
LASER: Light, Accurate
Sharing dEtection and Repair
Liang	
 Luo,	
 Akshitha	
 Sriraman,	
 Brooke	
 Fugate,	
 Shiliang	
 Hu,	
 Chris	
 J	
 Newburn,	

Gilles	
 Pokam,	
 Joseph	
 DevieA	

	

Multicore is Eating the World

+ Performance
+ Energy efficiency
 - Performance bugs 2	

Cache Contention Bugs

Contention for a single cash line

•  Caused significant performance loss (Linux, MySQL, Boost)
•  Architecture-specific
•  Hard to find and debug 3	

Background

•  Cache coherence keeps private caches in sync
•  All protocols share 3 key states: Modified, Shared, Invalid

X:M

L1
$

L1
$

Core
0

Core
1 Write X Read X

4	

X:S X:S

Two Types of Contention
Same Bytes == True Sharing

X:M

Core
0

Core
1 Write X Read X

X

5	

Cache
Line

Cache
Line

Two Types of Contention
Different Bytes == False Sharing

X:M

Core
0

Core
1 Write X Read Y

 X Y

6	

Related Work

Detection & Repair for
False Sharing

•  Sheriff
	
 	
 	
 	
 	
 	
 	
 [Liu	
 and	
 Berger,	
 OOPSLA	
 2011]	

•  Plastic
	
 	
 	
 	
 	
 	
 	
 [NanavaM	
 et	
 al.,	
 EuroSys	
 2013]	

	

•  Cheetah
	
 	
 	
 	
 	
 	
 	
 [Liu	
 and	
 Liu,	
 CGO	
 2016]	

•  vTune Amplifier XE
	
 	
 	
 	
 	
 	
 	
 [Intel] Detection for generic

events
7	

Offline Analysis
Predicts speedup from FS

MEM_LOAD_UOPS_LLC_XNSP_HIT
M PEBS Record

struct	

{	
 	

	
 	
 	
 	
 	
 uint64_t	
 ip;	
 	

	
 	
 	
 	
 	
 uint64_t	
 addr;	
 	

	
 	
 	
 	
 	
 …	

	
 	
 	
 	
 	
 char	
 csrc;	
 	

	
 	
 	
 	
 	
 char	
 cdst;	
 	

}	

	

HitM Events

•  A fundamental part of both types of contention
•  A cache hit in a remote core’s cache in M state.

8	

X:M

L1
$

L1
$

Core
0

Core
1 Write X Read X

HITM Record Accuracy

•  160 simple programs with read/write and write/write true/
false/no sharing

•  Intel Core i7-4770K 3.4GHz Haswell 4-core processor

9	

HITM Record Accuracy(1/2)
%

 c
or

re
ct

 d
at

a
ad

dr
es

se
s

10	

160 simple benchmarks Counting only exact addresses as being correct

HITM Record Accuracy(2/2)

160 simple benchmarks
11	

%
 c

or
re

ct
 P

C
 a

dd
re

ss
es

Counting only exact PC as being correct

Counting adjacent PCs as being correct

LASER

• Light: leverage Haswell h/w, no s/w or OS changes

• Accurate: low false positives and false negatives

• Sharing: detects both true and false sharing

• dEtection: works as a profiling tool

• Repair: automatically repairs false sharing at runtime

12	

LASER System Overview

Haswell or later Processors

Linux Kernel
Driver

Detector
Process

	
 LA
S

E
R

R

ep
ai

r

App
Process

User Level App

Operating System

Hardware
13	

Detection Algorithm

W	

Store X+8, 4B HITM

HITM Load X, 2B

Disjoint

14	

Cache Line Model

Detection Algorithm

Aggregate
by Source
Code Line

Sort and
Filter

Foo.c:23

15	

Evaluating LASER Detection

•  Intel Core i7-4770K 3.4GHz Haswell 4-core processor
•  33 workloads from Phoenix 1.0, Parsec 3.0 and Splash2X

16	

LASER Detection Accuracy

Created a database of manually-validated cache contention bugs
•  9 bugs total across 33 workloads
•  4 new bugs discovered by LASER

17	

False
Negative

False Positive Runnable
Benchmarks

LASER 0 24 33/33

VTUNE 1 64 33/33

SHERIFF 3 4 12/33

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

4.5	

5	

S
lo

w
do

w
ns

 X

Profiling Performance Comparison

LASER (1.01x) vs VTune Amplifier XE 2015
(1.8x) 18	

Repairing FS with SSB

•  Needs Online False Sharing elimination!
•  Legacy programs – no access to source code.
•  Programs that need to be always running.

•  Challenge is needing to rewrite the program without
breaking it as it is running.

•  Solve the problem of online FS repair with a Software Store
Buffer (SSB). LASER repair tool is launched to attempt fix of
FS.
•  Implemented with Intel Pin

19	

Cache

Repairing FS with SSB

20	

Core
0

Core
1

Write X,2

Read X

Tail

Tail

Cache X=2	

Store Buffer 0

Store Buffer 1

Read X=0

…	
 …	
 X=1	

…	
 …	
 …	

Read X Read X=2 Flush

Shared

Modified

X=0	

Invalid

X=0	

Flush at synchronization points for TSO compliance and basic block end
for performance.

•  The conventional hardware store buffer is not good enough for
speedup.

•  Needs optimizations for better performance
•  May cause subtle memory consistency issues.
•  For good performance, requires coalescing store buffer. But

coalescing violates TSO. E.g. Sheriff does not provide TSO
compliance.

Challenges with Optimizing SSB

21	

LASER’s TSO-Compliant, Coalescing SSB

•  Instrument regions from Laser’s input by walking through the CFG.
•  Coalescing, TSO compliant SSB made possible with Intel TSX.

22	

Read X:
Result = SSB[X]
If (Result == null)
 Result = *X;
Return Result;

Write X,Val:
If (SSB[X] == null &&
 SSB.full())
 Flush();
SSB[X] = Val;

Flush:
TSX_Begin_Transaction
Foreach pair in SSB
 *pair.memory = pair.value;
TSX_End_Transaction
Redo_TSX_Transaction_If_Fa
ils

LASER FS Repair Performance

Automatic speedups of up to 19%
LASER profiling informs manual fixes of up to 17x

23	

1.19 1.15

Linear_Regression	
 histogram	

Automatic Repair

1.04 1.04 1.16 1.37 16.92 5.83

kmeans	
 reverse_index	
 dedup	
 lu_ncb	
 Linear_Regression	
 histogram	

Manual Repair

Conclusions

•  Cache contention bugs undermine the promise of multicore
•  LASER uses Intel’s Haswell platform for fast, precise

contention detection and automatic false sharing repair
•  Many opportunities to leverage Haswell’s sharing detection

capabilities

24	

REMIX: Online Detection and Repair of Cache
Contention for the JVM
[PLDI 2016]

Add to read list

Researchers	
 Who	
 Read	
 This	
 Paper	
 Also	
 Read	

þ	

