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Multicore is Eating the World 

+  Performance 
+  Energy efficiency 
  -   Performance bugs 2	
  



Cache Contention Bugs 

Contention for a single cash line 

•  Caused significant performance loss (Linux, MySQL, Boost) 
•  Architecture-specific 
•  Hard to find and debug 3	
  



Background 

•  Cache coherence keeps private caches in sync 
•  All protocols share 3 key states: Modified, Shared, Invalid 
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Two Types of Contention 
Same Bytes == True Sharing 
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Two Types of Contention 
Different Bytes == False Sharing 
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Offline Analysis 
Predicts speedup from FS  
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HitM Events 

•  A fundamental part of both types of contention 
•  A cache hit in a remote core’s cache in M state. 
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HITM Record Accuracy 

•  160 simple programs with read/write and write/write true/
false/no sharing 

•  Intel Core i7-4770K 3.4GHz Haswell 4-core processor 
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HITM Record Accuracy(1/2) 
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160 simple benchmarks Counting only exact addresses as being correct 



HITM Record Accuracy(2/2) 

160 simple benchmarks  
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Counting only exact PC as being correct 

Counting adjacent PCs as being correct 



LASER 

• Light: leverage Haswell h/w, no s/w or OS changes 

• Accurate: low false positives and false negatives 

• Sharing: detects both true and false sharing 

• dEtection: works as a profiling tool 

• Repair: automatically repairs false sharing at runtime 
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LASER System Overview 

Haswell or later Processors 
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Detection Algorithm 
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Cache Line Model 
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Evaluating LASER Detection 

•  Intel Core i7-4770K 3.4GHz Haswell 4-core processor 
•  33 workloads from Phoenix 1.0, Parsec 3.0 and Splash2X 
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LASER Detection Accuracy 

Created a database of manually-validated cache contention bugs 
•  9 bugs total across 33 workloads 
•  4 new bugs discovered by LASER 
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False 
Negative 

False Positive Runnable 
Benchmarks 

LASER 0 24 33/33 

VTUNE 1 64 33/33 

SHERIFF 3 4 12/33 
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Profiling Performance Comparison 

LASER (1.01x) vs VTune Amplifier XE 2015 
(1.8x) 18	
  



Repairing FS with SSB 

•  Needs Online False Sharing elimination! 
•  Legacy programs – no access to source code. 
•  Programs that need to be always running. 

•  Challenge is needing to rewrite the program without 
breaking it as it is running. 

•  Solve the problem of online FS repair with a Software Store 
Buffer (SSB). LASER repair tool is launched to attempt fix of 
FS. 
•  Implemented with Intel Pin 
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Cache  

Repairing FS with SSB 
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Flush at synchronization points for TSO compliance and basic block end 
for performance. 



•  The conventional hardware store buffer is not good enough for 
speedup.  

•  Needs optimizations for better performance 
•  May cause subtle memory consistency issues. 
•  For good performance, requires coalescing store buffer. But 

coalescing violates TSO. E.g. Sheriff does not provide TSO 
compliance. 

 

Challenges with Optimizing SSB 
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LASER’s TSO-Compliant, Coalescing SSB 

•  Instrument regions from Laser’s input by walking through the CFG. 
•  Coalescing, TSO compliant SSB made possible with Intel TSX. 
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Read X: 
Result = SSB[X] 
If (Result == null) 
    Result = *X; 
Return Result; 

Write X,Val: 
If (SSB[X] == null && 
    SSB.full()) 
    Flush(); 
SSB[X] = Val; 

Flush: 
TSX_Begin_Transaction 
Foreach pair in SSB 
    *pair.memory = pair.value; 
TSX_End_Transaction 
Redo_TSX_Transaction_If_Fa
ils 



LASER FS Repair Performance 

Automatic speedups of up to 19% 
LASER profiling informs manual fixes of up to 17x 
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Conclusions 

•  Cache contention bugs undermine the promise of multicore 
•  LASER uses Intel’s Haswell platform for fast, precise 

contention detection and automatic false sharing repair 
•  Many opportunities to leverage Haswell’s sharing detection 

capabilities 
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REMIX: Online Detection and Repair of Cache 
Contention for the JVM  
[PLDI 2016] 
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