1(xj)

)

= |D|
K∏
t=1

Zt(1) .

Expanding the LHS and subtracting the portion due to the
source tasks yields

∑
j∈T

exp (−yjf(xj)) = |D|
K∏
t=1

Zt

−
k∑

i=1

exp

(
K∑
t=1

αi
t

)∑
j∈Si

exp (−yjf(xj)) . (2)

Schapire and Singer (1998) note that [[H(xj) 6= yj ]] ≤
exp(−yjf(xj)), where [[π]] is 1 if predicate π holds and
0 otherwise (since H(xj) 6= yj ⇒ yjf(xj) ≤ 0 ⇒
exp(−yjf(xi)) ≥ 1). Since exp

(∑K
t=1 α

i
t

)
≥ 0, it follows

that

[[H(xj) 6= yj ]] ≤ exp(−yjf(xj))∑
j∈T

[[H(xj) 6= yj ]] ≤
∑
j∈T

exp(−yjf(xj)) . (3)



By combining Equations 2 and 3,∑
j∈T

[[H(xj) 6= yj ]]

≤ |D|
K∏
t=1

Zt −
K∑
i=1

exp

(
K∑
t=1

αi
t

)∑
j∈Si

exp (−yjf(xj))

≤ |D|
K∏
t=1

Zt −
K∑
i=1

∑
j∈Si

(
|D|wK+1(xj)

K∏
t=1

Zt

)

≤ |D|
K∏
t=1

Zt − |D|
K∏
t=1

Zt

(
K∑
i=1

∑
j∈Si

wK+1(xj)

)

≤ |D|
K∏
t=1

Zt

(
1−

K∑
i=1

∑
j∈Si

wK+1(xj)

)

1

|T |
∑
j∈T

[[H(xj) 6= yj ]] ≤
|D|
|T |

K∏
t=1

Zt

(∑
j∈T

wK+1(xj)

)
.

The theorem follows directly.

References
Schapire, R., and Singer, Y. 1998. Improved boosting algorithms
using confidence-rated predictions. COLT, 80–91.


