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ABSTRACT

Title of Thesis: Clustering with Propagated Constraints
Eric Robert Eaton, Master of Science, 2005

Thesis directed by: Dr. Marie desJardins, Assistant Professor
Department of Computer Science and
Electrical Engineering

Background knowledge in the form of constraints can draradyiemprove the qual-
ity of generated clustering models. In constrained clusgerthese constraints typically
specify the relative cluster membership of pairs of poiiitsey are tedious to specify and
expensive from a user perspective, yet are very useful gelguantities. Existing con-
strained clustering methods perform well when given langgngjties of constraints, but do
not focus on performing well when given very small quangitie

This thesis focuses on providing a high-quality clustenmith small quantities of
constraints. It proposes a method for propagating paireesestraints to nearby instances
using a Gaussian function. This method takes a few easilyifggak constraints, and prop-
agates them to nearby pairs of points to constrain the laaghborhood. Clustering with
these propagated constraints can yield superior perfaenaith fewer constraints than
clustering with only the original user-specified constrainThe experiments compare the
performance of clustering with propagated constrainthé&t of established constrained

clustering algorithms on several real-world data sets.
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Chapter 1

INTRODUCTION

Consider the following scenario. You need to create a clungg@nodel that will group
newspaper articles based on their contents. Constrainstechg methods have been
shown to outperform standard unsupervised clustering edetffior this problem (Basu,
Bilenko, & Mooney 2004). These methods require a set of utdabarticles and pairs of
these articles (called constraints) that should be growpgether (or grouped apart). In
order to specify these pairs, you need to read the articlesstiig constrained clustering
methods require many pairs in order to perform well, up tesgvhundred to obtain high
performance. Would you want to read that many articles?

By propagating the constraints provided by the user to simaitacles, the proposed
method infers further (possibly inaccurate) constraimsveen pairs of articles. This al-
lows the user to specify significantly fewer constraintsides to reach the same level of

performance.

1.1 Constrained Clustering

Recent work on constrained clustering (Wagstaff 2002; Biberikasu, & Mooney
2004; Xinget al. 2003; Bar-Hillelet al. 2005) has resulted in methods to cluster unlabeled

data using background knowledge provided in the form otikedanembership labels for
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some of the data points. These algorithms perform significéetter than standard unsu-
pervised clustering in a variety of domains.

These methods typically take labeled background informnah the form ofpairwise
constraintsor equivalence setsBoth pairwise constraints and equivalence sets are sim-
ple, natural, and useful forms of background knowledgervise constraints specify the
relative clustering for a pair of points. Research has fodwsetwo types of pairwise con-
straints: must-linkconstraints that specify pairs of data points which belonthe same
cluster, andcannot-link constraints that specify pairs which belong in differentstérs.
Equivalence sets specifetsof points that belong in the same cluster. Since it is possibl
to translate between pairwise constraints and equivaleeise this thesis focuses on using

pairwise constraints.

1.2 Problem Definition and Motivation

The constraints for constrained clustering must be praviiea domain expert. Pro-
viding such a relative labeling is expensive, compared ta dallection. In order to gen-
erate a high-performance clustering, these algorithmsnaféquire many pairwise con-
straints. Most users want to specify as few constraints asipie, so this thesis focuses on
providing a high-quality clustering when given few consits.

Law et al. (2004) note that it is important to propagate tHecotfof constraints to the
nearby neighborhood. Several methods do this by warpingtardie metric based on the
constraints (Xinget al. 2003; Bar-Hillelet al. 2005; Basu 2005), which implicitly con-
strains nearby points. This thesis takes this idea one atépef byexplicitly propagating
the constraints to the nearby neighborhood.

Constraint propagation assumes that the specified coristia@ie representative of

their neighborhood. The approach introduced in this th&asissian Propagated K-Means
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(GPK-Means), infers additional constraints in the localghborhood of the given con-
straint, with the weight of the propagated constraints ei@sing by a Gaussian function as
the endpoints move farther from the source constraint. Bsriifg additional constraints
from the source constraints, GPK-Means can generate arkigiadity clustering than other
algorithms when given few constraints.

This thesis explores a method for propagating constragtseairby points using a
Gaussian function. The hypothesis of this thesis is thagteting using the propagated

constraints will outperform clustering using the origicahstraints.

1.3 Contribution

This thesis proposes a method for propagating user-spci@iestraints to nearby
instances using a Gaussian function, and provides an #lggriGPK-Means, that uses
these propagated constraints in clustering. GPK-Meandeamsed with any clustering
algorithm that supports weighted constraints.

The experiments in this thesis compare the performanceustaring with propa-
gated constraints to several constrained clustering rdstiiBilenko, Basu, & Mooney
2004). These experimental results support the hypothleaisctustering with the propa-
gated constraints can result in improved clustering peréorce than using only the source

constraints.



Chapter 2

BACKGROUND

2.1 Notation

This section introduces notation that will be used throwglloe thesis. This notation
is based on that of Bilenko, Basu, and Mooney (2004).

X = {z;}¥,,z; € R", is the set of all data instanceg,,, ¥,,, and matrixA,,
represent the centroid, covariance matrix, and metricirmatspectively, of the cluster
to which instancer; belongs. Similarly,u;, >,, and matrix A, represent the centroid,
covariance matrix, and metric matrix, respectively, farstérh € {1,..., K}. The radius
radius, Of clusterh is the Mahalanobis distance from the centrpjdto the farthest point
assigned to the cluster.

M andC are the sets of must-link and cannot-link constraints,eetyely. M; C M
andC, C C refer to the respective sets of must- and cannot-link camgt that involve
points currently assigned to the clusterThe notation(z;, z;, w) € M means that; and
x; are required to be in the same cluster, with a penaltyedst violating the constraint.
Similarly, (z;, z;,w) € C implies thatz; andx; must be in different clusters, with a penalty
costw.

The functionl[ezpr] returns 1 wherezpr evaluates to true, and 0 when it evaluates

to false. The pai(z}, x}) are defined as the points with the greatest separation uséng t
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Aj, metric. The Mahalanobis distance betwegrand ., using the metric4,, is notated

as||z; — iz, | a,,» Where

Azy — \/<xz - lul‘i)TA-Ti (ZEZ - Nﬂ%‘) :
For convenience, Table 2.1 summarizes the notation usddkithiesis.

2.2 Semi-Supervised Clustering

Clustering is the unsupervised grouping of similar instandeach cluster is defined
by its center, or centroig,. Clustering methods can be grouped ip#atitioning clustering
algorithms, which construct flat clusters of the data, lailedarchicalclustering algorithms,
which generate a hierarchical grouping of the data ins&nce

While traditional clustering algorithms are unsupervissehmi-supervised clustering
generates a model for a set of unlabeled data, aidesldgrinformationfor some of the
data. Semi-supervised clustering algorithms use theisfdemation to reduce the search
through the space of possible clusterings, which incretigeaccuracy of the final cluster-
ing relative to the side-information.

The side-information includes specific or relative clusédrels for some data items.
Specific cluster labels are equivalent to class labels. Releluster labels define an equiv-
alence relation between data items, where all items withireguivalence class belong
in the same cluster. These equivalence relations typit¢akg the form of constraints
between pairs of data items, specifying whether the paworgd in the same cluster (a
must-linkconstraint) or in different clusters @nnot-linkconstraint). Pairwise constraints
and equivalence sets are discussed further in Section 2th. rélative cluster labels, the
domain expert providing the constraints does not need tovkthe number of clusters.

Semi-supervised clustering using equivalence relat®kaown asonstrained clustering



2.3 K-Means Clustering

The work presented in this thesis is based onkdHdeanspartitional clustering algo-
rithm (MacQueen 1967), which groups the data iAt@lusters, creating & -partitioning
of the data set. K-Means begins by pickiAginitial seed centroids, and then iteratively
refines the clustering by repeatedly assigning each instanithe nearest centroid, then re-
computing each centroid as the mean of the instances adsmtiet cluster. The K-Means

algorithm is given in Figure 2.1.

Algorithm: K-Means

Inputs:
¢ the data set’, and
e the number of cluster&’.
Output:
e adisjointK-partitioning{ X, }/*_, of X .
Method:
1. ChooseX initial cluster centroidg y1, f2, - - - , fix }-
2. Repeat until no change fmu, pa, - . ., ik }:

(a) Assign each instance to the cluster of the nearest centraid.
For each clustek, let X}, be the set of instances assigned to that
cluster.

(b) Recompute eachy, as the mean of the instances assigned tq that
clusterX,.

3. Return the cluster§Y;, }< ;.

FIG. 2.1. The K-Means clustering algorithm.
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Traditionally, the initial seed centroids are chosen ranigofrom the data set, but
recent work has focused on developing better selectionadsthThe final clusters deter-
mined by K-Means are sensitive to the initial seed centroldie labeled data provided to
semi-supervised clustering can be used to seed theseidentesulting in better clusters
than by using random centroids (Basu, Banerjee, & Mooney 2002)

A K-Means model is equivalent to a Gaussian mixture modekutite assumptions
that the prior probability of each cluster (i.e., each Gaugss equal and that each Gaus-
sian has an identity covariance (Kearns, Mansour, & Ng 1B@gtie, Tibshirani, & Fried-
man 2001). K-Means can be viewed as trying to minimize thal toiean squared error
of each point to its assigned cluster by minimizing the ofoyjecfunction (Duda, Hart, &

Stork 2001):

K
(22) ijeans = Z Z Hmz - ,uh||2 :
h=1 z;€X},

Equivalently, using the notation conventions describetiera

2

(23) ijeans = Z sz — Mg

T, €EX

The computational complexity of the standard K-Means atlgor is O(N KnT),
whereN is the size of the data setjs the number of dimensions, afids the number of it-
erations to convergence (Duda, Hart, & Stork 2001). EIk&®® provides an accelerated
K-Means algorithm that uses the triangle inequality to dwannecessary computations.

The accelerated K-Means algorithm has an empirical contglefoser toO(N).



2.4 Equivalence Relations in Constrained Clustering

As mentioned previously, constrained clustering algomghtypically take side-
information in the form ofpairwise constraint®r equivalence setsBoth constraints and
equivalence sets form an equivalence relation over paintsd data set.

Recall thaimust-linkconstraint(x;, = ;, w) specifies that points; andx; belong in the
same cluster. This constraint can be violated with a pera$gw. Similarly, acannot-
link constraint(z;, z;, w) specifies that points, andz; belong in different clusters, with a
penalty costo for placing them in the same cluster. The set of all must-tiokstraints is
notated as\, and the set of all cannot-link constraints is notated.as

Equivalence sets specifetsof points that belong in the same cluster. Each cluster
may have more than one equivalence set; points in differgaivalence sets may still
belong in the same cluster. Bar-Hillel et al. (2005) geneeajeivalence sets by taking
the transitive closure of a set of must-link constraintsctEaonnected component then
becomes an equivalence set.

It is simple to extract pairwise constraints from equivakesets, and simple to gen-
erate equivalence sets from a set of must-link constrai@snstructing an equivalence
set using cannot-link constraints is more difficult, beeacannot-link constraints are not
transitive. Bar-Hillel et al. (2005) argue against the useavfnot-link constraints, because
must-link constraints are more informative, and becauseiie of cannot-link constraints
imposes an increased computational cost. Their methody&#l€omponent Analysis

(RCA), uses equivalence sets generated from must-link Gntgronly.



2.5 Approaches to Constrained Clustering

2.5.1 Hard Constrained Clustering

Wagstaff (2002) proposed the COP-Kmeans algorithm, whidbrees the pairwise
constraints during K-Means clustering. At initializatjoli random instances are chosen
as the starting centroids, such that no constraints arated COP-Kmeans follows the
K-Means algorithm described in Figure 2.1 with one modif@at COP-Kmeans assigns
points to the nearest clustguch that no constraint is violated he algorithm aborts if such
an assignment is not possible. COP-Kmeans uses both mkistdchcannot-link pairwise
constraints.

COP-Kmeans is &ard constrained clustering algorithm, since it does not alloy a
constraint violations. In constrasioft constrained clustering algorithms allow constraint
violations, typically with some penalty. Wagstaff (2002shalso developed a soft con-

strained clustering version of COP-Kmeans, called SCOP-Ksiea

2.5.2 Soft Constrained Clustering

Bilenko, Basu, and Mooney (2004) have developed the MPCK-Makywithm for
soft pairwise constrained clustering with metric learnifgPCK-Means uses weighted
must-link and cannot-link constraints; a constraint canib&ted with a penalty equal to
its weight. Bilenko et al.’s algorithm locally minimizes abjective function that incor-
porates constraint violations with the K-Means objectwedtion (Equation 2.3). During
the clustering process, MPCK-Means learns a distance méitican learn either a single
distance metric for all clusters, or one metric for eachteludPetails on the MPCK-Means
algorithm are given later in Section 2.6; MPCK-Means fornesltlasis for the implemen-
tation of the method proposed in this thesis.

Basu et al. (2005; 2004) have also developed a probabilistmdwork for semi-
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supervised clustering that is closely related to MPCK-Medltss model formalizes the
combination of constraint-based and distance-basedecingtused in MPCK-Means, us-
ing ideas from Hidden Markov Random Fields.

Shental et al. (2004) propose a constrained ExpectatiaxirMazation (EM) proce-
dure that fits a Gaussian mixture model to a data set. Theyide@an EM algorithm
for using only must-link constraints, and a generalized Hiypathm for use with both
must-link and cannot-link constraints. Lange et al. (200@®yvide an alternative method
of incorporating soft constraints into fitting a mixture nebdising maximum likelihood.
Their method models both must-link and cannot-link comstsausing maximum entropy,
while bounding the number of violated constraints. Lu andrL2005) propose an alterna-
tive method of fitting a Gaussian mixture model using EM. Leaegal. and Lu et al. have
similar approaches that incorporate the constraint in&tion into the prior probabilities

of the data to each mixture component.

2.5.3 Distance Metric Learning

Xing et al. (2003) use gradient ascent combined with iteegbrojections to learn a
Mahalanobis metric. Their method learns a metrithat minimizes the total mean squared
error for must-linked points, such that other “dissimilgdints are not collapsed into a
single location. It explicitly uses must-link constraingd uses cannot-link constraints
only to identify “dissimilar” points. In the absence of catiink constraints, their method
assumes that all pairs of points that are not must-linkedbsanonsidered “dissimilar.”
This assumption is incorrect in most situations, since fgowhich are not must-linked
might still belong in the same cluster.

Bar-Hillel et al. (2005) use Relevant Component Analysis (RCAgf8alet al. 2002)
with must-link equivalence sets to learn a Mahalanobis imetBar-Hillel et al. argue

against using cannot-link constraints, based on an arguthaha cannot-link constraint
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provides less information than a must-link constraint, dod to the increased computa-
tional cost of using cannot-link constraints. Their altfum uses only must-link constraints
given asequivalence setsf points that belong in the same cluster. RCA's computation is
similar to the optimization problem solved by Xing et al. (30, but is more computation-
ally efficient, and prohibits the volume of the entire datg(sether than just the “dissimilar”
points) from collapsing. In this manner, the RCA method avdidsproblematic assump-
tion made in Xing et al.'s method. Both Xing et al. and Bar-Hilk al. first train the
distance metric based on the labeled data, and then usesth@ak metric to cluster the
entire data set.

The constrained complete-link algorithm presented by rKigial. (2002) uses pair-
wise constraints to warp a similarity matrix of the data pint forces must-linked points
to have a distance of zero and cannot-linked points to hayendiximum distance of all
pairs of points. After each distance adjustment, it warpssiimilarity matrix by comput-
ing the shortest distance between every pair of points.nkdeal.’s method then performs

hierarchical complete-link clustering using the warpediksirity matrix.

2.5.4 Other Related Work

Several methods have been developed for active learningrst@ints during clus-
tering (Basu, Banerjee, & Mooney 2004; Klein, Kamvar, & Mamgniz002). Cohn et
al.’s (2003) approach to semi-supervised clustering cagsinteraction with the user with
EM to cluster the data, repeatedly clustering and then wgrfhe distance metric in re-
sponse to user feedback on the clustering.

In a different approach, Zhu et al. (Zhu, Ghahramani, & Liaff@003; Zhu, Lafferty,
& Ghahramani 2003) propose a framework for semi-superdisaching with binary class

labels using Gaussian random fields and Gaussian processes.
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2.6 Details on PCK-Means and MPCK-Means

The implementation used in the experiments builds on the M&&ns algorithm
of Bilenko, Basu, and Mooney (2004). This algorithm combinesstrained K-Means
clustering with metric learning by minimizing a single otfige function. MPCK-Means
uses soft pairwise constraints between instances botletise initial cluster centroids and
to influence the clustering via the objective function. BiKeret al.’s (2004) PCK-Means
algorithm is effectively MPCK-Means without the metric lasrg component.

Bilenko et al. represent Euclidean distance with a symmputtive-definite metric
matrix A. A is a Mahalanobis metric, based on Equation 2.1. As a remiAderthe set of
data instancesM andC are the sets of must-link and cannot-link constraints,eesyely;
wr, represents the centroid of the clustewhereh € {1,..., K'}; and matrixA, represents
the metric matrix for clustek. MPCK-Means generatesfa-partitioning of the data set

that (locally) minimizes the objective function (Bilenko, 88 & Mooney 2004):

jMPCKmeans - Z <||‘rz — Ma;

T, EX

(5,2 5,w)eM

+ Z W fe(wi, 25) L, = Hay]

<(Ei ,{L’j ,E> EC

%, — log(det(A,.)))

1 1
(2.5) fmlzi zg) = Sl —jl[%, + 5l — [,
(2.6) felwiyay) = g, =g |4, — llwi —25ll%,, -

This equation is the same as used by Bilenko et al. with one maoalification: the sets
W andW described in their paper (Bilenko, Basu, & Mooney 2004) hawengiminated
by incorporating the weights into the individual consttain

The first term of 7y, pc kmeans 1S @n attempt to maximize the log-likelihood of the K-
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Means clustering (see Equation 2.3). The second and thimstencorporate the costs of
violating the constraints im andC.

The MPCK-Means algorithm uses Expectation-MaximizatioM]Eo generate the
clustering ofX’ that locally minimizes7y pckmeans- The E-step consists of assigning each
point to the cluster that minimize$,,pcrxmeans from the perspective of that data point,
given the previous assignments of points to clusters. Th&teéy@-consists of two parts:
re-estimating the cluster centroids given the E-step etus$signments, and updating the
metric matrices{ A, }1_, to decrease/yspcrmeans- EAch metricA, is updated according

to the following equation:

Ap = |4 ( Z (i — pon) (i — )"

IiEXh

2.7) + Y whi(@n ) [, # ]
(i, 5,w)EMyp,
1

+ Z wf(/j(xiaxj)]l[uﬂci = flz;]

(w4,25,w)€C,

28) Pulenzs) = 5
felwsz;) = (

(2.9) - (@ — ) (z — %‘)T>

The original paper by Bilenko et al. (2004) includes furthetaids on the MPCK-

Means algorithm and the initialization steps for clustexdieg.
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2.7 Details on Relevant Component Analysis

Relevant Component Analysis (RCA) (Shengtlal. 2002) uses equivalence sets
to “identify and down-scale global unwanted variabilitythwh the data (Bar-Hillekt al.
2005).” It generates a Mahalanobis metric for the data set the equivalence sets. RCA
uses the equivalence sets to identify and emphasize inrmpatimensions by assigning
them large weights in the metric. RCA computes the medras follows (Bar-Hillelet al.
2005):

|E| Bl

(2.10) A= %Z > (@ji = my) (s —my)"

=1 i=1

whereL is the set of equivalence sets. Tjth equivalence sek; contains a set of points
E; = {xji}ijl‘ that belong in the same cluster,; denotes the mean &f;.

This metricA can then be used directly as the Mahalanobis metric foraters. The
full RCA algorithm (Shentaét al. 2002) includes optional dimensionality reduction of the

data set. Bar-Hillel et al. (2005) provide details on appyRCA to constrained clustering.

2.8 Clustering Evaluation

Measuring the performance of constrained clustering req@a measure of agreement
between the desired clustering (as viewed by the domainregperiding the constraints)
and the generated clustering. Following the methodologytioér researchers, this thesis
uses two objective measures to evaluate the clusteringpdhwise F-Measure (Equa-

tion 2.13) and the adjusted Rand index (Equation 2.15).
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2.8.1 Pairwise F-Measure

The pairwise F-Measure (Equation 2.13) (Basu 2005) is th&dypnformation-
theoretic F-Measure, adapted to measure the number of slaister pairs. The F-Measure
is the harmonic mean of precision (Equation 2.11) and réEajuation 2.12). The pair-
wise F-measure has been used by other researchers to evanatrained clustering (Basu

2005).

NumPairsCorrectlyPredictedInSameCluster
NumTotalPairsPredictedInSameCluster

(2.11) precision =

NumPairsCorrectlyPredictedInSameCluster

2.12 =
( ) recall NumTotalPairsInSameCluster

2 - precision - recall

(2.13) F-Measure=

precision + recall

2.8.2 Adjusted Rand Index

The adjusted Rand index (Hubert & Arabie 1985) measures theeagent between
the partitions imposed by the class labels and the parsitijgmerated by the clustering. It
is related to the Rand index (Rand 1971), which has previowesy lnsed in the evaluation
of constrained clustering (Bar-Hillgt al. 2005; Xinget al. 2003; Wagstafet al. 2001).

The general form of the adjusted Rand index is:

(2.14) AR] — Index — FxpectedIndex

MazimumiIndex — ExpectedIndex

The form of the adjusted Rand index used in the evaluatiorssdan the confusion matrix

for the clustering, where,; is the number of data points from tité class placed in thgth



cluster, andV is the total number of clustered data points (Yeung & Ruzzd 200

> () = [Z > () /G |
@)+ @) - <>z]<zﬂ>} /(3)

(2.15) ari =

16
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(@, z4)

radiusy,

M,
Ch

<xivxj7w>

(0]
| ’xl — M,
1[expr]

Aq,

The number of data instances.
The number of dimensions of each data instance.
The number of clusters.

A data instanceg; € R".
The set of data instancé$ = {z;}¥,, ; € R™.
The set of data instances assigned to clusterhereh € {1,..., K}.

The centroid of the clustér.

The metric matrix for clustek.

The covariance matrix for clustér

The points with the greatest separation usingAhemetric.

The Mahalanobis distance from to the farthest point assigned to ¢
terh.

The centroid of the cluster to which belongs.

The metric matrix of the cluster to which belongs.

The covariance matrix for the cluster to whichbelongs.
The points with the greatest separation using4ahemetric.

The set of must-link constraints.

The set of cannot-link constraints.

The set of must-link constraints involving points assigtediusterh.
The set of cannot-link constraints involving points assijto cluster..
A constraint between the instancgsandz; with penalty costw.

Then x n zero matrix.
The Mahalanobis distance (Equation 2.1) betwegand ...
Returns 1 ifexpr evaluates to true, O otherwise.

Table 2.1. Summary of notation.



Chapter 3

CLUSTERING WITH PROPAGATED CONSTRAINTS

3.1 Method Overview

The novel method presented in this thesis, called GaussiapaBated K-Means
(GPK-Means), requires an unlabeled data set, and setsmfipaimust-link and cannot-
link constraints over that data set. Using a Gaussian fonand the current cluster es-
timates, the algorithm infers new constraints in the neaghbods of the original source
constraints, then uses these constraints in clusteringrtergte new estimates for the clus-
ters. GPK-Means can wrap around any partitional constdaghestering algorithm that

uses weighted constraints; this thesis uses MPCK-Mean®dm#e clustering algorithm.

3.2 The Gaussian Function for Propagating Constraints

For a given constraintz 4, x), the constraint can potentially be propagated to two
other related points;; andz;. The weight of this new constraint should fall off smoothly,
as the constrainfr;, z;) moves farther away fron 4, 5). GPK-Means uses a Gaussian
centered at the given constraifat,, ) to determine the weight ofz;, z,), because a
Gaussian function will emphasize propagated constraiatsare closest to the source con-
straint and will fall off smoothly. Gaussian functions hdneen used similarly for weighting

in other successful applications (Lowe 2004).

18
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The standard-dimensional Gaussian density function is:

(3.1) N(v,u,0) = exp —%(U —w) o (v—u)| ,

whereu is thed-dimensional mean andis thed x d covariance matrix.

The weight of the propagated constraint should decreaseegsair (x;, z;) moves
farther from (x4, z5). Since each data point is-dimensional, constraint propagation
centers the Gaussian at a point dn-dimensional space, accounting for tpair of

points. Using a Gaussian allows the weight to fall off smbotfom 1 at the source con-

T x . .
straint. Under this construction, = , andu = 1. The weight function
T B
Wz, z;,x4, 25, X;,, Xy ) IS given as:
) TaA
(32) W(l’i,l'j,l'A,l'B,EzA,EmB) =N s 7ZZEAZL“B s
T B
where
Dy 0
(3.3) Yopzp = « L :
0] X

B

Y., Is the covariance matrix of the cluster containing >, , is the covariance matrix of
the cluster containing z, and[0] denotes the: x n zero matrix. In Equation 3.2, the order
of the pairs(z;, z;) and(x 4, zp) is important. To circumvent this problem in applying it
to clustering,W () must be called withr; < x; andz4 < =g, where< is a total ordering
on all the points.

Note that this construction of the covariance makix .., assumes that; andz 4 are

independent of; andzz. Appendix A shows the construction of the covariance matrix
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Y.,z 0iven this independence assumption.

As stated by Bilenko et al. (2004), the inverted metric mattjx' corresponds to
the covariance matriX, for the Gaussian mixture component for clusieBar-Hillel et
al. (2005) note that in practice, metric learning typicaiynstructs the metric modulo a
scale factor. This scaling factor does not make a differemeodustering, since clustering
uses relative distances. However, constraint propagatiast haveabsolutedistances in
order to propagate the constraints correctly. The clustgariance matrices cannot be
generated directly from the data, since MPCK-Means takewitilated constraints into
account when generating the metric, and the violated cainstrdepend directly on the
current clustering.

Constraint propagation generates absolute distances liygsttee metricA, ' so that
the bulk of the Gaussian fits within the cluster, then usirggdtaled metric as the covari-
ance matrix for the cluster. The scale is computed by detengithe scale factor, that
will place approximately 99% of the first principal compohehthe Gaussian closer than
the outermost point currently assigned to this cluster.c&iime experiments are limited

only to diagonal matrices, this scale factgrcan be computed as:

radiusy,

(34) np =

3O_p01h

whereo,., is the standard deviation of the first principal componenthef Gaussian,
andradiusy, is the distance from the centroig, to the farthest point currently assigned to
clusterh. Note that three standard deviations is the offset from thamthat corresponds to
containing roughly 99.7% of the data values in a normal itstion. As the first principal
component is the largest dimension and the covariancexmstaiready fit to the cluster,
this will scale the Gaussian such that most (approximat@¥s)9of the cluster is contained

within the Gaussian. The tails of the Gaussian will not haleege effect on the clustering,
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since propagated constraints within the tails will be &ivdue to their small weight.

Therefore, the covariance matrix for clusteis:
(35) Zh = nhAgl .

The distance that a particular constraint should be prdpdgearies with the con-
straint’s location within the cluster. For example, a coaist located at the center of a
cluster should ideally be propagated all the way to the eltssedges. However, a con-
straint located at the edge of a cluster, if it were propapyéte same overall distance,
would extend into neighboring clusters. Constraint profiagaises another scaling factor
s, 10 vary the amount of propagation based on the source cart&iacation in the clus-
ter. The scaling factos, , for a particular constraint endpoin, is defined as the value of
a Gaussian centered at the cluster’s cenrgigdwith the cluster’s covariance matrix:

(3.6) Sy, = N(xA,pmA,nxAA_l) )

TA

The final Gaussian weighting functidieight(x;, z;, x4, x5) used in GPK-Means is

based on Equations 3.2, 3.3, and 3.6 as follows:
(3.7) Weight(x;, xj, x4, 05) = W(x;, zj, 24, 5, sxAnIAA;j, stnIBA;;) )

Using this equation, constraint propagation can now detexrthe weight for the prop-
agated constraint between every pair of data points, andhese weighted constraints
directly in a constrained clustering algorithm.

By taking advantage of the independence assumptions ang wus@moization,
Weight(z;, z;, x4, z5) can be calculated efficiently over repeated computatichshawn

in Appendix B.
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3.3 Using the Propagated Constraints in Clustering

Given a data set’, a set of must-link constraingst, a set of cannot-link constraints
a set of defined clustefst;, }%*_,, and the metric matrices for those clustérs, } X, con-
straint propagation can now generate new sets of propagaistilink constraintg® (M)
and cannot-link constraint®(C). By construction M C P(M) andC C P(C). Con-
strained clustering algorithms can directly use the datatsand the sets of propagated
constraints P(M) and P(C), to generate a new clustering and set of metrics.

GPK-Means first gets an initial estimate of the clusters amdrins from the base
clustering algorithm — in this case, MPCK-Means — using thia datX’, and the sets of
original constraints\ andC. MPCK-Means outputs a set of defined clustdrg}~_,,
and the metric matrices for those clustgra? } X . GPK-Means then propagates the given
constraints using the learned clusters and metrics, arsiMRCK-Means again with the
new sets of propagated constraifis\M)® and P(C)° to generate the clustef&’! } |, and
the metrics{ A} } £ . Theith run of MPCK-Means useB(M)i~! andP(C)*~!. After each
run of MPCK-Means, excluding the initial seed run, GPK-Meahscks for convergence
between the final objective function values of MPCK-MeansK@®eans runs repeatedly
in this manner until convergence. The GPK-Means algorithgiven in Figure 3.1.

Due to the complex nature of the Gaussian propagation, iffisudt to use EM (as
used in MPCK-Means) to ensure convergence. GPK-Means iseqaired to converge,
since there is no strict requirement that the clusteringtrmve closer to the optimal
clustering at each step. MPCK-Means suffers from the samisiggrounder some con-
ditions that occur in practice, and is not theoretically rguéeed to converge in these
cases (Bilenko, Basu, & Mooney 2004). In practice, howeves,dbnvergence of both
GPK-Means and MPCK-Means has not been a problem.

The constraint propagation algorithm includes an optistep that reduces the set of
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propagated constraints. This thesis refers to perfornfiagptional step aeduced prop-
agationand skipping the optional step &asdl propagation Full propagation allows each
pair of points to have multiple propagated must-link camstis and multiple propagated
cannot-link constraints. Reduced propagation forces thefggropagated constraints to
include, for each pair of points, at most one must-link caist and one cannot-link con-
straint. The propagated constraint with the maximum wefigh& given pair is selected as

the constraint in both cases.

3.4 Complexity Analysis of GPK-Means

Figure 3.3 examines the complexity of constraint propagedind Figure 3.4 provides
a breakdown of the algorithmic complexity for GPK-Meansnc® GPK-Means is com-
posed of repeated runs of a constrained clustering algoréthd constraint propagation,
this section analyzes each component in turn. Only an upméndon the computational
complexity is provided, because determining an exact l[dweind for any K-Means vari-

ant is an open question (Elkan 2003).

3.4.1 Complexity of Constraint Propagation

This section examines the computational complexity of trang propagation. Fig-
ure 3.3 shows the computational complexity for the primaeps of thePropagate algo-
rithm given in Figure 3.2.

This analysis assumes that the time taken to compute thes@@adanctiondV’() and
N () depends only on the dimensions of the data set, and therefmesents the complexity
of these functions a®(G(n)) for ann-dimensional data se€/(n) will vary depending on
the specific implementation, but will generally be a low-@rgdolynomial.

The determination of the scale factors for each cluster ép Sttake®D (| X| + Kn)



24
time, whereK is the number of clusters andis the number of dimensions of the data
set. Determining the radius of each cluster takésYt'|) time, and determining the first
principal component for each of th€ clusters take® (K 'n) time using diagonal metric
matrices. If the farthest point in each cluster is detershiard cached during the point
assignment step of MPCK-Means, the complexity of Step 1 resitaO (Kn).

The complexity ofPropagate() is primarily determined by the main loop in Step 3,
which repeatsgC| times, for a set of constraintsS. Computing the scale factors within
this loop (Steps 3a—3b) requires a combined tim®@F (n)), which is dominated by the
complexity of Step 3d. Step 3d loops over every pair of datatppof which there are
O(]X|?). For each pair, the step computes the weight of the propdgatestraint between
these points i®(G(n)) time. For the optional reduction stefropagate() can track and
keep the constraint with the maximum weight during the weggimputation step without
any additional computational cost. This yields a complegit©(|X'|*G(n)) for Step 3d,
and therefore a complexity & (|C||X|?°G(n)) for the main loop of Step 3. Since this
dominates the complexity &d(Kn) for Step 1, the overall complexity faPropagate is

O(|C||X|*G(n)) for both full and reduced propagation.

3.4.2 Complexity of GPK-Means

Figure 3.4 shows the computational complexity for the pryrsteps of the GPK-
Means algorithm given in Figure 3.1.

The computational complexity of GPK-Means is highly departadn the chosen con-
strained clustering algorithm. This analysis assumesMREK-Means has a computa-
tional complexity ofO(Cypcrmeans ) -

The initial run of MPCK-Means in Step 1 has complex@®Cypcxmeans). GPK-

1To the best of my knowledge, no paper on MPCK-Means or anye@kagorithms analyzes the compu-
tational complexity of this algorithm.



25

Means then repeatedly propagates constraints (Steps BaitBhcomplexity ©((|M| +
|C)|X|*G(n)) and runs MPCK-Means (Step 3c) with complexi®C'vpcximeans) Until
convergence. Since the number of iterations taken to cgaviernot know a priori, let
represent this number. The initial seed run of MPCK-Mean®soebed in the final com-
plexity, yielding a computational complexity 6f(cCypcrmeans + c(|M|+ [C]) | X [2PG(n))
for GPK-Means.



Algorithm: GPK-Means

Inputs:

e the data sef’,

¢ the set of weighted must-link constraintg,

¢ the set of weighted cannot-link constraigts

¢ the number of cluster&’, and

¢ the cutoff threshold for propagatign
Output:

e a disjointK -partitioning{ X, }/_, of X' .
Method:

1. Obtain the initial clusterind X}, {x9} |, and initial metrics
{AY}E | by running MPCK-Means witkt', M, C, andK.

2. Seti := 0.
3. Repeat until the MPCK-Means objective function values eoyw:.
€) Propagate the must-link con}straints: .
P(M)" := Propagate(M,{X; < {Ai | 9).

(b) Propagate the cannot-link constraints:
P(C)" := Propagate(C,{ X/ }&_  {AL}E | 9).

(©) Set{X; "}, {m," ey, and {47}, by running MPCKj
Means withX, P(M)‘, P(C)’, and K starting with initial cent
troids {ui } 5, .

(d) Seti =i+ 1.

4. Return{ X;j}< .

Fic. 3.1. The GPK-Means algorithm.

26
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Algorithm: Propagate

Inputs:

the set of weighted constraint§

the disjointK -partitioning of the datd X} X,

the set of metric§ A} |, and

the cutoff threshold for propagation
Output:
e a set of weighted constraints.
Method:
1. Compute the scale factofs; } X, using Equation 3.4.
2. Let the set of propagated constraints be empty') = {}.
3. Foreachz,xp,w) € C, do:

(a) Lets,, := N(xa, fts,, nIAA;j).

(b) Lets,, := N(mB,MIB,nIBA;;).

(c) Add the original constraint to the propagated set:
P(C):= P(C) UH{(za,xzp,w)}.

(d) For each pair of data poins;, ;) such thatz; # z4) A (z; # xp) A (x; <
z;), where< is a global ordering to ensure a pair is only checked once, glo:

i _ -1 -1
I Letwijr = W(xs, 2,24, 78, Sa ey AL SapNepy Ay )-

ii. Letwijo = W(x), 25,24, T8, S, Nas At SopNap Ay L)
iii. Let w;; = maz(w;j1, wij2).

iv. If w;; > g, then add the constraint to the propagated set:
P(C) := P(C)U{(xi, z;, wijw) }.

(e) (Optional) Reduce the number of propagated constrantsly the maxi-
mum weighted constraint between each pair of points. Fon eaastraint
(x;, z;,w) such thaB(xz;, z;, w') € P(C) with w <= w', P(C) := P(C) —
{<xiv Ljs w>}

4. ReturnP(C).

FIG. 3.2. The constraint propagation algorithm.



Propagate AlgorithmO(|C|| X |*G(n)).

e Compute the scale factors for each cluster’s Gaussian (ktep 1
O(Kn).

e Loop over each constraint (step 3):
O(C||IX[PG(n)).
— Compute scaling factors (steps 3a—3b):
O(G(n)).
— Loop over each pair of data points (step 3d):
O(X[*G(n)).

x Computing the constraint weights (steps 3(d)i—3(d)ii):

O(G(n)).

FIG. 3.3. The computational complexity of constraint propamyat

GPK-Means AlgorithmO (cCypermeans + ¢(|M] + |C))| X *G(n)).

¢ Initialize the estimates of the clusters (step 1):
O(CMPCKmeans)-

e Repeat until convergence iferations) (step 3):
O(CCMPC’Kmeans + C(’M| + |C|)|X’2G(n))

— Propagate the constraints (steps 3a—3b):
O((IM] + [CNIX[*C (n)).

— Run MPCK-Means (step 3c):
O(CMPCKmeans)-

FIG. 3.4. The computational complexity of the GPK-Means aldponi
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Chapter 4

EXPERIMENTS

4.1 Data Sets

The experiments were conducted using five data sets: the -Gahder, Iris, Digits,
and Letters data sets from the UCI machine learning repgsf{idewmanet al. 1998);
and the protein data set used by Xing et al. (2003). Folloviditgnko et al. (2004), the
Digits and Letters data sets were reduced to include onljt¢hes{3,8,9} and{I, J, L},

respectively. Table 4.1 summarizes the properties of tHatesets.

Name # Instances # Features # Classes
Crabs-Gender 200 5 2
Digits389 317 16 3
Iris 150 4 3
LetterslJL 227 16 3
Protein 116 20 6

Table 4.1. Properties of the data sets.

4.2 Methodology

On each data set, the experiments compared three methodsstfained clustering:

PCK-Means(MPCK-Means without metric learning)MPCK-Means and GPK-Means

29
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All experiments were conducted using implementations es¢halgorithms incorporated
into the Weka machine learning toolkit (Witten & Frank 2000jhe PCK-Means and
MPCK-Means algorithms were taken from the University of TeXéeka distribution pro-
vided by Bilenko et al* The implementation of GPK-Means is based on the MPCK-Means
algorithm from this distribution.

MPCK-Means can use either a single metric for the entire datarsnultiple separate
metrics for each cluster; consequently, so can GPK-Meahs.ekperiments used both a
single diagonal metric and multiple diagonal metrics. Alberiments used unit constraint
weights for the initial constraints.

GPK-Means was run with two propagation thresholds on eaths#; the propaga-
tion thresholds are listed in each graph’s key. The propag#tresholds were 0.5 and 0.7
for every data set except Protein. Protein required lonapggation thresholds of 0.01 and
0.05 to obtain any effect, because of the sparsity of theskdita

For each data set, learning curves were generated for egmtfitiain as the number of
constraints was varied. Each data point on the learningecwas averaged over 50 trials
of 5-fold cross validation. Constraints were selected ramgdrom the training set (four
folds); the full data set was then clustered; and result®weported for only the test set
(the fifth fold). All algorithms were tested on the same fivielfowith the same constraints.

The experiments compare each algorithm using the pairwide&sure (Section 2.8.1)
and the adjusted Rand index (Section 2.8.2). Significantiegesas performed on the re-
sults using 90%, 95%, 97.5%, and 99% confidence levels. Bagindpas two components:
an upper graph that displays clustering performance astiméer of constraints varies, and

a lower graph that gives the significance level against MPC#&aih for each data point.

LAvailable on-line at http://www.cs.utexas.edu/userisd/code/.
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4.3 Clustering Evaluation of GPK-Means Using Full Propagatiao

This section evaluates the clustering performance of GRi&Mg using full propaga-
tion. In this form of GPK-Means, all inferred constraints ased, even if there are multiple
constraints between a pair of points. The experiments atedithe performance of GPK-
Means with full propagation against MPCK-Means and PCK-Maasieg the pairwise

F-Measure and the adjusted Rand index (ARI).

4.3.1 F-Measure Evaluation of GPK-Means Using Full Propagatio

The F-Measure (Section 2.8.1) evaluates the clusterimg &o information-theoretic
perspective. Figure 4.1 depicts the F-Measure performafiREK-Means, MPCK-Means,
and GPK-Means on each data set as the number of constraii@s.va

GPK-Means outperforms MPCK-Means and PCK-Means on the IdsPaatein data
sets with a single metric. GPK-Means shows significant img@naoents in the F-Measure for
a range of low quantities of constraints. As the number ostramts increases, the perfor-
mance of GPK-Means and MPCK-Means becomes indistinguisha&ilhigher numbers
of constraints, there is no longer a benefit to using the (blyssaccurate) propagated con-
straints, because there are enough accurate source aassinayield a high-performance
clustering.

Crabs-Gender and Digits389 also show a benefit with using GleEns with single
metrics, but over a much smaller range of constraint valii&e improvement on Crabs-
Gender is very slight and appears only with larger numbersooktraints (above 100).
Given the marginal improvement with the data set, it apptasthe Crabs-Gender data
set is very difficult to cluster using a single metric. Letlershows virtually no difference
between using MPCK-Means and GPK-Means.

When using multiple metrics, only the Crabs-Gender and Iiia dats show a benefit
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of using GPK-Means over MPCK-Means. GPK-Means shows a langeavement over
MPCK-Means on Crabs-Gender with multiple metrics. The pentorce of GPK-Means
is indistinguishable from MPCK-Means on the other data séts multiple metrics.

PCK-Means did not perform well on any data set, except ihytiah Protein against
MPCK-Means and GPK-Means using multiple metrics.

Notice the sudden drop in performance as the number of @ntsincreases on the
Iris data set. This problems occurs with full propagationlasy because the number of
propagated constraints tends to increase rapidly withtineoer of source constraints. The
huge numbers of propagated constraints are likely to becurate, and decrease GPK-
Means’ performance. As Section 4.4 will show, reduced pgagian avoids this problem,
and reduces the sudden performance drop.

The experiments demonstrate a large performance differéetween single and
multiple metrics on several of the data sets. In some casg&sg a single metric
is better (e.g. Iris), while in other cases, using multipletnes is better (e.g. Crabs-
Gender). Multiple metrics are especially useful on data wéiere the clusters are different
shapes (Bilenko, Basu, & Mooney 2004). Because the benefit nfusultiple metrics
depends on each data set’s underlying clustering, no ceindwan be drawn from these

experiments as to whether using single or multiple metaggenerally better.
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FIG. 4.1. The F-Measure performance of GPK-Means using fulpagation. The bottom
section of each graph depicts the significance level of GR¥&iM against MPCK-Means.
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FIG. 4.1 (continued). The F-Measure performance of GPK-Meangyull propagation.
The bottom section of each graph depicts the significancel lBvGPK-Means against
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4.3.2 Adjusted Rand Index Evaluation of GPK-Means Using Full Popagation

The adjusted Rand index (ARI) (Section 2.8.2) evaluates tred & agreement be-
tween the true class labels and the clustering. Figure HRtdethe ARI performance of
PCK-Means, MPCK-Means, and GPK-Means with full propagatioeach data set as the
number of constraints varies.

The ARI results are similar to the F-Measure results, with @®&ans having sig-
nificant benefits for low numbers of constraints on the irikadset with both single and
multiple metrics. At higher numbers of constraints, theezkpents on Iris with multiple
metrics show the same sudden performance drop as with thedsuve.

GPK-Means with multiple metrics significantly improves ttlastering performance
on Crabs-Gender and Iris. There is also an improvement on @Geahder with a single
metric for larger numbers of constraints. Protein also shawimprovement with GPK-
Means, but only with single metrics. Digits389 and Lettérsshow only a small benefit for
limited numbers of constraints. As with the F-Measure, QR&ans with full propagation
using multiple metrics does not have a significant benefit MRRCK-Means on Digits389,

LetterlJL, and Protein.



0.070 T
[PCK-Means
| MPCK-Means
0.060 GPK-Means 0.5  ---%---
. 0050 |GPK:Means07 o
()
o
£ 0040
=]
5
£ 0030
=l
Q
% 0.020
2
=]
©  0.010
0.000
g 0010
< rC T T il ¥
€ 0950
£ 0900 i i ; 5
8 0 50 100 150 200
number of constraints
(a) Crabs-Gender - Single Metric
0.700
0.650
x
@ -
° / -
£ y
E 0.600 [ ) ¥ o
- & e
£ 0550 gt
3 X \7
®
0.500 CK-Means —— |4
/’ MPCK-Means  -->-—
GPK-Means 0.5  ------
© GPK-Means 0.7 =]
8 0450
g oo} ! ! ! 1
£ 0.900
3 0 50 100 150 200
number of constraints
(c) Digits389 - Single Metric
0.900
8
0.850 P
: x.B T
a; = rX‘,X*-X‘
2 Ko e
o 0.800 [ et
|5 MY
IS / P |
g o/ D
- =~ M
2 0750 |-¢
e
§ §
0.700 # CK-Means N
IMPCK-Means
GPK-Means 0.5  ------
° GPK-Means 0.7 g
& 0650 — ————
g ogso fEEEILA b £ S L SRR 5
£ 0900 E i i H ! &
5] 0 50 100 150 200

number of constraints

(e) Iris - Single Metric

adjusted Rand index

Confidence

adjusted Rand index

Confidence

adjusted Rand index

Confidence

0.070

0.060

0.050

0.040

0.030

0.020

0.010

0.000

-0.010

36

T
[PCK-Means

I MPCK-Means
IGPK-Means 0.5
IGPK-Means 0.7

0.950

0.900

S mm

100

number of constraints

(b) Crabs-Gender - Multiple Metrics

0.700
0.650
0.600
0.550
/
N PCK-Means jmrm—
0:500 /’ MPCK-Means -
IGPK-Means 0.5 ---%---
IGPK-Means 0.7 =)
0.450
0.950 [ ! ! ! ]
0.900 £ |
0 50 100 150 200

number of constraints

(d) Digits389 - Multiple Metrics

0.900
0.850
- I S .
[ R VER RV
0.800 oyt ;
s .
o S
0.750 ?‘é * M .
o -k =
i/ ook w K I
0.700 ¥ PCK-Means |
MPCK-Means
IGPK-Means 0.5 ---%---
0.650 GPK-Means 0.7 &
! & & & 1 * E %
O 5 , . T
0 50 100 150 200

number of constraints

(f) Iris - Multiple Metrics
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FIG. 4.2 (continued). The adjusted Rand index performance of -Glekns using full
propagation. The bottom section of each graph depicts thafisiance level of GPK-
Means against MPCK-Means.
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4.3.3 Evaluation of Full Constraint Propagation

Recall that on the Iris data set with multiple metrics, GPKavg demonstrates a sud-
den decrease in performance as the number of source cotsiraireases. To investigate
why this occurs, this section examines the number of canssrgenerated by full propaga-
tion as the number of source constraints increases (Fig8je Bhe counts of propagated
constraints in Figure 4.8xcludethe source constraints, and were measured after the last
iteration of constraints propagation in GPK-Means

As the number of source constraints increases, the numlpopégated constraints
leaps dramatically. For the high-dimensional data setgi{€889, LetterlJL, and Protein),
the number of propagated constraints remains low (less3hemnes the number of source
constraints). The low density of the high-dimensional datases the propagation neigh-
borhoods to be very small, resulting in few propagated caimgs.

However, for the low-dimensional data sets (Crabs-Gendgirés), the high density
results in many propagated constraints, up to several edritnes the number of source
constraints. Using multiple metrics appears to reduce mheuat of propagation, because
the per-cluster covariance matrices are more accuratetoobaster. With full propagation,
multiple different constraints may propagate to the sameqdadata points. Therefore,
each pair of data points may be constrained multiple timash evith a different weight.
The effect of these constraints is cumulative, and theysacha constraint with a cost equal
to the sum of the multiple constraint weights. The weighthef summed constraint may
be disproportionately high compared to the weight of the@®gonstraints. Section 5.1
discusses this issue in more detail.

The huge number of constraints likely contains many whiehimaccurate, resulting
in decreased clustering performance. Also, this increth@asomputational cost of MPCK-

Means, resulting in a longer run-time for the constrainestering step of GPK-Means.
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FIG. 4.3. The number of constraints inferred by GPK-Means ukiligpropagation. Note
that the countexcludethe original source constraints.
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FIG. 4.3 (continued). The number of constraints inferred by @®é&ans using full propa-
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4.4 Clustering Evaluation of GPK-Means Using Reduced Propagen

The propagation reduction step was introduced into the Gfl&ns algorithm to pre-
vent the problem of each pair of data points having multigigogiated constraints. This
problem occurs frequently in the low-dimensional data sets larger numbers of con-
straints, since the propagation neighborhoods are densier&tluced propagation, if there
are multiple inferred (or source) constraints of a partictype between a pair of points,
GPK-Means uses only the constraint with the maximum weighis limits the number of
constraints involving a pair of points to be two, one muskliconstraint and one cannot-
link constraint. This also limits the total number of propgegl constraints to be less than
or equal toN? — N, whereN is the number of data pointsV? — N corresponds to two
constraints for every pair of data points.

GPK-Means allows a pair of points to be both must-linked aahot-linked at the
same time, since the weight of a must-link constraint betwte pair of points is not
necessarily one minus the weight of the cannot-link comdtkzetween those points, and
vice versa. In practice however, if two points are mustdithkvith large weight, then the
weight of a cannot-link constraint between them is likelyptosmall. The reverse is also
true.

Section 4.4.1 examines the performance of GPK-Means widhagd propagation
against MPCK-Means and PCK-Means using the pairwise F-Meaand the adjusted
Rand index (ARI).

4.4.1 F-Measure and Adjusted Rand Index Evaluation of GPK-Mean Using
Reduced Propagation

Figures 4.4 and 4.5 depict the F-Measure performance andtadjRand index perfor-

mance, respectively, of PCK-Means, MPCK-Means, and GPK-Mleath reduced propa-
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gation on each data set as the number of constraints varies.

The F-Measure and adjusted Rand index performance GPK-Mesng reduced
propagation is about the same as GPK-Means using full pedjmeng It actually shows
an improvement over full propagation on Iris with multipleetrics, and a very slight im-
provement on Protein with multiple metrics. However, regtlipropagation decreases the
performance of GPK-Means on Crabs-Gender with multiple icgetiGPK-Means with
reduced propagation is still significantly better than MPMIans on Crabs-Gender for
larger quantities of constraints. The most important aspeEigures 4.4 and 4.5 is that
they show a reduction in the severe performance decreas@RiK-Means on the Iris data
set. A slight decrease still occurs, since the likelihoothatcurate propagated constraints
increases as the number of constraints increases. Thagssdt@umber of inaccurate con-
straints degrades the clustering quality. However, thesdse is not as sudden or as severe

as with full propagation.
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FIG. 4.4. The F-Measure of GPK-Means using reduced propagakioebottom section
of each graph depicts the significance level of GPK-Meansag&lPCK-Means.
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FIG. 4.4 (continued). The F-Measure of GPK-Means using redyeegagation. The
bottom section of each graph depicts the significance |dM8RK-Means against MPCK-
Means.
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FIG. 4.5. The adjusted Rand index performance of GPK-Means usthged propagation.
The bottom section of each graph depicts the significancd lvGPK-Means against
MPCK-Means.
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FIG. 4.5 (continued). The adjusted Rand index performance of-GIRKNs using reduced
propagation. The bottom section of each graph depicts gméisiance level of GPK-Means
against MPCK-Means.
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4.4.2 Evaluation of Reduced Constraint Propagation

Figure 4.6 depicts the number of propagated constrainterurediuced propagation
as the number of source constraints was varied. The quemntfipropagated constraints
reported in Figure 4.@xcludethe original constraints, and were measured after the last
iteration of constraints propagation in GPK-Means.

As discussed in Section 4.4, the number of propagated @dmistunder reduced prop-
agation is less than or equal 4 — N. The results in Figure 4.6 are consistent with this
bound.

Figure 4.6 omits the plot of the number of propagated comgrdor Digits389 be-
cause of an interesting effect with reduced propagatiorretivere zero propagated con-
straints for Digits389 after deducting the source constsausing both single and multiple
metrics. The Gaussian Propagation actuatucedthe number of constraints by eliminat-
ing multiple constraints between the same pair of data poirtis reduction seems to have
improved the clustering quality on Digits389. Since thestduing performance with full
propagation is approximately the same as with reduced gedjzen, it may be the case that
all of the propagations occurred between a small set of &reanstrained points, caus-
ing the performance increase. This atypical case is worthyrther study, but this thesis

leaves it to future work.



48

1000.00 1000.00
PK-Means 0.5 ---%--- PK-Means 0.5 ---%---
PK-Means 0.7 8 I 3 PK-Means 0.7 8
P 800.00 P 800.00
c c
g g
S 600.00 @ S 600.00
- . o
2 * 2 ¥
g g -
€ 400.00 X € 400.00 %
o . o d
s ) s .
g X 5] S X i
200.00 « B 200.00 F i
g 8 i)
) x o
.8 ,' =
- a8 -
0.00 8 0.00 P
0 50 100 150 200 0 50 100 150 200
number of constraints number of constraints
(a) Crabs-Gender - Single Metric (b) Crabs-Gender - Multiple Metrics
8000.00 8000.00
PK-Means 0.5 ---%--- PK-Means 0.5 ---%---
7000.00 PK-Means 0.7 =) 7000.00 | PK-Means 0.7 =]
0 cee %) ¥
€ 6000.00 € 6000.00
< . <4 T
@ % ? *
£ 5000.00 =3 £ 5000.00 5
o X o *
® X ? .
2 4000.00 2 4000.00 :
g ¥ g *
g 3000.00 e g 3000.00 .
s * . s *
€ a8 €
2 2000.00 * vz = E 2000.00 " e =
. =)
1000.00 ¥ -rogy 1000.00 =
Loom * o
g B
0.00 # 0.00 =
0 50 100 150 200 0 50 100 150 200
number of constraints number of constraints
(c) Iris - Single Metric (d) Iris - Multiple Metrics

FIG. 4.6. The number of constraints inferred by GPK-Means ustdgced propagation.
Note that the countsxcludethe original source constraints.
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FIG. 4.6 (continued). The number of constraints inferred by @®é&ans using reduced
propagation. Note that the courgscludethe original source constraints.



50

4.5 Clustering Time Evaluation

GPK-Means runs multiple iterations of MPCK-Means and ca@istrpropagation.
The MPCK-Means implementation by Bilenko et al. runs in unde second, so GPK-
Means must take a minimum of several seconds. To determisthehGPK-Means could
be used in a reasonable amount of time, this section exaitiiaesn-time of GPK-Means
as the number of constraints was varied. The results weragee over 20 trials of 5-fold
cross-validation on the Iris data set. The experiment waslected on a low-loaded 2.4
GHz Pentium 4 with hyper-threading running Linux. Figuré ghows the empirical run-
time of GPK-Means using full propagation and GPK-Meansgisaduced propagation.

Full and reduced propagation have approximately the sanpérieal run-time, with
only slight differences. Reduced propagation incurs a smedthead with keeping only
the highest weighted constraints, but MPCK-Means runsifasiger reduced propagation,
because it is given fewer constraints than full propagatidrese differences balance out,
resulting in approximately the same run-time.

While the empirical run-time of GPK-Means appears much highan MPCK-
Means, the extra computational cost is inexpensive cordp@reéhat of obtaining more
constraints. Consider the news article clustering scemaven in Chapter 1. Most peo-
ple would gladly use GPK-Means and wait a few extra secondmoutes), rather than
use MPCK-Means and have to read several more articles. Witbdst of obtaining more
constraints in mind, GPK-Means’ run-time is reasonablefactical use.

The discussion of future work (Section 5.5) includes ideasmproving the run-time

of GPK-Means using sampling, and by eliminating unnecgssarght computations.
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Chapter 5

DISCUSSION

5.1 Full Versus Reduced Propagation

Full propagation and reduced propagation have approxiynte same clustering
performance and empirical run-time. Reduced propagatiowsh slight performance im-
provement on the Iris and Protein data sets, and a perfoer@gemease on Crabs-Gender.
The largest benefit of it is a limit on the number of propagaiastraints.

Full propagation allows multiple constraints between thees pair of points, which
seems unreasonable at first. However, the multiple consiraetween a pair of points
could be interpreted as a single constraint between thenpihia weight equal to the sum
of the multiple constraint weights. It is not possible tolaie a subset of the multiple
constraints, so they act and contribute as one.

The weight of the single (summed) constraint could be highan the weight of
any original source constraint. This is reasonable if th&@® constraints are uniformly
distributed, but if they are concentrated in an area, caims in that area will augment
each other’s weight. Reduced propagation limits the coimstregeight, so that only the
source constraints are given the highest weight in a neitjlaloal.

Since the benefit of reduced propagation varies betweensgdsda further study is

necessary to determine whether reduced propagation sheulged over full propagation.

52



53

5.2 Benefits of Constraint Propagation

Constraint propagation is most useful when the number otteoeonstraints is small,
as shown in the results for the Iris and Protein data setss thiesis focuses on providing
a high-quality clustering with small numbers of constrajr#nd constraint propagation is
capable of doing that.

With larger numbers of source constraints, it is better ®thg accurate source con-
straints than the (possibly inaccurate) propagated canstt The accurate source con-
straints will yield a higher-quality clustering in most eas Also, the cost of constraint
propagation increases with the number of source constraimtking constraint propaga-
tion with larger numbers of source constraints prohibiyivexpensive.

Constraint propagation assumes that the constraints areseegative of their local
neighborhood. In situations where constraints are use@nstain outliers or atypical
instances, this assumption is incorrect and constraimgggation may decrease clustering

performance.

5.3 Using GPK-Means with Other Algorithms

GPK-Means is capable of using any base constrained clngtafgorithm that sup-
ports weighted constraints. It is possible to use it with lyorthm that supports only
unweighted constraints by inferring constraints if theg above the given threshold, and
ignoring the actual weight of the constraint. Such a modificeto the GPK-Means algo-
rithm and an analysis of its performance is left to future kvor

Most existing constrained clustering algorithms tend tmfoon using “perfect” con-
straints, without errors in the relative labeling. MPCK-Medalls into this category. The
constraints inferred by GPK-Means’ propagation methodikedy to be inaccurate. While

MPCK-Means assumes only accurate constraints, GPK-Meassiusuccessfully with
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possibly inaccurate propagated constraints.
Very little work on constrained clustering has focused angigmperfect constraints;
this is left as an open question in many papers’ future wodtiges. GPK-Means may
work better with constrained clustering methods desigiedniperfect constraints; they

could easily replace MPCK-Means in GPK-Means.

5.4 Comparison of GPK-Means with Other Methods

This section compares GPK-Means to several other consttailustering methods

from a theoretical standpoint.

5.4.1 Bilenko et al.'s MPCK-Means

The primary difference between GPK-Means and MPCK-Mean®(Ro, Basu, &
Mooney 2004) is in how each uses constraints. MPCK-Meangrassthat constraint vio-
lations occur based on the clustering of individual poiftsints are assigned individually
to clusters in order to minimize the objective function, athis partially based on constraint
violations.

In contrast, GPK-Means makes an explicit assumption thagtcaints are representa-
tive of their local neighborhood. The amount each neighbodhs constrained is directly
based on its location in the current clustering. The effé@ oonstraint extends out into
space, constraining two neighborhoods rather than tweithatl instances.

Note that GPK-Means with a propagation thresholg ef 1 corresponds to two runs
of MPCK-Means, with the second run seeded by the centroidewsed by the first run.
This correspondence holds under the assumption that foatllinstances that are equal in
feature space, either it is the case that none of those oegtame involved in a constraint, or

it is the case that all of those instances are involved in atcaimt with some other instance
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x;. To illustrate the need for this assumption, consider atetus) task where:; andz
have the same location in feature space,anid involved in a constraint withz, butz, is
not, violating the assumption. GPK-Means with= 1 would add a constraint between

andzs, so it would no longer correspond directly to two runs of MP@kans.

5.4.2 Klein et al.’s Constrained Complete-Link Clustering

Klein et al.’s (2002) method for constrained complete-lolstering warps a simi-
larity matrix of the data in response to constraints, pglimust-linked points closer, and
pushing cannot-linked constraints away. Unlike other mé¢that learn a distance metric,
Klein et al.’s method is based on distances between indiimhstances.

Similar to Klein et al.’s approach, GPK-Means considervidiial pairs of instances
during constraint propagation. These individual pairsparéed together or pushed apart in
response to the source constraint. By propagating the effactource constraint to nearby
pairs, the source constraint affects a neighborhood, airtolKlein et al.’s approach. The
effect on the neighborhood increases as the constraintsndueser to the center of the
cluster.

However, once the effect is propagated to the local neididmd, GPK-Means still
relies on the underlying constrained clustering algoritorgenerate the clustering. In the
experimental setup, MPCK-Means learns a distance metribieseffect of the propagated
constraint is limited to adjusting the centroids and cdmitting to the distance metric. This
lessens the effect of the constraints on the neighborhaause the effects on all neigh-
borhoods are combined together into a distance metric.nkKdeial.'s method keeps the
effects of the constraints separate, and allows them toacit®nly via the distances be-
tween the points.

Said another way, Klein et al.’s method can be thought of pimg a rubber sheet,

pulling must-linked points to touch and cannot-linked pieias far apart as possible. Points
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in between the constrained points adjust their distancesdoan the warping of the space.
The distance between any two points is the shortest patludghrthis space, which is
warped based on th@mbinationof individual constraints. Constraint propagation takes
the rubber sheet and places weights in a greater-dimensiersion of it to sink the neigh-
borhoods of each must-link constraint together, and pelintkhighborhoods of cannot-link
constraints apart. The effect of these weighted neighlmaifies then combined together
to form a distance metric that governs the distance betwegrnveo points based on the

averageof many constraints.

5.4.3 Bar-Hillel et al.’s Relevant Component Analysis

Bar-Hillel et al.’s (2005) application of RCA to constrainedsfering learns a Maha-
lanobis distance metric based on the clusters defined bydlneadence sets. It estimates
this distance metric as the covariance matrix for thesevatpnce sets. Essentially, it as-
sumes that the equivalence sets are representative of tiln alusters, and estimates a
metric based on the clusters defined by the equivalenceRB€B.does not do any form of
iterative refinement; it generates the metric from only #izeled data. Clustering can then
be performed using the unlabeled data transformed by theamet

GPK-Means, in contrast, uses the best estimate of the dhugt@grom both the con-
straintsandthe unlabeled data) to determine how to propagate the eomistto the nearby
neighborhoods. It interprets constraints as affectingghi®rhood, rather than acting as a
sample for a cluster. Those neighborhoods are based ontitetalustering, rather than
just the estimates of the clustering from the labeled data.

GPK-Means could wrap around RCA, using RCA to learn the metriaddfby the
constraints and then K-Means to generate the clusterings Wbuld require a relatively
straightforward modification of the RCA algorithm to use we@ghpoints in estimating

the distance metric.
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5.5 Future Work

The results have revealed several aspects of GPK-Mean$ wbidd use improve-
ment. The Gaussian constraint propagation does not woykwelt on high-dimensional
data sets. It propagates relatively few constraints, nikelyldue to the decreased density
of the high-dimensional data. Future work includes expigiihe use of dimensionality
reduction in the propagation step to avoid this problem amgrove the clustering quality
of GPK-Means on high-dimensional data sets.

The method used to scale the metrics to the cluster couldalsd fault for the poor
performance on high-dimensional data sets. Using a differeethod for scaling the met-
rics to the cluster could improve the performance of GPK-Mgand possibly eliminate
the need for a propagation threshold.

GPK-Means could use RCA with dimensionality reduction to hedlre metric, in-
stead of MPCK-Means. By using RCA, GPK-Means would gain the bisnefibuilt-in
dimensionality reduction, and possible elimination of thetric scale problem.

This thesis investigated propagating constraints withasSian function, with encour-
aging results. Another area of future work involves expigmther methods of propagating
constraints, such as by Euclidean distance.

Constraint propagation by considering each pair of datatpdar each constraint is
computationally expensive; sampling could potentialiguee the cost of constraint prop-
agation while yielding the same performance. Constrainpggation currently considers
many pairs of data points which are far apart, and therefakesia large number of un-
necessary computations. Tracking point distances, agim#thod used by Elkan (2003)
to accelerate K-Means, will eliminate many unnecessarypeaations and will accelerate

constraint propagation.



Chapter 6

CONCLUSION

This thesis investigated propagating constraints to ryepdints using a Gaussian
function, with encouraging results. Clustering with the gagated constraints yielded
higher-quality clusterings than clustering with only th@gmal constraints on several data
sets. Constraint propagation appears especially usefuh wiere are few source con-
straints.

Constraint propagation does not appear to do well in highedsional data sets, pos-
sibly due to the low density of the propagation neighbortsoddimensionality reduction
may improve the clustering quality. Constraint propagatdren given high numbers of
constraints does not perform as well as standard constra@ilnstering, since the given
constraints are more accurate than the propagated catstrailowever, in most cases,
constraint propagation does not significantly degrade lirstaring quality.

The results in this thesis support further exploration afstaint propagation and the
development of methods for clustering with propagated ramgs. Constraint propagation
may be expensive compared to standard constrained chgtgorithms, but the cost is
low compared to that of obtaining many constraints. Clustgwith propagated constraints
is capable of providing a high-quality clustering when gifew source constraints; other

constrained clustering algorithms perform poorly on thiskt
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Appendix A

CONSTRUCTION OF THE COVARIANCE MATRIX
FOR CONSTRAINT PROPAGATION

This Appendix shows how to construct the covariance matkigrgas Equation 3.3

with the assumption that the two endpoints of a constramtratependent.

{zm 0] ]
(3.3) Yqrp =

rB
is the covariance of theth andhth

xX; T
Recall that¥, ., iS a2n x 2n matrix. Letv = [ ] andu = [ 4 ] . The
Ly

(g, h)th elemento, of the covariance matrix, , .,
elements ofv. That is,oy, = oy, = E[(vy — ug)(vi, — up)], forg,h = 1...2n. For
g=nh,o4, = 03, which is the variance aof,. Expanding:, ,., from this definition yields
Equation A.1.

As shown by the solid black lines in Equation AL, can be divided into four

ATB
guadrants. In the construction of the Gaussian weightingtfan, this thesis assumes that
x; is independent of ;, so their covariance is 0. Therefore, in the constructiothefco-

variance matrixg,, = 0 ando,, = 0,forg =1...nandh = (n+1)...2n. All elements
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of the lower left quadrant and the upper right right quadigmto zero, therefore, these
guadrants can be replaced by the n zero matrix. The upper left quadrant corresponds

to the covariance matriX, ,, and the lower right quadrant correspond&:tg..

(A.1)
0% 012 O1n O1(n+1) 01(n+2) 01(2n)
021 U% O2n 02(n+1) 02(n+2) 02(2n)
Oni On2 0'7% On(n4+1) On(n+2) On(2n)
ExAxB = )
O(n+1)1  O(n+1)2 O(n+1)n O (n+1) O (n+1)(n+2) O (n+1)(2n)
Tnt2)1 O(n+2)2 Tt | TCnt2)(nt1)  Tlnya) T (n+2)(2n)
O(2n)1 O(2n)2 O@2n)n | 0(2n)(n+1) 0 (2n)(n+2) 0(22n)
O'% 0192 O1n 0 0 0
O3 03 O2n 0 0 0
On1 On2 0'721 0 0 0
(A.2) ;
0 0 0 o (2n+1) O (nt1)(n+2) O (n+1)(2n)
0 0 0 | O)nrt)  Ofuyo) O (n+2)(2n)
| 00 0 | denm+)  Ten)nt2) T lom) |
Y 0
(3.3) +
| 0] %,




Appendix B

EFFICIENT COMPUTATION OF PROPAGATED
CONSTRAINT WEIGHTS

This Appendix demonstrates how to efficiently computéeight(z;,z;,x4,25)

(Equation 3.7) by taking advantage of the independenceargsgsans in the construction

of ¥, ,., (Equation 3.3). For convenience, here are the relevantiegsa
1 T -1
(3.1) N(v,u,0) = exp —5(11 —u) o (v—u)| ,
ZT; T A
(8.2) Wz, zj,xa,v5,5s,,%,) =N , DI
X L B
s, [0 ]
(33) ExAxB = ! [ ] )
0] Xap
i
(3.4) - radiusy,
3Jpclh
(3.6) Sy, = N(xA,uxA,nmAA_j) ,
(3.7) Weight(z;, 25,24, 28) = W (2, 05,04, X5, SzyNay Ay L, SepNapg ALL)

Recall that each data instance hadimensions, and that is a2n x 2n matrix.

TATB
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T TA . . . . .
Letv = ,andu = . Since the experiments are restricted to diagonal metric

Z;j B
matrices X, , ., is diagonal.

By definition, for a diagonakn x 2n (sinceX IS 2n X 2n) covariance matrix ,

TATB

(B.1) N(v,u,0) = exp [—%

(B.2) — exp [_%22" (vk;kuk)?]

Leto =X

- 0o o) |

Expandingd ;" (“)? yields:

TATB"

o B0 5 () 5 (5

k=1 k=1 =(n+1)
(B4) _ i (xzk ) ( - ka) :
k=1 Zzak Yapk
(B.5) = (2 —2a) 2, (2 — wa) + (v; —2p) 8, (25 — 2B) .

By substituting back into the Gaussian equation,

N x; | TA | Yo, [O]
(B.6) ; B 0] %,
1
= eap —5(95@- —xa) S (2w —wa) — 5(%‘ —2p)" %, (z; — )

The complexity of this computation over repeated evalugtioan be reduced by mem-

oizing the computations okE,, = s,,n,,A and E;j. The computationn, A,

T A
can be calculated once for each cluster, and cached forefutse. The computation
—5(z; —24)"S; ! (2; — x4) can also be memoized for efficient lookupagsvaries. From

experience, this memoization has significantly acceldragmstraint propagation.
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