
Online Multi-Task Learning for Policy Gradient Methods

Haitham Bou Ammar HAITHAMB@SEAS.UPENN.EDU
Eric Eaton EEATON@CIS.UPENN.EDU

University of Pennsylvania, Computer and Information Science Department, Philadelphia, PA 19104 USA

Paul Ruvolo PAUL.RUVOLO@OLIN.EDU

Olin College of Engineering, Needham, MA 02492 USA

Matthew E. Taylor TAYLORM@EECS.WSU.EDU

Washington State University, School of Electrical Engineering and Computer Science, Pullman, WA 99164 USA

Abstract

Policy gradient algorithms have shown consider-
able recent success in solving high-dimensional
sequential decision making tasks, particularly in
robotics. However, these methods often require
extensive experience in a domain to achieve high
performance. To make agents more sample-
efficient, we developed a multi-task policy gra-
dient method to learn decision making tasks con-
secutively, transferring knowledge between tasks
to accelerate learning. Our approach provides ro-
bust theoretical guarantees, and we show empir-
ically that it dramatically accelerates learning on
a variety of dynamical systems, including an ap-
plication to quadrotor control.

1. Introduction
Sequential decision making (SDM) is an essential compo-
nent of autonomous systems. Although significant progress
has been made on developing algorithms for learning iso-
lated SDM tasks, these algorithms often require a large
amount of experience before achieving acceptable per-
formance. This is particularly true in the case of high-
dimensional SDM tasks that arise in robot control prob-
lems. The cost of this experience can be prohibitively ex-
pensive (in terms of both time and fatigue of the robot’s
components), especially in scenarios where an agent will
face multiple tasks and must be able to quickly acquire
control policies for each new task. Another failure mode
of conventional methods is that when the production en-
vironment differs significantly from the training environ-
ment, previously learned policies may no longer be correct.

Proceedings of the 31 st International Conference on Machine
Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copy-
right 2014 by the author(s).

When data is in limited supply, learning task models
jointly through multi-task learning (MTL) rather than in-
dependently can significantly improve model performance
(Thrun & O’Sullivan, 1996; Zhang et al., 2008; Rai &
Daumé, 2010; Kumar & Daumé, 2012). However, MTL’s
performance gain comes at a high computational cost when
learning new tasks or when updating previously learned
models. Recent work (Ruvolo & Eaton, 2013) in the super-
vised setting has shown that nearly identical performance
to batch MTL can be achieved in online learning with large
computational speedups. Building upon this work, we in-
troduce an online MTL approach to learn a sequence of
SDM tasks with low computational overhead. Specifically,
we develop an online MTL formulation of policy gradient
reinforcement learning that enables an autonomous agent
to accumulate knowledge over its lifetime and efficiently
share this knowledge between SDM tasks to accelerate
learning. We call this approach the Policy Gradient Effi-
cient Lifelong Learning Algorithm (PG-ELLA)—the first
(to our knowledge) online MTL policy gradient method.

Instead of learning a control policy for an SDM task
from scratch, as in standard policy gradient methods, our
approach rapidly learns a high-performance control pol-
icy based on the agent’s previously learned knowledge.
Knowledge is shared between SDM tasks via a latent ba-
sis that captures reusable components of the learned poli-
cies. The latent basis is then updated with newly acquired
knowledge, enabling a) accelerated learning of new task
models and b) improvement in the performance of existing
models without retraining on their respective tasks. The
latter capability is especially important in ensuring that the
agent can accumulate knowledge over its lifetime across
numerous tasks without exhibiting negative transfer. We
show that this process is highly efficient with robust theo-
retical guarantees. We evaluate PG-ELLA on four dynam-
ical systems, including an application to quadrotor control,
and show that PG-ELLA outperforms standard policy gra-
dients both in the initial and final performance.

Online Multi-Task Learning for Policy Gradient Methods

2. Related Work in Multi-Task RL
Due to its empirical success, there is a growing body
of work on transfer learning approaches to reinforcement
learning (RL) (Taylor & Stone, 2009). By contrast, rela-
tively few methods for multi-task RL have been proposed.

One class of algorithms for multi-task RL use nonpara-
metric Bayesian models to share knowledge between tasks.
For instance, Wilson et al. (2007) developed a hierarchi-
cal Bayesian approach that models the distribution over
Markov decision processes (MDPs) and uses this distri-
bution as a prior for learning each new task, enabling it
to learn tasks consecutively. In contrast to our work, Wil-
son et al. focused on environments with discrete states and
actions. Additionally, their method requires the ability to
compute an optimal policy given an MDP. This process
can be expensive for even moderately large discrete envi-
ronments, but is computationally intractable for the types
of continuous, high-dimensional control problems consid-
ered here. Another example is by Li et al. (2009), who
developed a model-free multi-task RL method for partially
observable environments. Unlike our problem setting, their
method focuses on off-policy batch MTL. Finally, Lazaric
& Ghavamzadeh (2010) exploit shared structure in the
value functions between related MDPs. However, their ap-
proach is designed for on-policy multi-task policy evalua-
tion, rather than computing optimal policies.

A second approach to multi-task RL is based on Policy
Reuse (Fernández & Veloso, 2013), in which policies from
previously learned tasks are probabilistically reused to bias
the learning of new tasks. One drawback of Policy Reuse is
that it requires that tasks share common states, actions, and
transition functions (but allows different reward functions),
while our approach only requires that tasks share a com-
mon state and action space. This restriction precludes the
application of Policy Reuse to the scenarios considered in
Section 7, where the systems have related but not identical
transition functions. Also, in contrast to PG-ELLA, Policy
Reuse does not support reverse transfer, where subsequent
learning improves previously learned policies.

Perhaps the approach most similar to ours is by Deisenroth
et al. (2014), which uses policy gradients to learn a sin-
gle controller that is optimal on average over all training
tasks. By appropriately parameterizing the policy, the con-
troller can be customized to particular tasks. However, this
method requires that tasks differ only in their reward func-
tion, and thus is inapplicable to our experimental scenarios.

3. Problem Framework
We first describe our framework for policy gradient RL and
lifelong learning. The next section uses this framework to
present our approach to online MTL for policy gradients.

3.1. Policy Gradient Reinforcement Learning

We frame each SDM task as an RL problem, in which an
agent must sequentially select actions to maximize its ex-
pected return. Such problems are typically formalized as
a Markov decision process (MDP) 〈X ,A, P,R, γ〉, where
X ⊆ Rd is the (potentially infinite) set of states, A ⊆ Rm
is the set of possible actions, P : X × A × X 7→ [0, 1]
is a state transition probability function describing the sys-
tem’s dynamics, R : X × A 7→ R is the reward function
measuring the agent’s performance, and γ ∈ [0, 1) speci-
fies the degree to which rewards are discounted over time.
At each time step h, the agent is in state xh ∈ X and must
choose an action ah ∈ A, transitioning it to a new state
xh+1 ∼ p(xh+1 | xh,ah) as given by P and yielding re-
ward rh+1 = R(xh,ah). A policy π : X × A 7→ [0, 1]
is defined as a probability distribution over state-action
pairs, where π(a | x) represents the probability of se-
lecting action a in state x. The goal of an RL agent is to
find an optimal policy π? that maximizes the expected re-
turn. The sequence of state-action pairs forms a trajectory
τ = [x0:H ,a0:H] over a possibly infinite horizon H .

Policy gradient methods (Sutton et al., 1999; Peters &
Schaal, 2008; Peters & Bagnell, 2010) have shown success
in solving high-dimensional problems, such as robotic con-
trol (Peters & Schaal, 2007). These methods represent the
policy πθ(a | x) using a vector θ ∈ Rd of control param-
eters. The goal is to determine the optimal parameters θ?

that maximize the expected average return:

J (θ) =
∫
T
pθ(τ) R(τ) dτ , (1)

where T is the set of all possible trajectories. The trajectory
distribution pθ(τ) and average per time step return R(τ)
are defined as:

pθ(τ) = P0(x0)

H∏
h=1

p(xh+1 | xh,ah) πθ(ah | xh)

R(τ) =
1

H

H∑
h=0

rh+1 ,

with an initial state distribution P0 : X 7→ [0, 1].

Most policy gradient algorithms, such as episodic REIN-
FORCE (Williams, 1992), PoWER (Kober & Peters, 2011),
and Natural Actor Critic (Peters & Schaal, 2008), employ
supervised function approximators to learn the control pa-
rameters θ by maximizing a lower bound on the expected
return of J (θ) (Eq. 1). To achieve this, one generates tra-
jectories using the current policy πθ, and then compares
the result with a new policy parameterized by θ̃. As de-
scribed by Kober & Peters (2011), the lower bound on the
expected return can be attained using Jensen’s inequality

Online Multi-Task Learning for Policy Gradient Methods

and the concavity of the logarithm:

logJ
(
θ̃
)
= log

∫
T
pθ̃(τ) R(τ) dτ

= log

∫
T

pθ(τ)

pθ(τ)
pθ̃(τ) R(τ) dτ

≥
∫
T
pθ(τ) R(τ) log

pθ̃(τ)

pθ(τ)
dτ + constant

∝ −DKL
(
pθ(τ) R(τ) || pθ̃(τ)

)
= JL,θ

(
θ̃
)
,

where DKL
(
p(τ) || q(τ)

)
=

∫
T
p(τ) log

p(τ)

q(τ)
dτ . We

see that this is equivalent to minimizing the KL divergence
between the reward-weighted trajectory distribution of πθ
and the trajectory distribution pθ̃ of the new policy πθ̃.

3.2. The Lifelong Learning Problem

In contrast to most previous work on policy gradients,
which focus on single-task learning, this paper focuses
on the online MTL setting in which the agent is re-
quired to learn a series of SDM tasks Z(1), . . . ,Z(Tmax)

over its lifetime. Each task t is an MDP Z(t) =
〈S(t),A(t), P (t), R(t), γ(t)〉 with initial state distribution
P

(t)
0 . The agent will learn the tasks consecutively, acquir-

ing multiple trajectories within each task before moving to
the next. The tasks may be interleaved, providing the agent
the opportunity to revisit earlier tasks for further experi-
ence, but the agent has no control over the task order. We
assume that a priori the agent does not know the total num-
ber of tasks Tmax, their distribution, or the task order.

The agent’s goal is to learn a set of optimal policies
Π? =

{
π?
θ(1) , . . . , π

?
θ(Tmax)

}
with corresponding param-

eters Θ? =
{
θ(1)?, . . . ,θ(Tmax)?

}
. At any time, the agent

may be evaluated on any previously seen task, and so
must strive to optimize its learned policies for all tasks
Z(1), . . . ,Z(T), where T denotes the number of tasks seen
so far (1 ≤ T ≤ Tmax).

4. Online MTL for Policy Gradient Methods
This section develops the Policy Gradient Efficient Life-
long Learning Algorithm (PG-ELLA).

4.1. Learning Objective

To share knowledge between tasks, we assume that each
task’s control parameters can be modeled as a linear com-
bination of latent components from a shared knowledge
base. A number of supervised MTL algorithms (Kumar &
Daumé, 2012; Ruvolo & Eaton, 2013; Maurer et al., 2013)
have shown this approach to be successful. Our approach
incorporates the use of a shared latent basis into policy gra-
dient learning to enable transfer between SDM tasks.

PG-ELLA maintains a library of k latent components L ∈
Rd×k that is shared among all tasks, forming a basis for
the control policies. We can then represent each task’s con-
trol parameters as a linear combination of this latent basis
θ(t) = Ls(t), where s(t) ∈ Rk is a task-specific vector of
coefficients. The task-specific coefficients s(t) are encour-
aged to be sparse to ensure that each learned basis compo-
nent captures a maximal reusable chunk of knowledge.

We can then represent our objective of learning T station-
ary policies while maximizing the amount of transfer be-
tween task models by:

eT(L)=
1

T

T∑
t=1

min
s(t)

[
−J
(
θ(t)
)
+ µ

∥∥∥s(t)∥∥∥
1

]
+ λ‖L‖2F , (2)

where θ(t) = Ls(t), the L1 norm of s(t) is used to approx-
imate the true vector sparsity, and ‖ · ‖F is the Frobenius
norm. The form of this objective function is closely related
to other supervised MTL methods (Ruvolo & Eaton, 2013;
Maurer et al., 2013), with important differences through the
incorporation of J (·) as we will examine shortly.

Our approach to optimizing Eq. (2) is based upon the Ef-
ficient Lifelong Learning Algorithm (ELLA) (Ruvolo &
Eaton, 2013), which provides a computationally efficient
method for learning L and the s(t)’s online over multiple
tasks in the case of supervised MTL. The objective solved
by ELLA is closely related to Eq. (2), with the exception
that the−J (·) term is replaced with a measure of each task
model’s average loss over the training data in ELLA. Since
Eq. (2) is not jointly convex in L and the s(t)’s, most su-
pervised MTL methods use an expensive alternating op-
timization procedure to train the task models simultane-
ously. Ruvolo & Eaton provide an efficient alternative to
this procedure that can train task models consecutively, en-
abling Eq. (2) to be used effectively for online MTL. In the
next section, we adapt this approach to the policy gradient
framework, and show that the resulting algorithm provides
an efficient method for learning consecutive SDM tasks.

4.2. Multi-Task Policy Gradients

Policy gradient methods maximize the lower bound of
J (θ) (Eq. 1). In order to use Eq. (2) for MTL with policy
gradients, we must first incorporate this lower bound into
our objective function. Rewriting the error term in Eq. (2)
in terms of the lower bound yields

eT(L)=
1

T

T∑
t=1

min
s(t)

[
−JL,θ

(
θ̃(t)
)
+ µ

∥∥∥s(t)∥∥∥
1

]
+ λ‖L‖2F ,

where θ̃(t) = Ls(t). However, we can note that

JL,θ
(
θ̃(t)
)
∝−
∫

τ∈T(t)

pθ(t)(τ)R(t)(τ) log

(
pθ(t)(τ)R(t)(τ)

pθ̃(t)(τ)

)
dτ .

Online Multi-Task Learning for Policy Gradient Methods

Therefore, maximizing the lower bound of JL,θ
(
θ̃(t)
)

is
equivalent to the following minimization problem:

min
θ̃(t)


∫

τ∈T(t)

pθ(t)(τ)R(t)(τ) log

(
pθ(t)(τ)R(t)(τ)

pθ̃(t)(τ)

)
dτ

 .

Substituting the above result with θ̃(t) = Ls(t) into Eq. (2)
leads to the following total cost function for MTL with pol-
icy gradients:

eT (L) =
1

T

T∑
t=1

min
s(t)

{[∫
τ∈T(t)

pθ(t)(τ)R(t)(τ)

log

(
pθ(t)(τ)R(t)(τ)

pθ̃(t)(τ)

)
dτ

]
+ µ

∥∥∥s(t)∥∥∥
1

}
+ λ‖L‖2F .

(3)

While Eq. (3) enables batch MTL using policy gradi-
ents, it is computationally expensive due to two ineffi-
ciencies that make it inappropriate for online MTL: a) the
explicit dependence on all available trajectories through
J (θ(t)) =

∫
τ∈T(t) pθ(t)(τ) R(t)(τ) dτ , and b) the ex-

haustive evaluation of a single candidateL that requires the
optimization of all s(t)’s through the outer summation. To-
gether, these aspects cause Eq. (3) (and similarly Eq. (2)) to
have a computational cost that depends on the total number
of trajectories and total number of tasks T , complicating its
direct use in the lifelong learning setting.

We next describe methods for resolving each of these inef-
ficiencies while minimizing Eq. (3), yielding PG-ELLA as
an efficient method for multi-task policy gradient learning.
In fact, we show that the complexity of PG-ELLA in learn-
ing a single task policy is independent of a) the number of
tasks seen so far and b) the number of trajectories for all
other tasks, allowing our approach to be highly efficient.

4.2.1. ELIMINATING DEPENDENCE ON OTHER TASKS

As mentioned above, one of the inefficiencies in minimiz-
ing eT (L) is its dependence on all available trajectories for
all tasks. To remedy this problem, as in ELLA, we approx-
imate eT (L) by performing a second-order Taylor expan-
sion of JL,θ(θ̃(t)) around the optimal solution:

α(t) = argmin
θ̃(t)

{∫
τ∈T(t)

pθ(t)(τ)R(t)(τ)

log

(
pθ(t)(τ)R(t)(τ)

pθ̃(t)(τ)

)
dτ

}
.

As shown by Ruvolo & Eaton (2013), the second-order
Taylor expansion can be substituted into the MTL objec-
tive function to provide a point estimate around the optimal
solution, eliminating the dependence on other tasks.

To compute the second-order Taylor representation, the
first and second derivatives of JL,θ

(
θ̃(t)
)

w.r.t. θ̃(t) are re-

quired. The first derivative,∇θ̃(t) JL,θ
(
θ̃(t)
)

, is given by:

−
∫

τ∈T(t)

pθ(t)(τ)R(t)(τ) ∇θ̃(t) log pθ̃(t)(τ) dτ

with:

log pθ̃(t)(τ) = log p(t)
(
x
(t)
0

)
+

H(t)∑
h=0

p(t)
(
x
(t)
h+1 | x

(t)
h ,a

(t)
h

)

+

H(t)∑
h=0

log πθ̃(t)

(
a
(t)
h | x

(t)
h

)
.

Therefore:
∇θ̃(t)JL,θ

(
θ̃(t)
)
= −

∫
τ∈T(t)

pθ(t)(τ) R(t)(τ)H(t)∑
h=1

∇θ̃(t) log πθ̃(t)

(
a
(t)
h | x

(t)
h

)dτ

= −E

H(t)∑
h=1

∇θ̃(t) log πθ̃(t)

(
a
(t)
h | x

(t)
h

)R(t)(τ)

 .

Policy gradient algorithms determine α(t) = θ̃(t)? by
following the above gradient. The second derivative of
JL,θ

(
θ̃(t)
)

can be computed similarly to produce:

∇2
θ̃(t),θ̃(t) JL,θ

(
θ̃(t)
)
= −

∫
τ∈T(t)

pθ(t)(τ) R(t)(τ)H(t)∑
h=1

∇2
θ̃(t),θ̃(t) log πθ̃(t)

(
a
(t)
h | x

(t)
h

)dτ .

We let Γ(t) = ∇2
θ̃(t),θ̃(t)

JL,θ
(
θ̃(t)
)

represent the Hessian

evaluated at α(t):

Γ(t)= −E
[
R(t)(τ)

H(t)∑
h=1

∇2
θ̃(t),θ̃(t) log πθ̃(t)

(
a
(t)
h |x

(t)
h

)]
θ̃(t)=α(t)

.

Substituting the second-order Taylor approximation into
Eq. (3) yields the following:

êT (L)=
1

T

T∑
t=1

min
s(t)

[∥∥∥α(t)−Ls(t)
∥∥∥2

Γ(t)
+ µ

∥∥∥s(t)∥∥∥
1

]
+λ‖L‖2F ,

(4)

where ‖v‖2A = vTAv, the constant term was suppressed
since it has no effect on the minimization, and the linear
term was ignored since by constructionα(t) is a minimizer.
Most importantly, the dependence on all available trajecto-
ries has been eliminated, remedying the first inefficiency.

Online Multi-Task Learning for Policy Gradient Methods

4.2.2. COMPUTING THE LATENT SPACE

The second inefficiency in Eq. (3) arises from the proce-
dure used to compute the objective function for a single
candidate L. Namely, to determine how effective a given
value of L serves as a common basis for all learned tasks,
an optimization problem must be solved to recompute each
of the s(t)’s, which becomes increasingly expensive as T
grows large. To remedy this problem, we modify Eq. (3)
(or equivalently, Eq. (4)) to eliminate the minimization over
all s(t)’s. Following the approach used in ELLA, we opti-
mize each task-specific projection s(t) only when training
on task t, without updating them when training on other
tasks. Consequently, any changes to θ(t) when learning on
other tasks will only be through updates to the shared basis
L. As shown by Ruvolo & Eaton (2013), this choice to up-
date s(t) only when training on task t does not significantly
affect the quality of model fit as T grows large.

With this simplification, we can rewrite Eq. (4) in terms of
two update equations:

s(t) ← argmin
s
`
(
Lm, s,α

(t),Γ(t)
)

(5)

Lm+1← argmin
L

1

T

T∑
t=1

`
(
L, s(t),α(t),Γ(t)

)
+λ‖L‖2F , (6)

where Lm refers to the value of the latent basis at the start
of the mth training session, t corresponds to the particular
task for which data was just received, and

` (L, s,α,Γ) = µ‖s‖1 + ‖α−Ls‖2Γ .

To compute Lm, we null the gradient of Eq. (6) and solve
the resulting equation to yield the updated column-wise
vectorization of L asA−1b, where:

A = λId×k,d×k +
1

T

T∑
t=1

(
s(t)s(t)

>)⊗ Γ(t)

b =
1

T

T∑
t=1

vec
(
s(t)
> ⊗

(
α(t)>Γ(t)

))
.

For efficiency, we can compute A and b incrementally as
new tasks arrive, avoiding the need to sum over all tasks.

4.3. Data Generation & Model Update

Using the incremental form (Eqs. 5–6) of the policy gra-
dient MTL objective function (Eq. 3), we can now con-
struct an online MTL algorithm that can operate in a life-
long learning setting. In typical policy gradient methods,
trajectories are generated in batch mode by first initializ-
ing the policy and sampling trajectories from the system
(Kober & Peters, 2011; Peters & Bagnell, 2010). Given
these trajectories, the policy parameters are updated, new

Algorithm 1 PG-ELLA (k, λ, µ)

T ← 0, A← zerosk×d,k×d,
b← zerosk×d,1, L← zerosd,k
while some task t is available do

if isNewTask(t) then
T ← T + 1(
T(t), R(t)

)
← getRandomTrajectories()

else(
T(t), R(t)

)
← getTrajectories

(
α(t)

)
A← A−

(
s(t)s(t)

>)⊗ Γ(t)

b← b− vec
(
s(t)
> ⊗

(
α(t)>Γ(t)

))
end if
Compute α(t) and Γ(t) from

(
T(t), R(t)

)
L← reinitializeAllZeroColumns(L)
s(t) ← argmins `

(
L, s,α(t),Γ(t)

)
A← A +

(
s(t)s(t)

>)⊗ Γ(t)

b← b + vec
(
s(t)
> ⊗

(
α(t)>Γ(t)

))
L← mat

((
1
T A + λIk×d,k×d

)−1 1
T b
)

end while

trajectories are sampled from the system using the updated
policy, and the procedure is then repeated. In this work, we
adopt a slightly modified version of policy gradients to op-
erate in the lifelong learning setting. The first time a new
task is observed, we use a random policy for sampling; each
subsequent time the task is observed, we sample trajecto-
ries using the previously learnedα(t). Additionally, instead
of looping until the policy parameters have converged, we
perform only one run over the trajectories.

Upon receiving data for a specific task t, PG-ELLA per-
forms two steps to update the model: it first computes the
task-specific projections s(t), and then refines the shared
latent space L. To compute s(t), we first determine α(t)

and Γ(t) using only data from task t. The details of this
step depend on the form chosen for the policy, as described
in Section 5. We can then solve the L1-regularized regres-
sion problem given in Eq. (5)—an instance of the Lasso—
to yield s(t). In the second step, we update L by first reini-
tializing any zero-columns ofL and then following Eq. (6).
The complete PG-ELLA is given as Algorithm 1.

5. Policy Forms & Base Learners
PG-ELLA supports a variety of policy forms and base
learners, enabling it to be used in a number of policy gradi-
ent settings. This section describes how two popular policy
gradient methods can be used as the base learner in PG-
ELLA. In theory, any policy gradient learner that can pro-
vide an estimate of the Hessian can be incorporated.

Online Multi-Task Learning for Policy Gradient Methods

5.1. Episodic REINFORCE

In episodic REINFORCE (Williams, 1992), the
stochastic policy for task t is chosen according
a(t) = θ(t)Tx

(t)
h + εh, with εh ∼ N

(
0, σ2

)
, and so

π
(
a
(t)
h | x

(t)
h

)
∼ N

(
θ(t)Tx

(t)
h , σ

2
)

. Therefore,

∇θ̃(t)JL,θ
(
θ̃(t)
)
= −E

[
R(t)(τ)

H(t)∑
h=1

σ−2
(
a(t)−θTx(t)

h

)]
is used to minimize the KL-divergence, equivalently
maximizing the total discounted pay-off. The sec-
ond derivative for episodic REINFORCE is given by
Γ(t) = E

[∑H(t)

h=1 σ
−2x

(t)
h x

(t)>
h

]
.

5.2. Natural Actor Critic

In episodic Natural Actor Critic (eNAC), the stochastic
policy for task t is chosen in a similar fashion to that of
REINFORCE: π

(
a
(t)
h | x

(t)
h

)
∼ N

(
θ(t)Tx

(t)
h , σ

2
)

. The
change in the probability distribution is measured by a
KL-divergence that is approximated using a second-order
expansion to incorporate the Fisher information matrix.
Accordingly, the gradient follows: ∇̃θJ = G−1∇θJ (θ),
where G denotes the Fisher information matrix. The Hes-
sian can be computed in a similar manner to the previous
section. For details, see Peters & Schaal (2008).

6. Theoretical Results & Computational Cost
Here, we provide theoretical results that establish that PG-
ELLA converges and that the cost (in terms of model per-
formance) for making the simplification from Section 4.2.1
is asymptotically negligible. We proceed by first stating
theoretical results from Ruvolo & Eaton (2013), and then
show that these theoretical results apply directly to PG-
ELLA with minimal modifications. First, we define:

ĝT (L) =
1

T

T∑
t=1

`
(
L, s(t),α(t),Γ(t)

)
+λ‖L‖2F .

Recall from Section 4.2.1, that the lefthand side of the pre-
ceding equation specifies the cost of basis L if we leave
the s(t)’s fixed (i.e., we only update them when we receive
training data for that particular task). We are now ready to
state the two results from Ruvolo & Eaton (2013):

Proposition 1: The latent basis becomes more stable over
time at a rate of LT+1 −LT = O

(
1
T

)
.

Proposition 2:
1. ĝT (LT) converges almost surely;
2. ĝT (LT)− eT (LT) converges almost surely to 0.

Proposition 2 establishes that the algorithm converges to a
fixed per-task loss on the approximate objective function

ĝT and the objective function that does not contain the sim-
plification from Section 4.2.1. Further, Prop. 2 establishes
that these two functions converge to the same value. The
consequence of this last point is that PG-ELLA does not
incur any penalty (in terms of average per-task loss) for
making the simplification from Section 4.2.1.

The two propositions require the following assumptions:

1. The tuples
(
Γ(t),α(t)

)
are drawn i.i.d. from a distri-

bution with compact support (bounding the entries of
Γ(t) and α(t)).

2. For all L,Γ(t), and α(t), the smallest eigenvalue of
L>γ Γ(t)Lγ is at least κ (with κ > 0), where γ is
the subset of non-zero indices of the vector s(t) =
argmins ‖α(t) − Ls‖2

Γ(t) . In this case the non-zero
elements of the unique minimizing s(t) are given by:
s
(t)
γ =

(
L>γ Γ(t)Lγ

)−1(
L>γ Γ(t)α(t) − µεγ

)
, where

εγ is a vector containing the signs of the non-zero en-
tries of s(t).

The second assumption is a mild condition on the unique-
ness of the sparse coding solution. The first assumption
can be verified by assuming that there is no sequential de-
pendency of one task to the next. Additionally, the fact
that Γ(t) is contained in a compact region can be verified
for the episodic REINFORCE algorithm by looking at the
form of the Hessian and requiring that the time horizon
H(t) is finite. Using a similar argument we can see that
the magnitude of the gradient for episodic REINFORCE is
also bounded when H(t) is finite. If we then assume that
we make a finite number of updates for each task model we
can ensure that the sum of all gradient updates is finite, thus
guaranteeing that α(t) is contained in a compact region.

Computational Complexity: Each update begins by run-
ning a step of policy gradient to update α(t) and Γ(t).
We assume that the cost of the policy gradient update is
O(ξ(d, nt)), where the specific cost depends on the par-
ticular policy algorithm employed and nt is the number of
trajectories obtained for task t at the current iteration. To
complete the analysis, we use a result from Ruvolo & Eaton
(2013) that the cost of updatingL and s(t) isO(k2d3). This
gives an overall cost ofO(k2d3+ξ(d, nt)) for each update.

7. Evaluation
We applied PG-ELLA to learn control policies for the four
dynamical systems shown in Figure 1, including three me-
chanical systems and an application to quadrotor control.
We generated multiple tasks by varying the parameteriza-
tion of each system, yielding a set of tasks from each do-
main with varying dynamics. For example, the simple mass
spring damper system exhibits significantly higher oscilla-
tions as the spring constant increases. Notably, the opti-

Online Multi-Task Learning for Policy Gradient Methods

F1F2

F3 F4

e
1B

e2B

e3B

r

e11

e21e31

�
rol

l

 yaw

⇥
pitch

F

hx, ẋi

h✓, ✓̇i

hx, ẋi

F

h✓1, ✓̇1i
h✓2, ✓̇2i

h✓3, ✓̇3i

F

hx, ẋi

Figure 1. The four dynamical systems: a) simple mass spring
damper (top-left), b) cart-pole (top-right), c) three-link inverted
pendulum (bottom-left), and d) quadrotor (bottom-right).

mal policies for controlling these systems vary significantly
even for only slight variations in the system parameters.

7.1. Benchmark Dynamical Systems

We evaluated PG-ELLA on three benchmark dynamical
systems. In each domain, the distance between the current
state and the goal position was used as the reward function.

Simple Mass Spring Damper: The simple mass (SM)
system is characterized by three parameters: the spring
constant k in N/m, the damping constant d in Ns/m, and the
mass m in kg. The system’s state is given by the position x
and velocity ẋ of the mass, which vary according to a lin-
ear force F . The goal is to design a policy for controlling
the mass to be in a specific state gref = 〈xref , ẋref〉. In our
experiments, the goal state varied from being gref = 〈0, 0〉
to g(i)ref = 〈i, 0〉, where i ∈ {1, 2, . . . , 5}.
Cart-Pole: The cart-pole (CP) system has been used
extensively as a benchmark for evaluating RL algo-
rithms (Buşoniu et al., 2010). CP dynamics are charac-
terized by the cart’s mass mc in kg, the pole’s mass mp in
kg, the pole’s length l in meters, and a damping parameter
d in Ns/m. The state is characterized by the position x and
velocity ẋ of the cart, as well as the angle θ and angular ve-
locity θ̇ of the pole. The goal is to design a policy capable
of controlling the pole in an upright position.

Three-Link Inverted Pendulum: The three-link CP
(3CP) is a highly nonlinear and difficult system to control.
The goal is to balance three connected rods in an upright
position by moving the cart. The dynamics are parameter-
ized by the mass of the cart mc, rod mass mp,i, length li,
inertia Ii, and damping parameters di, where i ∈ {1, 2, 3}
represents the index for each of the three rods. The sys-
tem’s state is characterized by an eight-dimensional vector,
consisting of the position x and velocity ẋ of the cart, and
the angle {θi}3i=1 and angular velocity {θ̇i}3i=1 of each rod.

Table 1. System parameter ranges used in the experiments.

SM CP & 3CP 3CP 3CP
k∈ [1, 10] mc∈ [0.5, 1.5] l1∈ [0.3, 0.5] d1∈ [0.1, 0.2]
d∈ [0.01, 0.2] mp∈ [0.1, 0.2] l2∈ [0.2, 0.4] d2∈ [0.01, 0.02]
m∈ [0.5, 5] l∈ [0.2, 0.8] l3∈ [0.1, 0.3] d3∈ [0.1, 0.2]

d∈ [0.01, 0.09] Ii∈
[
10−6, 10−4

]
7.1.1. EXPERIMENTAL PROTOCOL

We first generated 30 tasks for each domain by varying the
system parameters over the ranges given in Table 1. These
parameter ranges were chosen to ensure a variety of tasks,
including those that were difficult to control with highly
chaotic dynamics. We then randomized the task order with
repetition and PG-ELLA acquired a limited amount of ex-
perience in each task consecutively, updating L and the
s(t)’s after each session. At each learning session, PG-
ELLA was limited to 50 trajectories (for SM & CP) or 20
trajectories (for 3CP) with 150 time steps each to perform
the update. Learning ceased once PG-ELLA had experi-
enced at least one session with each task.

To configure PG-ELLA, we used eNAC (Peters & Schaal,
2008) as the base policy gradient learner. The dimension-
ality k of the latent basis L was chosen independently for
each domain via cross-validation over 10 tasks. The step-
size for each task domain was determined by a line search
after gathering 10 trajectories of length 150.

To evaluate the learned basis at any point in time, we
initialized policies for each task using θ(t) = Ls(t) for
t = {1, . . . , T}. Starting from these initializations, learn-
ing on each task commenced using eNAC. The number of
trajectories varied among the domains from a minimum of
20 on the simple mass system to a maximum of 50 on the
quadrotors. The length of each of these trajectories was
set to 150 time steps across all domains. We measured
performance using the average reward computed over 50
episodes of 150 time steps, and compared this to standard
eNAC running independently with the same settings.

7.1.2. RESULTS ON THE BENCHMARK SYSTEMS

Figure 2 compares PG-ELLA to standard policy gradient
learning using eNAC, showing the average performance
on all tasks versus the number of learning iterations. PG-
ELLA clearly outperforms standard eNAC in both the ini-
tial and final performance on all task domains, demonstrat-
ing significantly improved performance from MTL.

We evaluated PG-ELLA’s performance on all tasks using
the basisL learned after observing various subsets of tasks,
from observing only three tasks (10%) to observing all 30
tasks (100%). These experiments assessed the quality of
the learned basis L on both known as well as unknown
tasks, showing that performance increases as PG-ELLA

Online Multi-Task Learning for Policy Gradient Methods

100 200 300 400 500 600 700
−30

−28

−26

−24

−22

−20

−18

Iterations

Av
er

ag
e

Re
wa

rd

PG−ELLA, 100% tasks observed
PG−ELLA, 50% tasks observed
PG−ELLA, 30% tasks observed
PG−ELLA, 10% tasks observed
Standard Policy Gradients

(a) Simple Mass Spring Damper

0 500 1000 1500

−220

−200

−180

−160

−140

−120

−100

Iterations

Av
er

ag
e R

ew
ar

d

PG−ELLA, 100% tasks observed
PG−ELLA, 50% tasks observed
PG−ELLA, 30% tasks observed
PG−ELLA, 10% tasks observed
Standard Policy Gradients

(b) Cart-Pole

0 1000 2000 3000 4000 5000
−380

−360

−340

−320

−300

−280

−260

Iterations

Av
er

ag
e

Re
wa

rd

PG−ELLA, 100% tasks observed
PG−ELLA, 50% tasks observed
PG−ELLA, 30% tasks observed
PG−ELLA, 10% tasks observed
Standard Policy Gradients

(c) Three-Link Inverted Pendulum

Figure 2. The performance of PG-ELLA versus standard policy gradients (eNAC) on the benchmark dynamical systems.

learns more tasks. When a particular task was not observed,
the recent L with a zero initialization of s(t) was used.

To assess the difference in total number of trajectories be-
tween PG-ELLA and eNAC, we also tried giving eNAC an
additional 50 trajectories of length 150 time steps at each
iteration. However, its overall performance did not change.

7.2. Quadrotor Control

We also evaluated PG-ELLA on an application to quadro-
tor control, providing a more challenging domain. The
quadrotor system is illustrated in Figure 1, with dynamics
influenced by inertial constants around e1,B, e2,B, and e3,B,
thrust factors influencing how the rotor’s speed affects the
overall variation of the system’s state, and the length of the
rods supporting the rotors. Although the overall state of
the system can be described by a nine-dimensional vector,
we focus on stability and so consider only six of these state
variables. The quadrotor system has a high-dimensional
action space, where the goal is control the four rotational
velocities {wi}4i=1 of the rotors to stabilize the system. To
ensure realistic dynamics, we used the simulated model de-
scribed by Bouabdallah (2007), which has been verified on
and used in the control of a physical quadrotor.

To produce multiple tasks, we generated 15 quadrotor
systems by varying each of: the inertia around the x-
axis Ixx ∈ [4.5e−3, 6.5e−3], inertia around the y-axis
Iyy ∈ [4.2e−3, 5.2e−3], inertia around the z-axis Izz ∈
[1.5e−2, 2.1e−2], and the length of the arms l ∈ [0.27, 0.3].
In each case, these parameter values have been used by
Bouabdallah (2007) to describe physical quadrotors. We
used a linear quadratic regulator, as described by Bouabdal-
lah, to initialize the policies in both the learning (i.e., deter-
mining L and s(t)) and testing (i.e., comparing to standard
policy gradients) phases. We followed a similar experimen-
tal procedure to evaluate PG-ELLA on quadrotor control,
where we used 50 trajectories of 150 time steps to perform
an eNAC policy gradient update each learning session.

Figure 3 compares PG-ELLA to standard policy gradients
(eNAC) on quadrotor control. As on the benchmark sys-

0 1000 2000 3000 4000 5000
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1 x 104

Iterations

Av
er

ag
e

Re
wa

rd

PG−ELLA, 100% tasks observed
PG−ELLA, 50% tasks observed
PG−ELLA, 30% tasks observed
PG−ELLA, 10% tasks observed
Standard Policy Gradients

Figure 3. Performance on quadrotor control.

tems, we see that PG-ELLA clearly outperforms standard
eNAC in both the initial and final performance, and this
performance increases as PG-ELLA learns more tasks. The
final performance of the policy learned by PG-ELLA af-
ter observing all tasks is significantly better than the policy
learned using standard policy gradients, showing the bene-
fits of knowledge transfer between tasks. Most importantly
for practical applications, by using the basisL learned over
previous tasks, PG-ELLA can achieve high performance
in a new task much more quickly (with fewer trajectories)
than standard policy gradient methods.

8. Conclusion & Future Work
PG-ELLA provides an efficient mechanism for online MTL
of SDM tasks while providing improved performance over
standard policy gradient methods. By supporting knowl-
edge transfer between tasks via a shared latent basis, PG-
ELLA is also able to rapidly learn policies for new tasks,
providing the ability for an agent to rapidly adapt to new
situations. In future work, we intend to explore the poten-
tial for cross-domain transfer with PG-ELLA.

Acknowledgements
This work was partially supported by ONR N00014-11-1-
0139, AFOSR FA8750-14-1-0069, and NSF IIS-1149917.
We thank the reviewers for their helpful suggestions.

Online Multi-Task Learning for Policy Gradient Methods

References
Bócsi, B., Csato, L., and Peters, J. Alignment-based transfer

learning for robot models. In Proceedings of the 2013 Inter-
national Joint Conference on Neural Networks (IJCNN), 2013.

Bou-Ammar, H., Taylor, M.E., Tuyls, K., Driessens, K., and
Weiss, G. Reinforcement learning transfer via sparse coding.
In Proceedings of the 11th Conference on Autonomous Agents
and Multiagent Systems (AAMAS), 2012.

Bouabdallah, S. Design and control of quadrotors with applica-
tion to autonomous flying. PhD thesis, École polytechnique
fédérale de Lausanne, 2007.

Buşoniu, L., Babuška, R., De Schutter, B., and Ernst, D. Rein-
forcement Learning and Dynamic Programming Using Func-
tion Approximators. CRC Press, Boca Raton, Florida, 2010.

Daniel, C., Neumann, G., Kroemer, O., and Peters, J. Learning
sequential motor tasks. In Proceedings of the 2013 IEEE In-
ternational Conference on Robotics and Automation (ICRA),
2013.

Deisenroth, M.P., Englert, P., Peters, J., and Fox, D. Multi-task
policy search for robotics In Proceedings of the 2014 IEEE
International Conference on Robotics and Automation (ICRA),
2014.

Fernández, F. and Veloso, M. Learning domain structure through
probabilistic policy reuse in reinforcement learning. Progress
in AI, 2(1):13–27, 2013.

Kober, J. and Peters, J. Policy search for motor primitives in
robotics. Machine Learning, 84(1–2), July 2011.

Kumar, A. and Daumé III, H. Learning task grouping and overlap
in multi-task learning. In Proceedings of the 29th International
Conference on Machine Learning (ICML), 2012.

Kupcsik, A.G., Deisenroth, M.P., Peters, J., and Neumann, G.
Data-efficient generalization of robot skills with contextual
policy search. In Proceedings of the AAAI Conference on Arti-
ficial Intelligence (AAAI), 2013.

Lazaric, A. and Ghavamzadeh, M. Bayesian multi-task reinforce-
ment learning. In Proceedings of the 27th International Con-
ference on Machine Learning (ICML), 2010.

Li, H., Liao, X., and Carin, L. Multi-task reinforcement learn-
ing in partially observable stochastic environments. Journal of
Machine Learning Research, 10:1131–1186, 2009.

Liu, Y. and Stone, P. Value-function-based transfer for reinforce-
ment learning using structure mapping. In Proceedings of the
21st National Conference on Artificial Intelligence (AAAI),
pp. 415–420, 2006.

Maurer, A., Pontil, M., and Romera-Paredes, B. Sparse coding
for multitask and transfer learning. In Proceedings of the 30th
International Conference on Machine Learning (ICML), 2013.

Peters, J. and Bagnell, J.A. Policy gradient methods. Encyclope-
dia of Machine Learning, pp. 774–776, 2010.

Peters, J. and Schaal, S. Applying the episodic natural actor-critic
architecture to motor primitive learning. In Proceedings of
the 2007 European Symposium on Artificial Neural Networks
(ESANN), 2007.

Peters, J. and Schaal, S. Natural actor-critic. Neurocomputing, 71
(7-9):1180–1190, 2008.

Rai, P. and Daumé III, H. Infinite predictor subspace models for
multitask learning. In Proceedings of the 26th Conference on
Uncertainty in Artificial Intelligence (UAI), 2010.

Ruvolo, P. and Eaton, E. ELLA: An efficient lifelong learning
algorithm. In Proceedings of the 30th International Conference
on Machine Learning (ICML), 2013.

Sutton, R.S., McAllester, D.A., Singh, S.P., and Mansour, Y.
Policy gradient methods for reinforcement learning with func-
tion approximation. In Neural Information Processing Systems
(NIPS), pp. 1057–1063, 1999.

Taylor, M.E., and Stone, P. Transfer learning for reinforcement
learning domains: a survey. Journal of Machine Learning Re-
search, 10:1633–1685, 2009.

Taylor, M.E., Whiteson, S., and Stone, P. Transfer via inter-task
mappings in policy search reinforcement learning. In Proceed-
ings of the 6th International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS), 2007.

Taylor, M.E., Kuhlmann, G., and Stone, P. Autonomous transfer
for reinforcement learning. In Proceedings of the 7th Interna-
tional Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS), pp. 283–290, 2008.

Thrun, S. and O’Sullivan, J. Discovering structure in multiple
learning tasks: the TC algorithm. In Proceedings of the 13th
International Conference on Machine Learning (ICML), 1996.

Williams, R.J. Simple statistical gradient-following algorithms
for connectionist reinforcement learning. Machine Learning,
8:229–256, 1992.

Wilson, A., Fern, A., Ray, S., and Tadepalli, P. Multi-task re-
inforcement learning: a hierarchical Bayesian approach. In
Proceedings of the 24th International Conference on Machine
Learning (ICML), pp. 1015–1022, 2007.

Zhang, J., Ghahramani, Z., and Yang, Y. Flexible latent variable
models for multi-task learning. Machine Learning, 73(3):221–
242, 2008.

