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Abstract
Lifelong reinforcement learning provides a
promising framework for developing versatile
agents that can accumulate knowledge over a
lifetime of experience and rapidly learn new
tasks by building upon prior knowledge. How-
ever, current lifelong learning methods exhibit
non-vanishing regret as the amount of experience
increases, and include limitations that can lead to
suboptimal or unsafe control policies. To address
these issues, we develop a lifelong policy gra-
dient learner that operates in an adversarial set-
ting to learn multiple tasks online while enforc-
ing safety constraints on the learned policies. We
demonstrate, for the first time, sublinear regret
for lifelong policy search, and validate our algo-
rithm on several benchmark dynamical systems
and an application to quadrotor control.

1. Introduction
Reinforcement learning (RL) (Busoniu et al., 2010; Sutton
& Barto, 1998) often requires substantial experience be-
fore achieving acceptable performance on individual con-
trol problems. One major contributor to this issue is the
tabula-rasa assumption of typical RL methods, which learn
from scratch on each new task. In these settings, learning
performance is directly correlated with the quality of the
acquired samples. Unfortunately, the amount of experience
necessary for high-quality performance increases exponen-
tially with the tasks’ degrees of freedom, inhibiting the ap-
plication of RL to high-dimensional control problems.

When data is in limited supply, transfer learning can signifi-
cantly improve model performance on new tasks by reusing
previous learned knowledge during training (Taylor &
Stone, 2009; Gheshlaghi Azar et al., 2013; Lazaric, 2011;
Ferrante et al., 2008; Bou Ammar et al., 2012). Multi-
task learning (MTL) explores another notion of knowl-
edge transfer, in which task models are trained simultane-
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ously and share knowledge during the joint learning pro-
cess (Wilson et al., 2007; Zhang et al., 2008).

In the lifelong learning setting (Thrun & O’Sullivan,
1996a;b), which can be framed as an online MTL prob-
lem, agents acquire knowledge incrementally by learning
multiple tasks consecutively over their lifetime. Recently,
based on the work of Ruvolo & Eaton (2013) on super-
vised lifelong learning, Bou Ammar et al. (2014) devel-
oped a lifelong learner for policy gradient RL. To ensure
efficient learning over consecutive tasks, these works em-
ploy a second-order Taylor expansion around the parame-
ters that are (locally) optimal for each task without trans-
fer. This assumption simplifies the MTL objective into a
weighted quadratic form for online learning, but since it is
based on single-task learning, this technique can lead to pa-
rameters far from globally optimal. Consequently, the suc-
cess of these methods for RL highly depends on the pol-
icy initializations, which must lead to near-optimal trajec-
tories for meaningful updates. Also, since their objective
functions average loss over all tasks, these methods exhibit
non-vanishing regrets of the form O(R), where R is the
total number of rounds in a non-adversarial setting.

In addition, these methods may produce control policies
with unsafe behavior (i.e., capable of causing damage to
the agent or environment, catastrophic failure, etc.). This is
a critical issue in robotic control, where unsafe control poli-
cies can lead to physical damage or user injury. This prob-
lem is caused by using constraint-free optimization over the
shared knowledge during the transfer process, which may
lead to uninformative or unbounded policies.

In this paper, we address these issues by proposing the first
safe lifelong learner for policy gradient RL operating in an
adversarial framework. Our approach rapidly learns high-
performance safe control policies based on the agent’s pre-
viously learned knowledge and safety constraints on each
task, accumulating knowledge over multiple consecutive
tasks to optimize overall performance. We theoretically an-
alyze the regret exhibited by our algorithm, showing sub-
linear dependency of the form O(

√
R) for R rounds, thus

outperforming current methods. We then evaluate our ap-
proach empirically on a set of dynamical systems.
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2. Background
2.1. Reinforcement Learning

An RL agent sequentially chooses actions to minimize its
expected cost. Such problems are formalized as Markov de-
cision processes (MDPs) 〈X ,U ,P, c, γ〉, where X ⊂ Rd is
the (potentially infinite) state space, U ∈ Rda is the set
of all possible actions, P : X × U × X → [0, 1] is a
state transition probability describing the system’s dynam-
ics, c : X × U × X → R is the cost function measuring
the agent’s performance, and γ ∈ [0, 1] is a discount fac-
tor. At each time step m, the agent is in state xm ∈ X
and must choose an action um ∈ U , transitioning it to a
new state xm+1 ∼ P (xm+1|xm,um) and yielding a cost
cm+1 = c(xm+1,um,xm). The sequence of state-action
pairs forms a trajectory τ = [x0:M−1,u0:M−1] over a
(possibly infinite) horizon M . A policy π : X ×U → [0, 1]
specifies a probability distribution over state-action pairs,
where π (u|x) represents the probability of selecting an ac-
tionu in state x. The goal of RL is to find an optimal policy
π? that minimizes the total expected cost.

Policy search methods have shown success in solving
high-dimensional problems, such as robotic control (Kober
& Peters, 2011; Peters & Schaal, 2008a; Sutton et al.,
2000). These methods represent the policy πα(u|x) using
a vector α ∈ Rd of control parameters. The optimal policy
π? is found by determining the parameters α? that mini-
mize the expected average cost:

l(α) =

n∑
k=1

pα

(
τ (k)

)
C
(
τ (k)

)
, (1)

where n is the total number of trajectories, and pα
(
τ (k)

)
andC

(
τ (k)

)
are the probability and cost of trajectory τ (k):

pα

(
τ (k)

)
= P0

(
x
(k)
0

)M−1∏
m=0

P
(
x
(k)
m+1|x(k)

m ,u(k)
m

)
× πα

(
u(k)
m |x(k)

m

) (2)

C
(
τ (k)

)
=

1

M

M−1∑
m=0

c
(
x
(k)
m+1,u

(k)
m ,x(k)

m

)
, (3)

with an initial state distribution P0 : X → [0, 1]. We han-
dle a constrained version of policy search, in which op-
timality not only corresponds to minimizing the total ex-
pected cost, but also to ensuring that the policy satisfies
safety constraints. These constraints vary between applica-
tions, for example corresponding to maximum joint torque
or prohibited physical positions.

2.2. Online Learning & Regret Analysis

In this paper, we employ a special form of regret minimiza-
tion games, which we briefly review here. A regret min-
imization game is a triple 〈K,F , R〉, where K is a non-
empty decision set, F is the set of moves of the adversary

which contains bounded convex functions from Rn to R,
and R is the total number of rounds. The game proceeds
in rounds, where at each round j = 1, . . . , R, the agent
chooses a prediction θj ∈ K and the environment (i.e., the
adversary) chooses a loss function lj ∈ F . At the end of the
round, the loss function lj is revealed to the agent and the
decision θj is revealed to the environment. In this paper,
we handle the full-information case, where the agent may
observe the entire loss function lj as its feedback and can
exploit this in making decisions. The goal is to minimize
the cumulative regret

∑R
j=1 lj(θj)−infu∈K

[∑R
j=1 lj(u)

]
.

When analyzing the regret of our methods, we use a variant
of this definition to handle the lifelong RL case:

RR =

R∑
j=1

ltj (θj)− inf
u∈K

 R∑
j=1

ltj (u)

 ,

where ltj (·) denotes the loss of task t at round j.

For our framework, we adopt a variant of regret minimiza-
tion called “Follow the Regularized Leader,” which mini-
mizes regret in two steps. First, the unconstrained solution
θ̃ is determined (see Sect. 4.1) by solving an unconstrained
optimization over the accumulated losses observed so far.
Given θ̃, the constrained solution is then determined by
learning a projection into the constraint set via Bregman
projections (see Abbasi-Yadkori et al. (2013)).

3. Safe Lifelong Policy Search
We adopt a lifelong learning framework in which the agent
learns multiple RL tasks consecutively, providing it the op-
portunity to transfer knowledge between tasks to improve
learning. Let T denote the set of tasks, each element of
which is an MDP. At any time, the learner may face any
previously seen task, and so must strive to maximize its
performance across all tasks. The goal is to learn optimal
policies π?α?1 , . . . , π

?
α?|T |

for all tasks, where policy π?α?t for

task t is parameterized by α?t ∈ Rd. In addition, each
task is equipped with safety constraints to ensure accept-
able policy behavior: Atαt ≤ bt, with At ∈ Rd×d and
bt ∈ Rd representing the allowed policy combinations. The
precise form of these constraints depends on the application
domain, but this formulation supports constraints on (e.g.)
joint torque, acceleration, position, etc.

At each round j, the learner observes a set of ntj trajec-

tories
{
τ
(1)
tj , . . . , τ

(ntj )

tj

}
from a task tj ∈ T , where each

trajectory has length Mtj . To support knowledge transfer
between tasks, we assume that each task’s policy parame-
ters αtj ∈ Rd at round j can be written as a linear combi-
nation of a shared latent basis L ∈ Rd×k with coefficient
vectors stj ∈ Rk; therefore, αtj = Lstj . Each column
of L represents a chunk of transferrable knowledge; this
task construction has been used successfully in previous
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multi-task learning work (Kumar & Daumé III, 2012; Ru-
volo & Eaton, 2013; Bou Ammar et al., 2014). Extending
this previous work, we ensure that the shared knowledge
repository is “informative” by incorporating bounding con-
straints on the Frobenius norm ‖ · ‖F of L. Consequently,
the optimization problem after observing r rounds is:

min
L,S

r∑
j=1

[
ηtj ltj

(
Lstj

)]
+ µ1 ||S||2F + µ2 ||L||2F (4)

s.t. Atjαtj ≤ btj ∀tj ∈ Ir
λmin

(
LLT

)
≥ p and λmax

(
LLT

)
≤ q ,

where p and q are the constraints on ‖L‖F, ηtj ∈ R are
design weighting parameters1, Ir = {t1, . . . , tr} denotes
the set of all tasks observed so far through round r, and S
is the collection of all coefficients

S(:, h) =

{
sth if th ∈ Ir
0 otherwise ∀h ∈ {1, . . . , |T |} .

The loss function ltj (αtj ) in Eq. (4) corresponds to a pol-
icy gradient learner for task tj , as defined in Eq. (1). Typi-
cal policy gradient methods (Kober & Peters, 2011; Sutton
et al., 2000) maximize a lower bound of the expected cost
ltj
(
αtj
)
, which can be derived by taking the logarithm and

applying Jensen’s inequality:

log
[
ltj
(
αtj
)]

= log

ntj∑
k=1

p
(tj)
αtj

(
τ
(k)
tj

)
C(tj)

(
τ
(k)
tj

) (5)

≥ log
[
ntj
]
+ E

Mtj
−1∑

m=0

log
[
παtj

(
u(k,tj)
m | x(k,tj)

m

)]ntj
k=1

+const .

Therefore, our goal is to minimize the following objective:

er =

r∑
j=1

− ηtj
ntj

ntj∑
k=1

Mtj
−1∑

m=0

log
[
παtj

(
u(k,tj)
m | x(k,tj)

m

)]
(6)

+ µ1 ‖S‖2F + µ2 ‖L‖2F
s.t. Atjαtj ≤ btj ∀tj ∈ Ir

λmin
(
LLT

)
≥ p and λmax

(
LLT

)
≤ q .

3.1. Online Formulation

The optimization problem above can be mapped to the stan-
dard online learning framework by unrolling L and S into
a vector θ = [vec(L) vec(S)]T ∈ Rdk+k|T |. Choosing
Ω0(θ) = µ2

∑dk
i=1 θ

2
i + µ1

∑dk+k|T |
i=dk+1 θ

2
i , and Ωj(θ) =

Ωj−1(θ) + ηtj ltj (θ), we can write the safe lifelong policy
search problem (Eq. (6)) as:

θr+1 = argmin
θ∈K

Ωr(θ) , (7)

where K ⊆ Rdk+k|T | is the set of allowable policies under
the given safety constraints. Note that the loss for task tj

1We describe later how to set the η’s later in Sect. 5 to obtain
regret bounds, and leave them as variables now for generality.

can be written as a bilinear product in θ:

ltj (θ) = −
1

ntj

ntj∑
k=1

Mtj
−1∑

m=0

log

[
π
(tj)
ΘLΘstj

(
u(k, tj)
m | x(k, tj)

m

)]

ΘL =

 θ1 . . . θd(k−1)+1

...
...

...
θd . . . θdk

 , Θstj
=

 θdk+1

...
θ(d+1)k+1

 .
We see that the problem in Eq. (7) is equivalent to Eq. (6)
by noting that at r rounds, Ωr =

∑r
j=1 ηtj ltj (θ)+Ω0(θ).

4. Online Learning Method
We solve Eq. (7) in two steps. First, we determine the
unconstrained solution θ̃r+1 when K = Rdk+k|T | (see
Sect. 4.1). Given θ̃r+1, we derive the constrained solution
θ̂r+1 by learning a projection ProjΩr,K

(
θ̃r+1

)
to the con-

straint set K ⊆ Rdk+k|T |, which amounts to minimizing
the Bregman divergence over Ωr(θ) (see Sect. 4.2)2. The
complete approach is given in Algorithm 1 and is available
as a software implementation on the authors’ websites.

4.1. Unconstrained Policy Solution

Although Eq. (6) is not jointly convex in both L and S, it
is separably convex (for log-concave policy distributions).
Consequently, we follow an alternating optimization ap-
proach, first computing L while holding S fixed, and then
updating S given the acquiredL. We detail this process for
two popular PG learners, eREINFORCE (Williams, 1992)
and eNAC (Peters & Schaal, 2008b). The derivations of the
update rules below can be found in Appendix A.

These updates are governed by learning rates β and λ that
decay over time; β and λ can be chosen using line-search
methods as discussed by Boyd & Vandenberghe (2004). In
our experiments, we adopt a simple yet effective strategy,
where β = cj−1 and λ = cj−1, with 0 < c < 1.

Step 1: UpdatingL HoldingS fixed, the latent repository
can be updated according to:

Lβ+1 = Lβ − ηβL∇Ler(L,S) (eREINFORCE)

Lβ+1 = Lβ − ηβLG
−1(Lβ ,Sβ)∇Ler(L,S) (eNAC)

with learning rate ηβL ∈ R, and G−1(L,S) as the inverse
of the Fisher information matrix (Peters & Schaal, 2008b).

In the special case of Gaussian policies, the update for L

2In Sect. 4.2, we linearize the loss around the constrained so-
lution of the previous round to increase stability and ensure con-
vergence. Given the linear losses, it suffices to solve the Bregman
divergence over the regularizer, reducing the computational cost.
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can be derived in a closed form as Lβ+1 = Z−1L vL, where

ZL =2µ2Idk×dk+

r∑
j=1

ηtj
ntjσ

2
tj

ntj∑
k=1

Mtj
−1∑

m=0

vec
(
ΦsTtj

)(
ΦT⊗sTtj

)

vL =
∑
j

ηtj
ntjσ

2
tj

ntj∑
k=1

Mtj
−1∑

m=0

vec
(
u(k, tj)
m ΦsTtj

)
,

σ2
tj is the covariance of the Gaussian policy for a task tj ,

and Φ = Φ
(
x
(k, tj)
m

)
denotes the state features.

Step 2: Updating S Given the fixed basis L, the coeffi-
cient matrix S is updated column-wise for all tj ∈ Ir:

s
(tj)
λ+1 = s

(tj)
λ+1 − η

λ
S∇stj er(L,S) (eREINFORCE)

s
(tj)
λ+1 = s

(tj)
λ+1 − η

λ
SG
−1(Lβ ,Sβ)∇stj er(L,S) (eNAC)

with learning rate ηλS ∈ R. For Gaussian policies, the
closed-form of the update is stj = Z

−1
stj
vstj , where

Zstj = 2µ1Ik×k +
∑
tk=tj

ηtj
ntjσ

2
tj

ntj∑
k=1

Mtj
−1∑

m=0

LTΦΦTL

vtj =
∑
tk=tj

ηtj
ntjσ

2
tj

ntj∑
k=1

Mtj
−1∑

m=0

u(k, tj)
m LTΦ .

4.2. Constrained Policy Solution

Once we have obtained the unconstrained solution θ̃r+1

(which satisfies Eq. (7), but can lead to policy param-
eters in unsafe regions), we then derive the constrained
solution to ensure safe policies. We learn a projection
ProjΩr,K

(
θ̃r+1

)
from θ̃r+1 to the constraint set:

θ̂r+1 = argmin
θ∈K
BΩr,K

(
θ, θ̃r+1

)
, (8)

whereBΩr,K

(
θ, θ̃r+1

)
is the Bregman divergence over Ωr:

BΩr,K

(
θ, θ̃r+1

)
= Ωr(θ)−Ωr(θ̃r+1)

− trace
(
∇θΩr (θ)

∣∣∣
θ̃r+1

(
θ − θ̃r+1

))
.

Solving Eq. (8) is computationally expensive since Ωr(θ)
includes the sum back to the original round. To remedy this
problem, ensure the stability of our approach, and guar-
antee that the constrained solutions for all observed tasks
lie within a bounded region, we linearize the current-round
loss function ltr (θ) around the constrained solution of the
previous round θ̂r:

ltr (û) = f̂tr

∣∣∣T
θ̂r
û , (9)

where

f̂tr

∣∣∣
θ̂r

=

 ∇θltr (θ)
∣∣∣
θ̂r

ltr (θ)
∣∣∣
θ̂r
−∇θltr (θ)

∣∣∣
θ̂r
θ̂r

 , û =

[
u
1

]
.

Given the above linear form, we can rewrite the optimiza-
tion problem in Eq. (8) as:

θ̂r+1 = argmin
θ∈K
BΩ0,K

(
θ, θ̃r+1

)
. (10)

Consequently, determining safe policies for lifelong policy
search reinforcement learning amounts to solving:

min
L,S

µ1‖S‖2F + µ2‖L‖2F

+ 2µ1trace
(
ST
∣∣∣
θ̃r+1

S

)
+ 2µ2trace

(
L
∣∣∣
θ̃r+1

L

)
s.t.AtjLstj ≤ btj ∀tj ∈ Ir
LLT ≤ pI and LLT ≥ qI .

To solve the optimization problem above, we start by con-
verting the inequality constraints to equality constraints
by introducing slack variables ctj ≥ 0. We also guaran-
tee that these slack variables are bounded by incorporating
‖ctj‖ ≤ cmax, ∀tj ∈ {1, . . . , |T |}:

min
L,S,C

µ1‖S‖2F + µ2‖L‖2F

+ 2µ2trace
(
LT
∣∣∣
θ̃r+1

L

)
+ 2µ1trace

(
ST
∣∣∣
θ̃r+1

S

)
s.t.AtjLstj = btj − ctj ∀tj ∈ Ir
ctj > 0 and ‖ctj‖2 ≤ cmax ∀tj ∈ Ir
LLT ≤ pI and LLT ≥ qI .

With this formulation, learning ProjΩr,K

(
θ̃r+1

)
amounts

to solving second-order cone and semi-definite programs.

4.2.1. SEMI-DEFINITE PROGRAM FOR LEARNING L

This section determines the constrained projection of the
shared basisL given fixedS andC. We show thatL can be
acquired efficiently, since this step can be relaxed to solving
a semi-definite program in LLT (Boyd & Vandenberghe,
2004). To formulate the semi-definite program, note that

trace
(
LT
∣∣∣
θ̃r+1

L

)
=

k∑
i=1

l
(i)
r+1

T∣∣∣
θ̃r+1

li

≤
k∑
i=1

∥∥∥∥l(i)r+1

∣∣∣
θ̃r+1

∥∥∥∥
2

‖li‖2

≤

√√√√ k∑
i=1

∥∥∥∥l(i)r ∣∣∣
θ̃r+1

∥∥∥∥2
2

√√√√ k∑
i=1

||li||22

=

∣∣∣∣∣∣∣∣L∣∣∣
θ̃r+1

∣∣∣∣∣∣∣∣
F

√
trace (LLT) .

From the constraint set, we recognize:

sTtjL
T =

(
btj − ctj

)T (
A†tj

)T
=⇒ sTtjL

TLstj = a
T
tjatj with atj = A

†
tj

(
btj − ctj

)
.
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Algorithm 1 Safe Online Lifelong Policy Search
1: Inputs: Total number of rounds R, weighting factor
η = 1/

√
R, regularization parameters µ1 and µ2, con-

straints p and q, number of latent basis vectors k.
2: S = zeros(k, |T |), L = diagk(ζ) with p ≤ ζ2 ≤ q
3: for j = 1 to R do
4: tj ← sampleTask(), and update Ij
5: Compute unconstrained solution θ̃j+1 (Sect. 4.1)
6: Fix S and C, and update L (Sect. 4.2.1)
7: Use updated L to derive S and C (Sect. 4.2.2)
8: end for
9: Output: Safety-constrained L and S

Since spectrum
(
LLT

)
= spectrum

(
LTL

)
, we can write:

min
X⊂S++

µ2trace(X) + 2µ2

∣∣∣∣∣∣∣∣L∣∣∣
θ̃r+1

∣∣∣∣∣∣∣∣
F

√
trace (X)

s.t. sTtjXstj = a
T
tjatj ∀tj ∈ Ir

X ≤ pI and X ≥ qI , with X = LTL .

4.2.2. SECOND-ORDER CONE PROGRAM FOR
LEARNING TASK PROJECTIONS

Having determined L, we can acquire S and update C
by solving a second-order cone program (Boyd & Vanden-
berghe, 2004) of the following form:

min
st1 ,...,stj ,ct1 ,...,ctj

µ1

r∑
j=1

‖stj‖22 + 2µ1

r∑
j=1

sTtj

∣∣∣
θ̂r
stj

s.t. AtjLstj = btj − ctj
ctj > 0 ‖ctj‖22 ≤ c2max ∀tj ∈ Ir .

5. Theoretical Guarantees
This section quantifies the performance of our approach by
providing formal analysis of the regret after R rounds. We
show that the safe lifelong reinforcement learner exhibits
sublinear regret in the total number of rounds. Formally,
we prove the following theorem:

Theorem 1 (Sublinear Regret). After R rounds and choos-
ing ∀tj ∈ IR ηtj = η = 1√

R
, L
∣∣∣
θ̂1

= diagk(ζ), with

diagk(·) being a diagonal matrix among the k columns of

L, p ≤ ζ2 ≤ q, and S
∣∣∣
θ̂1

= 0k×|T |, the safe lifelong rein-

forcement learner exhibits sublinear regret of the form:
R∑
j=1

ltj

(
θ̂j

)
− ltj (u) = O

(√
R
)

for any u ∈ K.

Proof Roadmap: The remainder of this section completes
our proof of Theorem 1; further details are given in Ap-
pendix B. We assume linear losses for all tasks in the con-
strained case in accordance with Sect. 4.2. Although linear

losses for policy search RL are too restrictive given a single
operating point, as discussed previously, we remedy this
problem by generalizing to the case of piece-wise linear
losses, where the linearization operating point is a resultant
of the optimization problem. To bound the regret, we need
to bound the dual Euclidean norm (which is the same as the
Euclidean norm) of the gradient of the loss function, then
prove Theorem 1 by bounding: (1) task tj’s gradient loss
(Sect. 5.1), and (2) linearized losses with respect to L and
S (Sect. 5.2).

5.1. Bounding tj’s Gradient Loss

We start by stating essential lemmas for Theorem 1; due to
space constraints, proofs for all lemmas are available in the
supplementary material. Here, we bound the gradient of a
loss function ltj (θ) at round r under Gaussian policies3.
Assumption 1. We assume that the policy for a task tj is
Gaussian, the action set U is bounded by umax, and the
feature set is upper-bounded by Φmax.

Lemma 1. Assume task tj’s policy at round r is given by

π
(tj)
αtj

(
u
(k, tj)
m |x(k, tj)

m

)∣∣∣
θ̂r

= N
(
αT
tj

∣∣∣
θ̂r

Φ
(
x
(k, tj)
m

)
,σtj

)
,

for states x(k, tj)
m ∈ Xtj and actions u(k, tj)

m ∈ Utj . For

ltj
(
αtj
)
= − 1

ntj

ntj∑
k=1

Mtj
−1∑

m=0

log
[
π
(tj)
αtj

(
u(k, tj)
m |x(k, tj)

m

)]
, the

gradient ∇αtj ltj
(
αtj
)∣∣∣
θ̂r

satisfies
∣∣∣∣∣∣∣∣∇αtj ltj(αtj)∣∣∣θ̂r

∣∣∣∣∣∣∣∣
2

≤

Mtj

σ2
tj

(
umax + max

tk∈Ir−1

{∣∣∣∣A+
tk

∣∣∣∣
2

(
||btk ||2 + cmax

)}
Φmax

)
Φmax

for all trajectories and all tasks, with umax =

max
k,m

{∣∣∣u(k, tj)
m

∣∣∣} and Φmax=max
k,m

{∣∣∣∣∣∣Φ(x(k, tj)
m

)∣∣∣∣∣∣
2

}
.

5.2. Bounding Linearized Losses

As discussed previously, we linearize the loss of task tr
around the constraint solution of the previous round θ̂r. To
acquire the regret bounds in Theorem 1, the next step is to

bound the dual norm,
∥∥∥∥f̂tr ∣∣∣

θ̂r

∥∥∥∥?
2

=

∥∥∥∥f̂tr ∣∣∣
θ̂r

∥∥∥∥
2

of Eq. (9). It

can be easily seen∥∥∥∥f̂tr ∣∣∣
θ̂r

∥∥∥∥
2

≤
∣∣∣∣ltr (θ) ∣∣∣

θ̂r

∣∣∣∣︸ ︷︷ ︸
constant

+

∥∥∥∥∇θltr (θ) ∣∣∣
θ̂r

∥∥∥∥
2︸ ︷︷ ︸

Lemma 2

(11)

+

∥∥∥∥∇θltr (θ)∣∣∣
θ̂r

∥∥∥∥
2

×
∥∥∥θ̂r∥∥∥

2︸ ︷︷ ︸
Lemma 3

.

3Please note that derivations for other forms of log-concave
policy distributions could be derived in similar manner. In this
work, we focus on Gaussian policies since they cover a broad
spectrum of real-world applications.
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Since
∣∣∣∣ltr (θ) ∣∣∣

θ̂r

∣∣∣∣ can be bounded by δltr (see Sect. 2),

the next step is to bound
∥∥∥∥∇θltr (θ) ∣∣∣

θ̂r

∥∥∥∥
2

, and ‖θ̂r‖2.

Lemma 2. The norm of the gradient of the loss function
evaluated at θ̂r satisfies∣∣∣∣∣∣∣∣∇θltr (θ) ∣∣∣

θ̂r

∣∣∣∣∣∣∣∣2
2

≤
∣∣∣∣∣∣∇αtr ltr (θ) ∣∣∣

θ̂r

∣∣∣∣∣∣2
2

(
q × d

(
2d/p2 max

tk∈Ir−1

{∣∣∣∣∣∣A†tk ∣∣∣∣∣∣22 (||btk ||22 + c2max

)}
+ 1

))
.

To finalize the bound of
∥∥∥∥f̂tr ∣∣∣

θ̂r

∥∥∥∥
2

as needed for deriving

the regret, we must derive an upper-bound for ‖θ̂r‖2:

Lemma 3. The L2 norm of the constraint solution at round
r − 1, ‖θ̂r‖22 is bounded by

‖θ̂r‖22 ≤ q × d

[
1 + |Ir−1|

1

p2

max
tk∈Ir−1

{∣∣∣∣∣∣A†tk ∣∣∣∣∣∣22 (||btk ||2 + cmax
)2}]

,

where |Ir−1| is the number of unique tasks observed so far.

Given the previous two lemmas, we can prove the bound

for
∥∥∥∥f̂tr ∣∣∣

θ̂r

∥∥∥∥
2

:

Lemma 4. The L2 norm of the linearizing term of ltr (θ)

around θ̂r,
∥∥∥∥f̂tr ∣∣∣

θ̂r

∥∥∥∥
2

, is bounded by∥∥∥∥f̂tr ∣∣∣
θ̂r

∥∥∥∥
2

≤
∥∥∥∥∇θltr(θ)∣∣∣

θ̂r

∥∥∥∥
2

(
1+‖θ̂r‖2

)
+

∣∣∣∣ltr(θ)∣∣∣
θ̂r

∣∣∣∣ (12)

≤ γ1(r) (1 + γ2(r)) + δltr ,

where δltr is the constant upper-bound on
∣∣∣∣ltr (θ)∣∣∣

θ̂r

∣∣∣∣, and

γ1(r) =
1

ntjσ
2
tj

[(
umax

+ max
tk∈Ir−1

{∣∣∣∣A+
tk

∣∣∣∣
2

(
||btk ||2 + cmax

)}
Φmax

)
Φmax

]

×
(
d

p

√
2q

√
max

tk∈Ir−1

{
‖A†tk‖

2
2 (‖btk‖22 + c2max)

}
+
√
qd

)
γ2(r) ≤

√
q × d

+
√
|Ir−1|

√
1+

1

p2
max

tk∈Ir−1

{∣∣∣∣∣∣A†tk ∣∣∣∣∣∣22(||btk ||2 + cmax
)2}

.

5.3. Completing the Proof of Sublinear Regret

Given the lemmas in the previous section, we now can de-
rive the sublinear regret bound given in Theorem 1. Using

results developed by Abbasi-Yadkori et al. (2013), it is easy
to see that

∇θΩ0

(
θ̃j

)
−∇θΩ0

(
θ̃j+1

)
= ηtj f̂tj

∣∣∣
θ̂j

.

From the convexity of the regularizer, we obtain:

Ω0

(
θ̂j

)
≥ Ω0

(
θ̂j+1

)
+
〈
∇θΩ0

(
θ̂j+1

)
, θ̂j − θ̂j+1

〉
+

1

2

∣∣∣∣∣∣θ̂j − θ̂j+1

∣∣∣∣∣∣2
2
.

We have: ∥∥∥θ̂j − θ̂j+1

∥∥∥
2
≤ ηtj

∥∥∥∥f̂tj ∣∣∣
θ̂j

∥∥∥∥
2

.

Therefore, for any u ∈ K
r∑
j=1

ηtj

(
ltj

(
θ̂j

)
− ltj (u)

)
≤

r∑
j=1

ηtj

∥∥∥∥f̂tj ∣∣∣
θ̂j

∥∥∥∥2
2

+ Ω0(u)−Ω0(θ̂1) .

Assuming that ∀tj ηtj = η, we can derive:
r∑
j=1

(
ltj

(
θ̂j

)
− ltj (u)

)
≤ η

r∑
j=1

∥∥∥∥f̂tj ∣∣∣
θ̂j

∥∥∥∥2
2

+ 1/η
(
Ω0(u)−Ω0(θ̂1)

)
.

The following lemma finalizes the proof of Theorem 1:

Lemma 5. AfterR rounds with ∀tj ηtj = η = 1√
R

, for any

u ∈ K we have that
∑R
j=1 ltj (θ̂j)− ltj (u) ≤ O

(√
R
)

.

Proof. From Eq. (12), it follows that∥∥∥∥f̂tj ∣∣∣
θ̂r

∥∥∥∥2
2

≤ γ3(R) + 4γ2
1(R)γ

2
2(R)

≤ γ3(R) + 8
d

p2
γ2
1(R)qd

(
1 + |IR−1|

× max
tk∈IR−1

{
‖A†tk‖2 (‖btk‖2 + cmax)

2
})

with γ3(R) = 4γ2
1(R) + 2maxtj∈IR−1

δ2tj . Since

|IR−1| ≤ |T |, we have that
∥∥∥∥f̂tj ∣∣∣

θ̂r

∥∥∥∥2
2

≤ γ5(R)|T | with

γ5 = 8d/p2qγ2
1(R) max

tk∈IR−1

{
‖A†tk‖

2
2 (‖btk‖2 + cmax)

2
}

.

Given that Ω0(u) ≤ qd + γ5(R)|T |, with γ5(R) being a
constant, we have:
r∑
j=1

(
ltj

(
θ̂j

)
−ltj(u)

)
≤ η

r∑
j=1

γ5(R)|T |

+
1

η

(
qd+ γ5(R)|T | −Ω0(θ̂1)

)
.

Initializing L and S: We initialize L
∣∣∣
θ̂1

= diagk(ζ), with

p ≤ ζ2 ≤ q and S
∣∣∣
θ̂1

= 0k×|T | to ensure the invertibility
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of L and that the constraints are met. This leads to
r∑
j=1

(
ltj

(
θ̂j

)
−ltj(u)

)
≤ η

r∑
j=1

γ5(R)|T |

+ 1/η (qd+ γ5(R)|T | − µ2kζ) .

Choosing ∀tj ηtj = η = 1/
√
R, we acquire sublinear regret,

finalizing the statement of Theorem 1:
r∑
j=1

(
ltj

(
θ̂j

)
−ltj(u)

)
≤ 1/

√
Rγ5(R)|T |R

+
√
R (qd+ γ5(R)|T | − µ2kζ)

≤
√
R
(
γ5(R)|T |+ qdγ5(R)|T | − µ2kζ

)
≤ O

(√
R
)
.

6. Experimental Validation
To validate the empirical performance of our method, we
applied our safe online PG algorithm to learn multiple con-
secutive control tasks on three dynamical systems (Fig-
ure 1). To generate multiple tasks, we varied the parameter-
ization of each system, yielding a set of control tasks from
each domain with varying dynamics. The optimal control
policies for these systems vary widely with only minor
changes in the system parameters, providing substantial di-
versity among the tasks within a single domain.

Figure 1. Dynamical systems used in the experiments: a) simple
mass system (left), b) cart-pole (middle), and c) quadrotor un-
manned aerial vehicle (right).

Simple Mass Spring Damper: The simple mass (SM)
system is characterized by three parameters: the spring con-
stant k in N/m, the damping constant d in Ns/m and the
mass m in kg. The system’s state is given by the position x
and ẋ of the mass, which varies according to a linear force
F . The goal is to train a policy for controlling the mass in
a specific state gref = 〈xref, ẋref〉.
Cart Pole: The cart-pole (CP) has been used extensively
as a benchmark for evaluating RL methods (Busoniu et al.,
2010). CP dynamics are characterized by the cart’s mass
mc in kg, the pole’s mass mp in kg, the pole’s length in
meters, and a damping parameter d in Ns/m. The state is
given by the cart’s position x and velocity ẋ, as well as the
pole’s angle θ and angular velocity θ̇. The goal is to train a
policy that controls the pole in an upright position.

6.1. Experimental Protocol

We generated 10 tasks for each domain by varying the sys-
tem parameters to ensure a variety of tasks with diverse op-

timal policies, including those with highly chaotic dynam-
ics that are difficult to control. We ran each experiment for
a total of R rounds, varying from 150 for the simple mass
to 10, 000 for the quadrotor to train L and S, as well as
for updating the PG-ELLA and PG models. At each round
j, the learner observed a task tj through 50 trajectories of
150 steps and updated L and stj . The dimensionality k of
the latent space was chosen independently for each domain
via cross-validation over 3 tasks, and the learning step size
for each task domain was determined by a line search after
gathering 10 trajectories of length 150. We used eNAC, a
standard PG algorithm, as the base learner.

We compared our approach to both standard PG (i.e.,
eNAC) and PG-ELLA (Bou Ammar et al., 2014), examin-
ing both the constrained and unconstrained variants of our
algorithm. We also varied the number of iterations in our al-
ternating optimization from 10 to 100 to evaluate the effect
of these inner iterations on the performance, as shown in
Figures 2 and 3. For the two MTL algorithms (our approach
and PG-ELLA), the policy parameters for each task tj were
initialized using the learned basis (i.e., αtj = Lstj ). We
configured PG-ELLA as described by Bou Ammar et al.
(2014), ensuring a fair comparison. For the standard PG
learner, we provided additional trajectories in order to en-
sure a fair comparison, as described below.

For the experiments with policy constraints, we generated
a set of constraints (At, bt) for each task that restricted the
policy parameters to pre-specified “safe” regions, as shown
in Figures 2(c) and 2(d). We also tested different values for
the constraints on L, varying p and q between 0.1 to 10;
our approach showed robustness against this broad range,
yielding similar average cost performance.

6.2. Results on Benchmark Systems

Figure 2 reports our results on the benchmark simple mass
and cart-pole systems. Figures 2(a) and 2(b) depicts the
performance of the learned policy in a lifelong learning set-
ting over consecutive unconstrained tasks, averaged over
all 10 systems over 100 different initial conditions. These
results demonstrate that our approach is capable of outper-
forming both standard PG (which was provided with 50
additional trajectories each iteration to ensure a more fair
comparison) and PG-ELLA, both in terms of initial perfor-
mance and learning speed. These figures also show that the
performance of our method increases as it is given more
alternating iterations per-round for fitting L and S.

We evaluated the ability of these methods to respect safety
constraints, as shown in Figures 2(c) and 2(d). The thicker
black lines in each figure depict the allowable “safe” region
of the policy space. To enable online learning per-task, the
same task tj was observed on each round and the shared
basis L and coefficients stj were updated using alternating
optimization. We then plotted the change in the policy pa-
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Figure 2. Results on benchmark simple mass and cart-pole systems. Figures (a) and (b) depict performance in lifelong learning scenarios
over consecutive unconstrained tasks, showing that our approach outperforms standard PG and PG-ELLA. Figures (c) and (d) examine
the ability of these method to abide by safety constraints on sample constrained tasks, depicting two dimensions of the policy space (α1

vs α2) and demonstrating that our approach abides by the constraints (the dashed black region).

rameter vectors per iterations (i.e., αtj = Lstj ) for each
method, demonstrating that our approach abides by the
safety constraints, while standard PG and PG-ELLA can
violate them (since they only solve an unconstrained opti-
mization problem). In addition, these figures show that in-
creasing the number of alternating iterations in our method
causes it to take a more direct path to the optimal solution.

6.3. Application to Quadrotor Control

We also applied our approach to the more challenging do-
main of quadrotor control. The dynamics of the quadro-
tor system (Figure 1) are influenced by inertial constants
around e1,B , e2,B , and e3,B , thrust factors influencing how
the rotor’s speed affects the overall variation of the system’s
state, and the lengths of the rods supporting the rotors. Al-
though the overall state of the system can be described by
a 12-dimensional vector, we focus on stability and so con-
sider only six of these state-variables. The quadrotor sys-
tem has a high-dimensional action space, where the goal is
to control the four rotational velocities {wi}4i=1 of the ro-
tors to stabilize the system. To ensure realistic dynamics,
we used the simulated model described by (Bouabdallah,
2007; Voos & Bou Ammar, 2010), which has been verified
and used in the control of physical quadrotors.

We generated 10 different quadrotor systems by varying
the inertia around the x, y and z-axes. We used a linear
quadratic regulator, as described by Bouabdallah (2007),
to initialize the policies in both the learning and testing
phases. We followed a similar experimental procedure to
that discussed above to update the models.

Figure 3 shows the performance of the unconstrained solu-
tion as compared to standard PG and PG-ELLA. Again, our
approach clearly outperforms standard PG and PG-ELLA
in both the initial performance and learning speed. We
also evaluated constrained tasks in a similar manner, again
showing that our approach is capable of respecting con-
straints. Since the policy space is higher dimensional, we
cannot visualize it as well as the benchmark systems, and so
instead report the number of iterations it takes our approach

Rounds
0 2000 4000 6000 8000 10000

Av
er

ag
e 

Co
st

0

2000

4000

6000

8000

10000

12000 Standard PG
PG-ELLA
Safe Online 10 Iterations
Safe Online 50 Iterations
Safe Online 100 Iterations

Figure 3. Performance on quadrotor control.
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Figure 4. Average number of task observations before acquiring
policy parameters that abide by the constraints, showing that our
approach immediately projects policies to safe regions.

to project the policy into the safe region. Figure 4 shows
that our approach requires only one observation of the task
to acquire safe policies, which is substantially lower then
standard PG or PG-ELLA (e.g., which require 545 and 510
observations, respectively, in the quadrotor scenario).

7. Conclusion
We described the first lifelong PG learner that provides sub-
linear regret O(

√
R) with R total rounds. In addition, our

approach supports safety constraints on the learned policy,
which are essential for robust learning in real applications.
Our framework formalizes lifelong learning as online MTL
with limited resources, and enables safe transfer by sharing
policy parameters through a latent knowledge base that is
efficiently updated over time.
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A. Update Equations Derivation
In this appendix, we derive the update equations forL and S in the special case of Gaussian policies. Please note that these
derivations can be easily extended to other policy forms in higher dimensional action spaces.

For a task tj , the policy π(tj)
αtj

(
u
(k,tj)
m |x(k,tj)

m

)
is given by:

π
(tj)
αtj

(
u(k,tj)
m |x(k,tj)

m

)
=

1√
2πσ2

tj

exp

(
− 1

2σ2
tj

(
u(k,tj)
m −

(
Lstj

)T
Φ
(
x(k,tj)
m

))2)
.

Therefore, the safe lifelong reinforcement learning optimization objective can be written as:

er(L,S) =

r∑
j=1

ηtj
2σ2

tjntj

ntj∑
k=1

Mtj
−1∑

m=0

(
u(k,tj)
m −

(
Lstj

)T
Φ
(
x(k,tj)
m

))2
+ µ1||S||2F + µ2||L||2F . (13)

To arrive at the update equations, we need to derive Eq. (13) with respect to each L and S.

A.1. Update Equations for L

Starting with the derivative of er(L,S) with respect to the shared repository L, we can write:

∇Ler(L,S) = ∇L

 r∑
j=1

ηtj
2σ2

tjntj

ntj∑
k=1

Mtj
−1∑

m=0

(
u(k,tj)
m −

(
Lstj

)T
Φ
(
x(k,tj)
m

))2
+ µ1||S||2F + µ2||L||2F


= −

r∑
j=1

 ηtj
σ2
tjntj

ntj∑
k=1

Mtj
−1∑

m=0

(
u(k,tj)
m −

(
Lstj

)T
Φ
(
x(k,tj)
m

))
Φ
(
x(k,tj)
m

)
sTtj

+ 2µ2L .

To acquire the minimum, we set the above to zero:

r∑
j=1

 ηtj
σ2
tjntj

ntj∑
k=1

Mtj
−1∑

m=0

(
u(k,tj)
m −

(
Lstj

)T
Φ
(
x(k,tj)
m

))
Φ
(
x(k,tj)
m

)
sTtj

+ 2µ2L = 0

r∑
j=1

 ηtj
σ2
tjntj

ntj∑
k=1

Mtj
−1∑

m=0

sTtjL
TΦ
(
x(k,tj)
m

)
Φ
(
x(k,tj)
m

)
sTtj

+ 2µ2L =

r∑
j=1

ηtj
σ2
tjntj

ntj∑
k=1

Mtj
−1∑

m=0

u(k,tj)
m Φ

(
x(k,tj)
m

)
sTtj .

Noting that sTtjL
TΦ
(
x
(k,tj)
m

)
∈ R, we can write:

r∑
j=1

 ηtj
σ2
tjntj

ntj∑
k=1

Mtj
−1∑

m=0

Φ
(
x(k,tj)
m

)
sTtjΦ

T
(
x(k,tj)
m

)
Lstj

+ 2µ2L =

r∑
j=1

ηtj
σ2
tjntj

ntj∑
k=1

Mtj
−1∑

m=0

u(k,tj)
m Φ

(
x(k,tj)
m

)
sTtj .

(14)
To solve Eq. (14), we introduce the standard vec(·) operator leading to:

vec

 r∑
j=1

 ηtj
σ2
tjntj

ntj∑
k=1

Mtj
−1∑

m=0

Φ
(
x(k,tj)
m

)
sTtjΦ

T
(
x(k,tj)
m

)
Lstj

+ 2µ2L


= vec

 r∑
j=1

ηtj
σ2
tjntj

ntj∑
k=1

Mtj
−1∑

m=0

u(k,tj)
m Φ

(
x(k,tj)
m

)
sTtj


r∑
j=1

ηtj
σ2
tjntj

ntj∑
k=1

Mtj
−1∑

m=0

vec
(
Φ
(
x(k,tj)
m

)
sTtj

)
vec
(
ΦT
(
x(k,tj)
m

)
Lstj

)
+ 2µ2vec(L)

=

r∑
j=1

ηtj
σ2
tjntj

ntj∑
k=1

Mtj
−1∑

m=0

vec
(
u(k,tj)
m Φ

(
x(k,tj)
m

)
sTtj

)
.
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Knowing that for a given set of matricesA,B, andX , vec(AXB) =
(
BT ⊗A

)
vec(X), we can write

r∑
j=1

ηtj
σ2
tjntj

ntj∑
k=1

Mtj
−1∑

m=0

vec
(
Φ
(
x(k,tj)
m

)
sTtj

)(
sTtj ⊗ΦT

(
x(k,tj)
m

))
vec(L) + 2µ2vec(L)

=

r∑
j=1

ηtj
σ2
tjntj

ntj∑
k=1

Mtj
−1∑

m=0

vec
(
u(k,tj)
m Φ

(
x(k,tj)
m

)
sTtj

)
.

By choosing ZL = 2µ2Idk×dk +
∑r
j=1

ηtj
ntjσ

2
tj

∑ntj
k=1

∑Mtj
−1

m=0 vec
(
Φ
(
x
(k,tj)
m

)
sTtj

)(
Φ
(
x
(k,tj)
m

)
⊗ sTtj

)
, and vL =∑r

j=1

ηtj
ntjσ

2
tj

∑ntj
k=1

∑Mtj
−1

m=0 vec
(
u
(k,tj)
m Φ

(
x
(k,tj)
m

)
sTtj

)
, we can update L = Z−1L vL.

A.2. Update Equations for S

To derive the update equations with respect to S, similar approach to that ofL can be followed. The derivative of er(L,S)
with respect to S can be computed column-wise for all tasks observed so far:

∇stj er(L,S) = ∇stj

 r∑
j=1

ηtj
2σ2

tjntj

ntj∑
k=1

Mtj
−1∑

m=0

(
u(k,tj)
m −

(
Lstj

)T
Φ
(
x(k,tj)
m

))2
+ µ1||S||2F + µ2||L||2F


= −

∑
tk=tj

 ηtj
σ2
tjntj

ntj∑
k=1

Mtj
−1∑

m=0

(
u(k,tj)
m −

(
Lstj

)T
Φ
(
x(k,tj)
m

))
LTΦ

(
x(k,tj)
m

)+ 2µ2stj .

Using a similar analysis to the previous section, choosing

Zstj = 2µ1Ik×k +
∑
tk=tj

ηtj
ntjσ

2
tj

ntj∑
k=1

Mtj
−1∑

m=0

LTΦ
(
x(k,tj)
m

)
ΦT
(
x(k,tj)
m

)
L ,

vstj =
∑
tk=tj

ηtj
ntjσ

2
tj

ntj∑
k=1

Mtj
−1∑

m=0

u(k,tj)
m LTΦ

(
x(k,tj)
m

)
,

we can update stj = Z
−1
stj
vstj .

B. Proofs of Theoretical Guarantees
In this appendix, we prove the claims and lemmas from the main paper, leading to sublinear regret (Theorem 1).

Lemma 1. Assume the policy for a task tj at a round r to be given by π
(tj)
αtj

(
u
(k, tj)
m |x(k, tj)

m

) ∣∣∣
θ̂r

=

N
(
αT
tj

∣∣∣
θ̂r

Φ
(
x
(k, tj)
m

)
,σtj

)
, for x(k, tj)

m ∈ Xtj and u(k, tj)
m ∈ Utj with Xtj and Utj representing the state and action

spaces, respectively. The gradient∇αtj ltj
(
αtj
) ∣∣∣
θ̂r

, for ltj
(
αtj
)
= −1/ntj

∑ntj
k=1

∑Mtj
−1

m=0 log
[
π
(tj)
αtj

(
u
(k, tj)
m |x(k, tj)

m

)]
satisfies ∣∣∣∣∣∣∣∣∇αtj ltj (αtj) ∣∣∣θ̂r

∣∣∣∣∣∣∣∣
2

≤
Mtj

σ2
tj

[(
umax + max

tk∈Ir−1

{∣∣∣∣A+
tk

∣∣∣∣
2

(
||btk ||2 + cmax

)}
Φmax

)
Φmax

]
,

with umax = maxk,m

{∣∣∣u(k, tj)
m

∣∣∣} and Φmax = maxk,m

{∣∣∣∣∣∣Φ(x(k, tj)
m

)∣∣∣∣∣∣
2

}
for all trajectories and all tasks.

Proof. The proof of the above lemma will be provided as a collection of claims. We start with the following:

Claim: Given π
(tj)
αtj

(
u
(k)
m |x(k)

m

) ∣∣∣
θ̂r

= N
(
αT
tj

∣∣∣
θ̂r

Φ
(
x
(k, tj)
m

)
,σtj

)
, for x(k, tj)

m ∈ Xtj and u(k, tj)
m ∈ Utj , and

ltj
(
αtj
)
= −1/ntj

∑ntj
k=1

∑Mtj
−1

m=0 log
[
π
(tj)
αtj

(
u
(k, tj)
m |x(k, tj)

m

)]
,
∣∣∣∣∣∣∣∣∇αtj ltj (αtj) ∣∣∣θ̂r

∣∣∣∣∣∣∣∣
2

satisfies∣∣∣∣∣∣∣∣∇αtj ltj (αtj) ∣∣∣θ̂r
∣∣∣∣∣∣∣∣
2

≤
Mtj

σ2
tj

[(
umax +

∣∣∣∣∣∣∣∣αtj ∣∣∣
θ̂r

∣∣∣∣∣∣∣∣
2

Φmax

)
Φmax

]
. (15)
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Proof: Since π(tj)
αtj

(
u
(k, tj)
m |x(k, tj)

m

) ∣∣∣
θ̂r

= N
(
αT
tj

∣∣∣
θ̂r

Φ
(
x
(k, tj)
m

)
,σtj

)
, we can write

log

[
π
(tj)
αtj

(
u(k, tj)
m |x(k, tj)

m

) ∣∣∣
θ̂r

]
= − log

[√
2πσ2

tj

]
− 1

2σ2
tj

(
u(k, tj)
m −αT

tj

∣∣∣
θ̂r

Φ
(
x(k, tj)
m

))2

.

Therefore:

∇αtj ltj
(
αtj
) ∣∣∣
θ̂r

= − 1

ntj

ntj∑
k=1

Mtj
−1∑

m=0

1

σ2
tj

(
u(k, tj)
m −αT

tj

∣∣∣
θ̂r

Φ
(
x(k, tj)
m

))
Φ
(
x(k, tj)
m

)
∣∣∣∣∣∣∣∣∇αtj ltj (αtj) ∣∣∣θ̂r

∣∣∣∣∣∣∣∣
2

≤
Mtj

σ2
tj

[
max
k,m

{∣∣∣∣u(k, tj)
m −αT

tj

∣∣∣
θ̂r

Φ
(
x(k, tj)
m

)∣∣∣∣× ∣∣∣∣∣∣Φ(x(k, tj)
m

)∣∣∣∣∣∣
2

}]

≤
Mtj

σ2
tj

[
max
k,m

{∣∣∣u(k, tj)
m

∣∣∣× ∣∣∣∣∣∣Φ(x(k, tj)
m

)∣∣∣∣∣∣
2

}
+max

k,m

{∣∣∣∣αT
tj

∣∣∣
θ̂r

Φ
(
x(k, tj)
m

)∣∣∣∣× ∣∣∣∣∣∣Φ(x(k, tj)
m

)∣∣∣∣∣∣
2

}]

≤
Mtj

σ2
tj

[
max
k,m

{∣∣∣u(k, tj)
m

∣∣∣}max
k,m

{∣∣∣∣∣∣Φ(x(k, tj)
m

)∣∣∣∣∣∣
2

}
+max

k,m

{∣∣∣∣〈αtj ∣∣∣
θ̂r
,Φ
(
x(k, tj)
m

)〉∣∣∣∣}max
k,m

{∣∣∣∣∣∣Φ(x(k, tj)
m

)∣∣∣∣∣∣
2

}]
.

Denoting maxk,m

{∣∣∣u(k, tj)
m

∣∣∣} = umax and maxk,m

{∣∣∣∣∣∣Φ(x(k, tj)
m

)∣∣∣∣∣∣
2

}
= Φmax for all trajectories and all tasks, we can

write ∣∣∣∣∣∣∣∣∇αtj ltj (αtj) ∣∣∣θ̂r
∣∣∣∣∣∣∣∣
2

≤
Mtj

σ2
tj

[(
umax +max

k,m

{∣∣∣∣〈αtj ∣∣∣
θ̂r
,Φ
(
x(k, tj)
m

)〉∣∣∣∣})Φmax

]
.

Using the Cauchy-Shwarz inequality (Horn & Mathias, 1990), we can upper bound maxk,m

{∣∣∣∣〈αtj ∣∣∣
θ̂r
,Φ
(
x
(k, tj)
m

)〉∣∣∣∣}
as

max
k,m

{∣∣∣∣〈αtj ∣∣∣
θ̂r
,Φ
(
x(k, tj)
m

)〉∣∣∣∣} ≤ max
k,m

{∣∣∣∣∣∣∣∣αtj ∣∣∣
θ̂r

∣∣∣∣∣∣∣∣
2

∣∣∣∣∣∣Φ(x(k, tj)
m

)∣∣∣∣∣∣
2

}
≤ max

k,m

{∣∣∣∣∣∣∣∣αtj ∣∣∣
θ̂r

∣∣∣∣∣∣∣∣
2

}
Φmax

≤
∣∣∣∣∣∣∣∣αtj ∣∣∣

θ̂r

∣∣∣∣∣∣∣∣
2

Φmax .

Finalizing the statement of the claim, the overall bound on the norm of the gradient of ltj (αtj ) can be written as∣∣∣∣∣∣∣∣∇αtj ltj (αtj) ∣∣∣θ̂r
∣∣∣∣∣∣∣∣
2

≤
Mtj

σ2
tj

[(
umax +

∣∣∣∣∣∣∣∣αtj ∣∣∣
θ̂r

∣∣∣∣∣∣∣∣
2

Φmax

)
Φmax

]
. (16)

�

Claim: The norm of the gradient of the loss function satisfies:∣∣∣∣∣∣∣∣∇αtj ltj (αtj) ∣∣∣θ̂r
∣∣∣∣∣∣∣∣
2

≤
Mtj

σ2
tj

[(
umax + max

tk∈Ir−1

{
‖A+

tk
‖2 (‖btk‖2 + cmax)

}
Φmax

)
Φmax

]
.

Proof: As mentioned previously, we consider the linearization of the loss function ltj around the constraint solution of the
previous round, θ̂r. Since θ̂r satisfiesAtkαtk = btk − ctk ,∀tk ∈ Ir−1. Hence, we can write

Atkαtk + ctk = btk ∀tk ∈ Ir−1

=⇒ αtk = A+
tk
(btk − ctk) withA+

tk
=
(
AT
tk
Atk

)−1
AT
tk

being the left pseudo-inverse.

Therefore

||αtk ||2 ≤
∣∣∣∣A+

tk

∣∣∣∣
2

(
||btk ||2 + ||ctk ||2

)
≤
∣∣∣∣A+

tk

∣∣∣∣
2

(
||btk ||2 + cmax

)
.
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Combining the above results with those of Eq. (16) we arrive at∣∣∣∣∣∣∇αtj ltj (αtj)∣∣∣∣∣∣2 ≤ Mtj

σ2
tj

[(
umax + max

tk∈Ir−1

{∣∣∣∣A+
tk

∣∣∣∣
2

(
||btk ||2 + cmax

)}
Φmax

)
Φmax

]
.

�

The previous result finalizes the statement of the lemma, bounding the gradient of the loss function in terms of the safety
constraints.

Lemma 2. The norm of the gradient of the loss function evaluated at θ̂r satisfies∣∣∣∣∣∣∣∣∇θltj (θ) ∣∣∣
θ̂r

∣∣∣∣∣∣∣∣2
2

≤
∣∣∣∣∣∣∇αtj ltj (θ) ∣∣∣θ̂r

∣∣∣∣∣∣2
2

(
q × d

(
2d/p2 max

tk∈Ir−1

{∣∣∣∣∣∣A†tj ∣∣∣∣∣∣2
2

(∣∣∣∣btj ∣∣∣∣22 + c2max

)}
+ 1

))
.

Proof. The derivative of ltj (θ)
∣∣∣
θ̂r

can be written as

∇θltj (θ)
∣∣∣
θ̂r

=



∇αtj l
T
tj (θ)

∣∣∣
θ̂r


∂α

(1)
tj

∂θ1

∣∣∣
θ̂r

...
∂α

(d)
tj

∂θ1

∣∣∣
θ̂r


...

∇αtj l
T
tj (θ)

∣∣∣
θ̂r


∂α

(1)
tj

∂θdk+k|T |

∣∣∣
θ̂r

...
∂α

(d)
tj

∂θdk+k|T |

∣∣∣
θ̂r





=



∇αtj l
T
tj (θ)

∣∣∣
θ̂r


θdk+1

∣∣∣
θ̂r

0
...
0


...

∇αtj l
T
tj (θ)

∣∣∣
θ̂r


0
...

θ(d+1)k+1

∣∣∣
θ̂r


...

∇αtj l
T
tj (θ)

∣∣∣
θ̂r


θd(k+1)+1

∣∣∣
θ̂r

...

θdk

∣∣∣
θ̂r




=⇒

∥∥∥∥∇θltj (θ)∣∣∣
θ̂r

∥∥∥∥2
2

≤
∥∥∥∥∇αtj ltj (αtj )∣∣∣θ̂r

∥∥∥∥2
2

[
d

∥∥∥∥stj ∣∣∣
θ̂r

∥∥∥∥2
2

+

∥∥∥∥L∣∣∣
θ̂r

∥∥∥∥2
F

]
.

The results of Lemma 1 bound
∥∥∥∥∇αtj ltj (θ)∣∣∣θ̂r

∥∥∥∥2
2

.

Now, we target to bound each of
∣∣∣∣∣∣stj ∣∣∣

θ̂r

∣∣∣∣∣∣2
2

and
∣∣∣∣∣∣L∣∣∣

θ̂r

∣∣∣∣∣∣2
F
.

Bounding
∥∥∥∥stj ∣∣∣

θ̂r

∥∥∥∥2
2

and ‖L
∣∣∣
θ̂r
‖2F: Considering the constraint AtjLstj + ctj = btj for a task tj , we realize that

stj = L
+
(
A+
tj

(
btj − ctj

))
. Therefore,∥∥∥∥stj ∣∣∣

θ̂r

∥∥∥∥
2

≤
∣∣∣∣∣∣L+

(
A+
tj

(
btj − ctj

))∣∣∣∣∣∣
2
≤
∣∣∣∣L+

∣∣∣∣
2

∣∣∣∣∣∣A+
tj

∣∣∣∣∣∣
2

(∣∣∣∣btj ∣∣∣∣2 + ∣∣∣∣ctj ∣∣∣∣2) . (17)

Noting that ∣∣∣∣L+
∣∣∣∣
2
=
∣∣∣∣∣∣(LTL

)−1
LT
∣∣∣∣∣∣
2
≤
∣∣∣∣∣∣(LTL

)−1∣∣∣∣∣∣
2

∣∣∣∣LT
∣∣∣∣
2
≤
∣∣∣∣∣∣(LTL

)−1∣∣∣∣∣∣
2

∣∣∣∣LT
∣∣∣∣
F

=
∣∣∣∣∣∣(LTL

)−1∣∣∣∣∣∣
2
||L||F .
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To relate ||L+||2 to ||L||F, we need to bound
∣∣∣∣∣∣(LTL

)−1∣∣∣∣∣∣
2

in terms of ‖L‖F. Denoting the spectrum of LTL as

spec
(
LTL

)
= {λ1, . . . ,λk} such that 0 < λ1 ≤ · · · ≤ λk, then spect

((
LTL

)−1)
= {1/λ1, . . . , 1/λk} such

that 1/λk ≤ · · · ≤ 1/λk. Hence,
∣∣∣∣∣∣(LTL

)−1∣∣∣∣∣∣
2
= max

{
spec

((
LTL

)−1)}
= 1/λ1 = 1/λmin

(
LTL

)
. Noticing that

spec
(
LTL

)
= spec

(
LLT

)
, we recognize

∣∣∣∣∣∣(LTL
)−1∣∣∣∣∣∣

2
= 1/λmin

(
LLT

)
≤ 1/p. Therefore∣∣∣∣L+

∣∣∣∣
2
≤ 1

p
||L||F . (18)

Plugging the results of Eq. (18) into Eq. (17), we arrive at∥∥∥∥stj ∣∣∣
θ̂r

∥∥∥∥
2

≤ 1/p

∥∥∥∥L∣∣∣
θ̂r

∥∥∥∥
F

max
tk∈Ir−1

{∣∣∣∣A+
tk

∣∣∣∣
2

(
||btk ||2 + cmax

)}
. (19)

Finally, since θ̂r satisfies the constraints, we note that
∥∥∥∥L∣∣∣

θ̂r

∥∥∥∥2
F

≤ q × d. Consequently,

∣∣∣∣∣∣∇θltj (θ) ∣∣∣
θ̂r

∣∣∣∣∣∣2
2
≤
∣∣∣∣∣∣∇αtj ltj (θ) ∣∣∣θ̂r

∣∣∣∣∣∣2
2

(
q × d

(
2d

p2
max

tk∈Ir−1

{∣∣∣∣∣∣A†tk ∣∣∣∣∣∣22 (||btk ||22 + c2max

)}
+ 1

))
.

Lemma 3. The L2 norm of the constraint solution at round r − 1, ‖θ̂r‖22 is bounded by

‖θ̂r‖22 ≤ q × d
[
1 + |Ir−1|

1

p2
max

tk∈Ir−1

{∣∣∣∣∣∣A†tk ∣∣∣∣∣∣22 (||btk ||2 + cmax
)2}]

.

with |Ir−1| being the cardinality of Ir−1 representing the number of different tasks observed so-far.

Proof. Noting that θ̂r =
[
θ1, . . . ,θdk︸ ︷︷ ︸

L

∣∣∣
θ̂r

,θdk+1, . . .︸ ︷︷ ︸
si1

∣∣∣
θ̂r

, . . . , . . .︸ ︷︷ ︸
sir−1

∣∣∣
θ̂r

, . . . ,θdk+kT?︸ ︷︷ ︸
0’s: unobserved tasks

]T
, it is easy to see

‖θ̂r‖22 ≤
∥∥∥∥L∣∣∣

θ̂r

∥∥∥∥2
F

+ |Ir−1| max
tk∈Ir−1

{∥∥∥∥stk ∣∣∣
θ̂r

∥∥∥∥2
2

}

≤ q × d+ |Ir−1| max
tk∈Ir−1

[
q × d
p2

∣∣∣∣∣∣A†tk ∣∣∣∣∣∣22 (||btk ||2 + cmax
)2]

≤ q × d
[
1 + |Ir−1|

1

p2
max

tk∈Ir−1

{∣∣∣∣∣∣A†tk ∣∣∣∣∣∣22 (||btk ||2 + cmax
)2}]

.

Lemma 4. The L2 norm of the linearizing term of ltj (θ) around θ̂r,
∥∥∥∥f̂tj ∣∣∣

θ̂r

∥∥∥∥
2

, is bounded by∥∥∥∥f̂tj ∣∣∣
θ̂r

∥∥∥∥
2

≤
∥∥∥∥∇θltj (θ)∣∣∣

θ̂r

∥∥∥∥
2

(
1 + ‖θ̂r‖2

)
+

∣∣∣∣ltj (θ)∣∣∣
θ̂r

∣∣∣∣ ≤ γ1(r) (1 + γ2(r)) + δltj ,
with δltj being the constant upper-bound on

∣∣∣∣ltj (θ)∣∣∣
θ̂r

∣∣∣∣, and

γ1(r) =
1

ntjσ
2
tj

[(
umax + max

tk∈Ir−1

{∣∣∣∣A+
tk

∣∣∣∣
2

(
||btk ||2 + cmax

)}
Φmax

)
Φmax

]
×
(
d/p
√
2q

√
max

tk∈Ir−1

{
‖A†tk‖

2
2 (‖btk‖22 + c2max)

}
+
√
qd

)
.

γ2(r) ≤
√
q × d+

√
|Ir−1|

√[
1 +

1

p2
max

tk∈Ir−1

{∣∣∣∣∣∣A†tk ∣∣∣∣∣∣22 (||btk ||2 + cmax
)2}]

.



Safe Policy Search for Lifelong Reinforcement Learning with Sublinear Regret

Proof. We have previously shown that
∣∣∣∣∣∣f̂tj ∣∣∣

θ̂r

∣∣∣∣∣∣
2
≤
∣∣∣∣∣∣∇θltj (θ) ∣∣∣

θ̂r

∣∣∣∣∣∣
2
+
∣∣∣ltj (θ̂r) ∣∣∣+ ∣∣∣∣∣∣∇θltj (θ)∣∣∣

θ̂r

∣∣∣∣∣∣
2
×
∣∣∣∣∣∣θ̂r∣∣∣∣∣∣

2
. Using

the previously derived lemmas we can upper-bound
∣∣∣∣∣∣f̂tj ∣∣∣

θ̂r

∣∣∣∣∣∣
2

as follows∣∣∣∣∣∣∇θltj (θ) ∣∣∣
θ̂r

∣∣∣∣∣∣2
2
≤
∣∣∣∣∣∣∇αtj ltj (θ) ∣∣∣θ̂r

∣∣∣∣∣∣2
2

(
q × d

(
2d

p2
max

tk∈Ir−1

{∣∣∣∣∣∣A†tk ∣∣∣∣∣∣22 (||btk ||22 + c2max

)}
+ 1

))
∣∣∣∣∣∣∇θltj (θ) ∣∣∣

θ̂r

∣∣∣∣∣∣
2
≤
∣∣∣∣∣∣∇αtj ltj (θ) ∣∣∣θ̂r

∣∣∣∣∣∣
2

(
d/p
√
2q

√
max

tk∈Ir−1

{
‖A†tk‖

2
2 (‖btk‖22 + c2max)

}
+
√
qd

)
≤ 1

ntjσ
2
tj

[(
umax + max

tk∈Ir−1

{∣∣∣∣A+
tk

∣∣∣∣
2

(
||btk ||2 + cmax

)}
Φmax

)
Φmax

]
×
(
d/p
√
2q

√
max

tk∈Ir−1

{
‖A†tk‖

2
2 (‖btk‖22 + c2max)

}
+
√
qd

)
.

Further, ∣∣∣∣∣∣θ̂r∣∣∣∣∣∣2
2
≤ q × d+ |Ir−1| max

tk∈Ir−1

[
1 +

1

p2
max

tk∈Ir−1

{∣∣∣∣∣∣A†tk ∣∣∣∣∣∣22 (||btk ||2 + cmax
)2}]

=⇒
∣∣∣∣∣∣θ̂r∣∣∣∣∣∣

2
≤
√
q × d+

√
|Ir−1|

√[
1 +

1

p2
max

tk∈Ir−1

{∣∣∣∣∣∣A†tk ∣∣∣∣∣∣22 (||btk ||2 + cmax
)2}]

.

Therefore ∣∣∣∣∣∣∣∣f̂tj ∣∣∣
θ̂r

∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∇θltj (θ)∣∣∣θ̂r
∣∣∣∣∣∣∣∣
2

(
1 +

∣∣∣∣∣∣θ̂r∣∣∣∣∣∣
2

)
+

∣∣∣∣ltj (θ)∣∣∣
θ̂r

∣∣∣∣ (20)

≤ γ1(r) (1 + γ2(r)) + δltj ,

with δltj being the constant upper-bound on
∣∣∣∣ltj (θ)∣∣∣

θ̂r

∣∣∣∣, and

γ1(r) =
1

ntjσ
2
tj

[(
umax + max

tk∈Ir−1

{∣∣∣∣A+
tk

∣∣∣∣
2

(
||btk ||2 + cmax

)}
Φmax

)
Φmax

]
×
(
d/p
√
2q

√
max

tk∈Ir−1

{
‖A†tk‖

2
2 (‖btk‖22 + c2max)

}
+
√
qd

)
.

γ2(r) ≤
√
q × d+

√
|Ir−1|

√[
1 +

1

p2
max

tk∈Ir−1

{∣∣∣∣∣∣A†tk ∣∣∣∣∣∣22 (||btk ||2 + cmax
)2}]

.

Theorem 1 (Sublinear Regret; restated from the main paper). After R rounds and choosing ηt1 = · · · = ηtj = η = 1√
R

,

L
∣∣∣
θ̂1

= diagk(ζ), with diagk(·) being a diagonal matrix among the k columns of L, p ≤ ζ2 ≤ q, and S
∣∣∣
θ̂1

= 0k×|T |, for

any u ∈ K our algorithm exhibits a sublinear regret of the form
R∑
j=1

ltj

(
θ̂r

)
− ltj (u) = O

(√
R
)
.

Proof. Given the ingredients of the previous section, next we derive the sublinear regret results which finalize the statement
of the theorem. First, it is easy to see that

∇θΩ0

(
θ̃j

)
−∇θΩ0

(
θ̃j+1

)
= ηtj f̂tj

∣∣∣
θ̂j

.

Further, from strong convexity of the regularizer we obtain:

Ω0

(
θ̂j

)
≥ Ω0

(
θ̂j+1

)
+
〈
∇θΩ0

(
θ̂j+1

)
, θ̂j − θ̂j+1

〉
+

1

2

∣∣∣∣∣∣θ̂j − θ̂j+1

∣∣∣∣∣∣2
2
.

It can be seen that ∥∥∥θ̂j − θ̂j+1

∥∥∥
2
≤ ηtj

∥∥∥∥f̂tj ∣∣∣
θ̂j

∥∥∥∥
2

.
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Finally, for any u ∈ K, we have:
r∑
j=1

ηtj

(
ltj

(
θ̂j

)
− ltj (u)

)
≤

r∑
j=1

[
ηtj

(∥∥∥∥f̂tj ∣∣∣
θ̂j

∥∥∥∥
2

)2
]
+ Ω0(u)−Ω0(θ̂1) .

Assuming ηt1 = · · · = ηtj = η, we can derive
r∑
j=1

(
ltj

(
θ̂j

)
− ltj (u)

)
≤ η

r∑
j=1

(∥∥∥∥f̂tj ∣∣∣
θ̂j

∥∥∥∥
2

)2

+ 1/η
(
Ω0(u)−Ω0(θ̂1)

)
.

The following lemma finalizes the statement of the theorem:

Lemma 5. After T rounds and for ηt1 = · · · = ηtj = η = 1√
R

, our algorithm exhibits, for any u ∈ K, a sublinear regret
of the form

R∑
j=1

ltj (θ̂j)− ltj (u) ≤ O
(√

R
)
.

Proof. It is then easy to see∥∥∥∥f̂tj ∣∣∣
θ̂r

∥∥∥∥2
2

≤ γ3(R) + 4γ2
1(R)γ

2
2(R) with γ3(R) = 4γ2

1(R) + 2 max
tj∈IR−1

δ2tj

≤ γ3(R) + 8
d

p2
γ2
1(R)qd+ 8

d

p2
γ2
1(R)qd |IR−1| max

tk∈IR−1

{
‖A†tk‖2 (‖btk‖2 + cmax)

2
}

.

Since |IR−1| ≤ |T | with |T | being the total number of tasks available, then we can write∥∥∥∥f̂tj ∣∣∣
θ̂r

∥∥∥∥2
2

≤ γ5(R)|T | ,

with γ5 = 8d/p2qγ2
1(R)maxtk∈IR−1

{
‖A†tk‖

2
2 (‖btk‖2 + cmax)

2
}

. Further, it is easy to see that Ω0(u) ≤ qd+ γ5(R)|T |
with γ5(R) being a constant, which leads to

r∑
j=1

(
ltj

(
θ̂j

)
− ltj (u)

)
≤ η

r∑
j=1

γ5(R)|T |+ 1/η
(
qd+ γ5(R)|T | −Ω0(θ̂1)

)
.

Initializing L and S: We initialize L
∣∣∣
θ̂1

= diagk(ζ), with p ≤ ζ2 ≤ q and S
∣∣∣
θ̂1

= 0k×|T | ensures the invertability of L

and that the constraints are met. This leads us to
r∑
j=1

(
ltj

(
θ̂j

)
− ltj (u)

)
≤ η

r∑
j=1

γ5(R)|T |+ 1/η (qd+ γ5(R)|T | − µ2kζ) .

Choosing ηt1 = · · · = ηtj = η = 1/
√
R, we acquire sublinear regret, finalizing the statement of the theorem:

r∑
j=1

(
ltj

(
θ̂j

)
− ltj (u)

)
≤ 1/

√
Rγ5(R)|T |R+

√
R (qd+ γ5(R)|T | − µ2kζ)

≤
√
R (γ5(R)|T |+ qdγ5(R)|T | − µ2kζ) ≤ O

(√
R
)
,

with γ5(R) being a constant.


