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Abstract

Online multi-task learning is an important capa-
bility for lifelong learning agents, enabling them
to acquire models for diverse tasks over time and
rapidly learn new tasks by building upon prior ex-
perience. However, recent progress toward lifelong
reinforcement learning (RL) has been limited to
learning from within a single task domain. For truly
versatile lifelong learning, the agent must be able to
autonomously transfer knowledge between differ-
ent task domains. A few methods for cross-domain
transfer have been developed, but these methods are
computationally inefficient for scenarios where the
agent must learn tasks consecutively.

In this paper, we develop the first cross-domain life-
long RL framework. Our approach efficiently op-
timizes a shared repository of transferable knowl-
edge and learns projection matrices that specialize
that knowledge to different task domains. We pro-
vide rigorous theoretical guarantees on the stability
of this approach, and empirically evaluate its per-
formance on diverse dynamical systems. Our re-
sults show that the proposed method can learn ef-
fectively from interleaved task domains and rapidly
acquire high performance in new domains.

1 Introduction

Reinforcement learning (RL) provides the ability to solve
high-dimensional control problems when detailed knowledge
of the system is not available a priori. Applications with these
characteristics are ubiquitous in a variety of domains, from
robotic control [Busoniu et al., 2008; Smart & Kaelbling,
2002] to stock trading [Dempster & Leemans, 2006]. How-
ever, in many cases, RL methods require numerous lengthy
interactions with the dynamical system in order to learn an
acceptable controller. Unfortunately, the cost of acquiring
these interactions is often prohibitively expensive (in terms
of time, expense, physical wear on the robot, etc.).

This issue of obtaining adequate experience only wors-
ens when multiple control problems must be solved. This
need arises in two main cases: (1) when a single agent must
learn to solve multiple tasks (e.g., a reconfigurable robot), and
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(2) when different robots must each learn to solve a single
control problem. Transfer learning [Taylor & Stone, 2009]
and multi-task learning (MTL) methods [Li et al., 2009;
Lazaric & Ghavamzadeh, 2010] have been developed to re-
duce the amount of experience needed for individual tasks by
allowing the agent to reuse knowledge from other tasks.

In both transfer learning and MTL, the difficulty of trans-
ferring knowledge between tasks increases with the diversity
of the tasks. In the extreme case, the underlying systems
(and their action and state representations) are entirely dif-
ferent, making direct knowledge reuse impossible. Several
approaches to this cross-domain transfer problem have been
developed, but these methods require an inter-task mapping
of state/action spaces that is either hand-coded [Taylor et al.,
2007] or learned in a computationally inefficient manner that
does not scale to more than a few task domains (see Sec-
tion 3). However, the problem of cross-domain transfer has
not yet been studied in lifelong learning settings [Thrun &
O’Sullivan, 1996; Ruvolo & Eaton, 2013], in which the agent
must learn multiple tasks consecutively with the goal of opti-
mizing performance across all previously learned tasks.

We address this problem by developing the first algorithm
for lifelong RL that supports efficient and autonomous cross-
domain transfer between multiple consecutive tasks from dif-
ferent domains. Specifically, our approach provides the fol-
lowing advantages over existing approaches: (1) it improves
current cross-domain transfer learning methods by optimiz-
ing performance across all tasks, (2) it learns multi-task cross-
domain mappings autonomously, and (3) it can share knowl-
edge between a multitude of tasks from diverse domains in a
computationally efficient manner. To enable effective cross-
domain lifelong learning, our approach learns a repository of
shared knowledge along with projection matrices that spe-
cialize this shared knowledge to each task domain. We pro-
vide theoretical guarantees on convergence that show this ap-
proach becomes increasingly stable as the number of domains
or tasks grows large, and demonstrate the empirical effective-
ness of cross-domain lifelong learning between streams of in-
terleaved tasks from diverse dynamical systems, including bi-
cycles and helicopters.

2 Background on Policy Gradient RL

In a reinforcement learning (RL) problem, an agent must de-
cide how to sequentially select actions to maximize its ex-



pected return. In contrast to classic stochastic optimal con-
trol methods [Bertsekas, 19951, RL approaches do not re-
quire detailed prior knowledge of the system dynamics or
goal; instead these approaches learn optimal control poli-
cies through interaction with the system itself. RL prob-
lems are typically formalized as a Markov decision process
(MDP) (X, A, P, R,~), where X C R? is the (potentially
infinite) set of states, A is the set of actions that the agent
may execute, P : X x A x X — [0,1] is a state transi-
tion probability function describing the task dynamics, R :
X x Ax X — R is the reward function measuring the per-
formance of the agent, and v € [0, 1) is the reward discount
factor. At each time step m, the agent is in state ,, € X and
must choose an action a,, € A, transitioning it to a new
state €41 ~ P (Tymy1 | Tm,arn) and yielding a reward
Tm+1 = R(®m,@m, Tms1). The sequence of state-action
pairs forms a trajectory T = [®1.s, @1.0] Over a (possibly
infinite) horizon M. A policy 7 : X x A — [0, 1] specifies
a conditional probability distribution over actions given the
current state. The RL agent’s goal is to find a policy 7* that
maximizes the expected per-time-step reward.

Policy gradient methods [Peters er al., 2005; Sutton et al.,
1999] represent the agent’s policy 7 as a function defined over
a vector @ € RY of control parameters. With this parameter-
ized policy, we can compute the optimal parameters 8* that
maximize the expected average reward:
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where T is the set of all possible trajectories,
R(T) = ﬁ 27]\5:1 Tm-1 18 the reward of trajectory T, and

po(7) = Po(x1) [T, P(Xms1 | X @) o (@ | X1
is the probability of 7 with initial state distribution
Py: X — [07 1}

To maximize J(-), most policy gradient algorithms (e.g.,
episodic REINFORCE [Williams, 1992], POWER [RiickstieB
et al., 2008], and Natural Actor Critic [Peters & Schaal,
2008]) employ standard supervised function approximation
to learn @ by maximizing a lower bound on 7 (8). To max-
imize this lower bound, these methods generate trajectories
using the current policy 7g, and then compare the result with
a new policy 7. Kober & Peters [2011] describe how this
lower bound on the expected return can be attained using
Jensen’s inequality and the concavity of the logarithm:
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quently, this process is equivalent to minimizing the KL di-
vergence Dk, between 7g’s reward-weighted trajectory dis-
tribution and the trajectory distribution pg of 7.

d7. Conse-

Policy gradient methods have gained attention in the RL
community in part due to their successful applications to
robotics [Peters et al., 2005]. While such methods have a low
computational cost per update, high-dimensional problems
require many updates (by acquiring new rollouts) to achieve
good performance. Transfer learning and multi-task learning
can reduce these data requirements and accelerate learning.

3 Related Work on RL Knowledge Transfer

Knowledge transfer between tasks has been explored in the
context of transfer learning and multi-task learning. In
all cases, each task ¢ is described by an MDP Z ® =
(X®, A PO R 1)

Transfer learning aims to improve the learning time and/or
behavior of the agent on a new target task by transferring
knowledge learned from one or more previous source tasks
[Taylor & Stone, 2009]. However, transfer learning methods
only focus on optimizing performance on the target task, and
therefore are not ideal for agents that revisit earlier tasks. In
contrast, multi-task learning (MTL) methods [Li et al., 2009;
Lazaric & Ghavamzadeh, 2010] optimize performance over
all tasks, often by training task models simultaneously while
sharing knowledge between tasks, but are computationally
expensive in lifelong learning scenarios where the agent must
learn tasks consecutively over time [Ruvolo & Eaton, 2013;
Thrun & O’Sullivan, 1996], as we explore in this paper.

One exception is PG-ELLA [Bou Ammar et al., 2014],
a recent lifelong policy gradient RL algorithm that can ef-
ficiently learn multiple tasks consecutively while sharing
knowledge between task policies to accelerate learning. In
fact, PG-ELLA can be viewed as a special case of the algo-
rithm we propose in this paper where learning is limited to
only tasks from a single domain. MTL for policy gradients
has also been explored by Deisenroth et al. [2014] through
customizing a single parameterized controller to individual
tasks that differ only in the reward function. Another closely
related work is on hierarchical Bayesian MTL [Wilson ef al.,
2007], which can learn RL tasks consecutively, but unlike
our approach, requires discrete states and actions. Snel and
Whiteson’s [2014] representation learning approach is also
related, but assumes all tasks share the same feature and ac-
tion sets. All of these MTL methods operate on tasks from a
single domain, and do not support cross-domain transfer.

To enable transfer between tasks with different state and/or
action spaces, transfer learning and MTL methods require an
inter-task mapping to translate knowledge between tasks. The
earliest work on cross-domain transfer in RL, by Taylor et al.,
required a hand-coded mapping [2007] or a computation-
ally expensive exploration of all permitted mappings [2008].
More recently, unsupervised techniques have been developed
to autonomously learn inter-task mappings [Bou Ammar et
al. 2012; 2013]. While these approaches enable autonomous
cross-domain transfer, they only learn pairwise mappings be-
tween tasks and are computationally expensive, making them
inapplicable for transfer among numerous tasks from differ-
ent domains. In contrast to these methods, our approach pro-
vides a computationally efficient mechanism for transfer be-
tween multiple task domains, enabling cross-domain lifelong



RL. Cross-domain MTL has also been explored in a limited
fashion in supervised settings [Han et al., 2012].

4 Problem Definition

Previous work on policy gradients has focused on either
single-task learning or MTL within a single task domain (i.e.,
all tasks share a common state and action space, but may dif-
fer in other aspects). We focus on the problem of learning
multiple tasks consecutively, where the tasks may be drawn
from different task domains. Specifically, the agent must
learn a series of RL tasks Z(1) ... Z(Tm) over its lifetime,
where each task Z(*) is an MDP and the tasks may have dif-
ferent state and/or action spaces. We can partition the se-
ries of RL tasks into task groups ¢ .. , G(Gmx) guch that
all tasks within a particular group G(9) (i.e., a set of tasks)
share a common state and action space, and are generated by
varying latent parameters [Konidaris & Doshi-Velez, 2014].
In our experiments, each task group corresponds to a task
domain—a class of dynamical systems, such as helicopters,
cart-poles, etc., each of which contains multiple tasks corre-
sponding to multiple physical helicopters or cart-poles. How-
ever, this framework can easily generalize so that a particular
group G9) could represent a subset of tasks from a domain,
similar to task clustering frameworks [Kang er al., 2011].

The agent must learn the tasks consecutively, acquiring
multiple trajectories within each task before moving to the
next. The tasks may be interleaved, offering the agent the op-
portunity to revisit earlier tasks (or task domains) for further
experience, but the agent has no control over the task order.
We assume that a priori the agent does not know the total
number of tasks T},.x, their distribution, the task order, or the
total number of task groups G,x. The agent also has no prior
knowledge about the inter-task mappings between tasks, and
so it must also learn how to transfer knowledge between task
domains in order to optimize overall performance.

The agent’s goal is to learn a set of optimal policies

I~ = {wg(l), s T (L) } with corresponding parameters
©* = {6W* ... Tm)*}  Since tasks belong to different

domains, the dimension of the parameter vectors will vary,

with 8 € RY" where d® is the dimension of the state
space X (). At any time, the agent may be evaluated on any
previous task, and so must strive to optimize its learned poli-
cies for all tasks Z1) ... Z(T) where T = 2521 1G9
denotes the number of tasks seen so far (1 < T < Tjax) and
G is the number of groups seen so far (1 < G < Gpuy)-

S Cross-Domain Lifelong RL

This section develops our cross-domain lifelong RL ap-
proach. In order to share knowledge between the tasks, we as-
sume that each task’s policy parameters 8(*) € R4 for task
t € G9 can be modeled as a sparse linear combination of
latent components from knowledge base B(9) € R4 %k that
is shared among all tasks in the group. Therefore, we have
that 8) = B@s(®) with sparse task-specific coefficients
5(Y) € R¥ for task . The collection of all task-specific coef-
ficients for tasks in G'9) is given by S(teG?) ¢ REx|G|
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Figure 1: The knowledge framework, showing the shared
repository of transferrable knowledge L, group projections
W that specialize L to each task group, task-specific coeffi-
cients over the specialized basis, and task groups.

Effectively, B(9) forms a k-component basis over the pol-
icy parameters for all tasks in G(9), enabling the transfer
of knowledge between tasks from this group. The task-
specific coefficients s(*) are encouraged to be sparse to en-
sure that each learned basis component captures a maxi-
mal reusable chunk of knowledge. This knowledge frame-
work has been use successfully by a number of other MTL
methods [Kumar & Daumé III, 2012; Maurer et al., 2013;
Ruvolo & Eaton, 2013] for transfer between tasks within a
single task domain.

To support cross-domain transfer, we introduce a reposi-
tory of knowledge L € R?*F that is shared among all tasks
(including between task domains). This matrix L represents
a set of latent factors that underly the set of group-specific

basis matrices {B("),..., B(Gm)} We introduce a set of

Lo . Gimax
group projection matrices W(g(l)), cee TG ™) that map

the shared latent factors L into the basis for each group of
tasks. Therefore, we have that B(Y) = \Il(g(g))L, where the
group projection matrix W9 ¢ R >4 With this con-

struction, we see that each mapping T(9'”) creates an inter-
mediate knowledge space (i.e., B(9)) that tailors the shared
repository L into a basis that is suitable for learning tasks
from group G(9). These group-specific bases are coupled to-
gether via the ¥ mappings and the shared knowledge base L,
facilitating transfer across task domains with different feature
spaces. The group mappings W’s also serve to help avoid
overfitting and ensure compactness of the basis, while maxi-
mizing transfer both between tasks within a group and across
task groups. This construction is depicted in Figure 1.

5.1 The Cross-Domain MTL Objective

Under this shared knowledge framework, given a task ¢ €
G, its policy parameters 8 = \Il(g(g))Ls(t), where
W) ¢ Riwxd [, ¢ RI¥F s(t) ¢ RF, and k is the num-
ber of shared latent knowledge components. Therefore, to
train optimal policies for all tasks, we must learn the shared
knowledge base L, the group projections (the W’s), and the
task-specific coefficients (the s(t)’s). We first examine this



problem from a batch MTL standpoint, and then develop an
efficient online algorithm for optimizing this MTL objective
and enabling lifelong learning in the next section.

Given task groups g<1>, ceey G we can represent our ob-
jective of learning T' = 25:1 |G(9)| stationary policies while
maximizing the amount of transfer between task policies as
the problem of minimizing:
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where () = W(9'”) L5 and the L1 norm of s is used to
approximate the true vector sparsity. We employ regulariza-
tion via the Frobenius norm || - ||r to avoid overfitting on both
the shared knowledge base L and each of the group projec-
tions @) .. W) Note that this objective is closely
related to PG-ELLA [Bou Ammar et al., 2014], with the crit-
ical difference that it incorporates cross-domain transfer.

5.2 Online Solution to Cross-Domain MTL

Although Equation 2 allows for batch cross-domain MTL,
the dependence on all available trajectories from all
tasks (via J (8®)) = Jrer Po (T) R® (1) dr) make the
batch approach unsuitable for learning tasks consecutively,
since the learner requires all trajectories for acquiring a suc-
cessful behavior. Here, we derive an approximate optimiza-
tion algorithm that is more suitable for lifelong learning.

Standardizing the Objective

To derive the approximate optimization problem, we note that
policy gradient methods maximize the lower bound of 7 (6).
In order to use Equation 2 for lifelong cross-domain trans-
fer with policy gradients, we must first incorporate this lower
bound into our objective function. Rewriting the error term
in Equation 2 in terms of the lower bound yields

er (L, ICEDI 'I'(g(G))) 3)
G
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with ) = ®(9“) [s(1) . However, we can note that

5 o () RO (1)
Tr.o(69 oc—/p o(T) RY(T) log po (T) R () dr
Le( ) eqrma( (R Poiny (T)

Therefore, maximizing the lower bound of J. ¢ (é(t)) is
equivalent to the following minimization problem:

. R
min / po(T) RU(T) log [p@“(T)(T)

6(t) J Pow) (1)
Tellt

} dr , 4

which can be plugged into Equation 3 in place of J. ¢ (é(t)>
to obtain the MTL policy gradients objective.
Approximate Learning Objective

To eliminate the dependence of the objective function on all
available trajectories, we can approximate et (-) by perform-

ing a second-order Taylor expansion of J ¢ (é(t)) around

the optimal solution a*) to Equation 4, following the tech-
nique used in PG-ELLA [Bou Ammar et al., 2014]. Note
that attaining a*) corresponds to solving the policy gradient
problem of task ¢ € G(9), which might be computationally
expensive. Therefore, rather than using the above, we use
an approximation acquired by performing a gradient step in
task t: a(® = 0 + nIflvé(,,)ng (é(t)), where Z is the

Fisher information matrix. The first derivative, needed for the
second-order Taylor expansion, is given by:

Vi T2 (6) = = [ (1) ROUT) Vi log pgen(7) dr
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The second derivative of J; ¢ (é(t)) is then:

M®
T =—EIRO(1) > V2, 50 logmge (ag) |wg;))
m=1 6 —a(®)
Substituting the second-order Taylor expansion yields the fol-
lowing approximation of Equation 2:
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where ||v||%4 = vT Av, the constant term was suppressed as
it has no effect on the minimization, and the linear term was
ignored by construction since a(*) is a minimizer. Critically,
we have eliminated the dependence on all available trajecto-
ries, making the problem suitable for an online MTL setting.



Learning the Policy
We fit the policy parameters in two steps. Upon observing a
task t € G19), we use gradient descent to update the shared

repository L and the group projections \Il(g(g)). The update
rules, acquired by taking the derivative of Equation 5 with

respect to L and (9
AL = L
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where 1z and 7 (ot0)) Are the learning rates for the shared
v

repository L and group projections \Il(g(g)), respectively.

Having learned the shared representation L and group pro-
jections, task-specific coefficients s(*) are then determined
by solving an instance of Lasso [Tibshirani, 1996] to encode
a® in the basis given by w(9) L, leading to a task-specific
policy 7 = pg (a | ) where () = w(9”) Ls®). For
computationally demanding domains, we can update s(*) less
frequently, instead allowing the policy to change by altering
L and the ¥’s. The complete implementation of our approach
is available on the authors’ websites.

6 Theoretical Guarantees

This section shows that our approach becomes stable as the
number of tasks and groups grow large. Detailed proofs and
definitions are provided in an online appendix available on the
authors’ websites. First, we consider the one-group setting by
defining the following expected loss:!

> g
higw) ( w(9")|gw
= E(a(t)AF(‘)) |:H11Hl (.L7 \I/g(g) , S, a(t)7 I‘(t)

g(g))} ,(8)

where the expectation is over each task ¢ in group G(9) ac-
cording to the task’s parameters (a®,T'®), and I(*) is the

per-task loss of encoding a*) in the basis given by w(9”) L.

Proposition 1.

‘I’[‘g(g)h(g(g))] ‘Il[‘g(g)| 1 (g(g))] O 1
|g(g)|
Proof. Here, we sketch the proof of Prop. 1. With
l(L,lIlg(g),s,a(t),l"(t) Q(Q)), we can show that

'We super- or subscript variables with (|G9|) to denote the ver-
sion of the variable learned from |G (9 )| tasks in G(9).,

g, (‘I’(g(g))|g(g)> — g1 ( w(9)|gle ) is Lips-
chitz with O <‘ g(g”) Further, given enough gradient steps,
for w(191-1):(9”) to minimize fAL‘gm\_l (‘I’(g(g))|g(g))
it is clear that change in the loss can be upper bounded by
QAH\I:(lg(“‘)v(Q“)) - \I,(\g”)\—l),(g(“)HZ_ Combining the
Lipschitz bound with previous facts concludes the proof. [
Proposition 2. With h(-) as the actual loss in G (9, we show:
1. ﬁ|g(g>‘ (\1/9(”|g<9)) converges a.s.

2. fl|g(9)\ (\I,g<9>|g(g)> —higw) (\I/g(”|g<9>) converges a.s. to 0
3. h|g(g)\ (‘I’g(g) |g(9>> - h(‘I’g(g) |Q'(9)) converges a.s. to 0
4. h (\Ilgm \Q(g)) converges a.s.

Proof. First, we show that the sum of positive
variations of the stochastic process UG =

i]/lg(g)‘ (‘I’(‘g(g)l)’(g(g)) |g(9)

a corollary of the Donsker theorem [Van der Vaart, 2000].
This result in combination with a theorem from Fisk [1965],
allows us to show that u is a quasi-martingale that

are bounded by invoking

t(G(9)

converges almost surely (a.g.). "l)"his fact along with a simple
theorem of positive sequences allows us prove part 2 of the
proposition. The final two parts (3 & 4) can be shown due to
the equivalence of h and h|g(g>‘ as |g<g>\ — 0. O

. . (@) (9
Proposition 3. The distance between w(190:(9) and the
set of h’s stationary points converges a.s. to 0 as |Q(g) | = oo

Proof. Both the surrogate ﬁ|g<g>‘ and the expected cost h
have gradients that are Lipschitz with constant independent

of |G(9)|. This fact, in combination with the fact that il‘g<g>|
and g converges a.s. as |G (9)| — 00, completes the proof. [

Next, we consider the loss of multiple groups:

a8 (L) = Eg [h(lg(””) (\1:9(9)) ’g@} )

Proposition 4.
-0 (X i)

Proof. This can be easily shown as the upper bound of
PO (fz (@(g‘g’)’g@) ) is the sum of the bounds over

(9760, 0

Proposition 5. With g(-) as the actual loss, we show:
1. g(g(”)) (L) converges a.s.

1(6@) _ 1(69)-

2. g( “)(L (L) — ( ?) (L) convergence a.s. to 0
3. Q<g(g)> (L) — (g(g ) (L) convergence a.s. to 0
4. g(gw) (L) converges a.s.

Proof. This can be attained similarly to that of Prop. 2. [
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Figure 2: Learning performance after interleaved training over multiple task domains. Figures (a) and (b) depict task domains
where cross-domain transfer has a significant impact, showing that our approach outperforms standard PG and PG-ELLA.
Figure (c) demonstrates that even when a domain benefits less from cross-domain transfer, our approach still achieves equivalent
performance to PG-ELLA. Figure (d) depicts the average improvement in initial task performance over PG from transfer.

7 Empirical Results

We evaluated the ability of our approach to learn optimal con-
trol policies for multiple consecutive tasks from six different
dynamical systems (each corresponding to one task domain):

Simple Mass (SM): The spring-mass-damper system is
characterized by three parameters: spring and damping con-
stants and the mass. The system’s state is given by the posi-
tion and velocity of the mass, which varies according to linear
force. The goal is to control the mass to be in a specific state.

Double Mass (DM): The double spring-mass-damper has
six parameters: two spring constants, damping constants, and
masses. The state is given by the position and velocity of both
masses. The goal is to control the first mass to a specific state,
while only applying a linear force to the second.

Cart-Pole (CP): The dynamics of the inverted pendulum
system are characterized by the cart’s and pole’s masses, the
pole’s length, and a damping parameter. The state is charac-
terized by the cart’s position and velocity, and the pole’s angle
and angular velocity. The goal is to balance the pole upright.

Double Cart-Pole (DCP): The DCP adds a second in-
verted pendulum to the CP system, with six parameters and
six state features. The goal is to balance both poles upright.

Bicycle (Bike): The Bike model assumes a fixed rider, and
is characterized by eight parameters. The goal is to keep the
bike balanced as it rolls along the horizontal plane.

Helicopter (HC): This linearized model of a CH-47
tandem-rotor helicopter assumes horizontal motion at 40
knots. The main goal is to stabilize the helicopter by con-
trolling the collective and differential rotor thrust.

For each of these systems, we created three different tasks
by varying the system parameters to create systems with
different dynamics, yielding 18 tasks total. These tasks
used a reward function typical for optimal control, given by
—V/ (@ — 2)T (2, — 2)—+/a),am Where i is the goal state.
Each round of the lifelong learning experiment, one task ¢
was chosen randomly with replacement, and task ¢’s model
was trained from 100 sampled trajectories of length 50. This
process continued until all tasks were seen at least once.

We then compared the performance of cross-domain life-
long learning with PG-ELLA and standard policy gradients
(PG), averaging results over ~94 trials per domain (each of
which contained ~60 interleaved training rounds). As the
base PG learner in all algorithms, we used Natural Actor
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Figure 3: Average learning performance on a novel task do-
main (helicopter) after lifelong learning on other domains.

Critic [Peters & Schaal, 2008]. All regularization parame-
ters (the u’s) were set to e >, and the learning rates and latent
dimensions were set via cross-validation over a few tasks.
Figure 2 shows the average learning performance on indi-
vidual domains after this process of interleaved lifelong learn-
ing, depicting domains in which cross-domain transfer shows
clear advantages over PG-ELLA and PG (e.g., DCP, HC), and
an example domain where cross-domain transfer is less ef-
fective (CP). Note that even in a domain where cross-domain
transfer provides little benefit, our approach achieves equiv-
alent performance to PG-ELLA, showing that cross-domain
transfer does not interfere with learning effectiveness. On all
task domains except HC, our approach provides a significant
increase in initial performance due to transfer (Figure 2(d)).
Cross-domain transfer provides significant advantages
when the lifelong learning agent faces a novel task domain.
To evaluate this, we chose the most complex of the task do-
mains (helicopter) and trained the lifelong learner on tasks
from all other task domains to yield an effective shared
knowledge base L. Then, we evaluated the agent’s ability to
learn a new task from the helicopter domain, comparing the
benefits of cross-domain transfer from L with PG-ELLA and
PG (both of which learn from scratch on the new domain).
Figure 3 depicts the result of learning on a novel domain, av-
eraged over ten trials for all three HC tasks, showing the ef-
fectiveness of cross-domain lifelong learning in this scenario.

8 Conclusion

We have presented the first lifelong RL method that supports
autonomous and efficient cross-domain transfer. This ap-
proach provides a variety of theoretical guarantees, and can
learn effectively across multiple task domains, providing im-
proved performance over single-domain methods.
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