
CoreDet:
A Compiler and Runtime System for

Deterministic Multithreaded
Execution

Tom Bergan
Owen Anderson, Joe Devietti, Luis Ceze, Dan Grossman

2

A Multithreaded Program
global x=0

t := x
x := t + 1

t := x
x := t + 1

Thread 1 Thread 2

What is x?

x == 2 x == 2 x == 1

3

A Multithreaded Program
global x=0

t := x
x := t + 1

t := x
x := t + 1

Thread 1 Thread 2

What is x?

x == 2 x == 2 x == 1

data race

atomicity violation {

We’re not trying to make these bugs
go away

We’re trying to make them come back!

4

Another Multithreaded Program
global x=0

lock(L)
assert(x!=42)
unlock(L)

lock(L)
x := 42
unlock(L)

Thread 1 Thread 2

no bug BUG!

5

The Problem With Multithreading
• Shared-memory access interleavings are a hidden

source of nondeterminism

hard to test

hard to replicate

hard to debug

6

Determinism Can Help!

hard to test

hard to replicate

hard to debug

✓ test inputs, not interleavings
✓ software behaves as tested

✓ no more heisenbugs!
✓ reproduce bugs from the field

✓ easy to synchronize replicas

hard to test

hard to replicate

hard to debug

7

Deterministic MultiProcessing
Goal: deterministic execution ...
•of arbitrary multithreaded programs
•without sacrificing scalability

Eliminate shared-memory nondeterminism
•execution is a function of inputs (including I/O)

DMP [prior work, ASPLOS’09]:
•hardware architecture for determinism
•using ownership-tracking and transactions

8

CoreDet
CoreDet: deterministic execution ...
•of arbitrary, unmodified C/C++ pthreads programs
•without special hardware
•without sacrificing scalability

9

CoreDet
CoreDet: deterministic execution ...
•of arbitrary, unmodified C/C++ pthreads programs
•without special hardware
•without sacrificing scalability

10

CoreDet
CoreDet: deterministic execution ...
•of arbitrary, unmodified C/C++ pthreads programs
•without special hardware
•without sacrificing scalability

Contributions:
•new algorithm for deterministic execution
‣uses store-buffering and relaxed memory consistency

• compiler (LLVM pass) and a runtime library
‣ static optimizations
‣ dealing with external code

11

Related Work

helps with . . .
Record +

Replay
Kendo DMP CoreDet

. . . testing?

. . . debugging?

. . . replication? /
assumes race
free?

sometimes yes no no

needs hw? usually no yes no

examples:
FDR, Rerun,

Respec
[ASPLOS’09

]
[ASPLOS’0

9]

FDR, Rerun [ISCA’03,’08]:
- offline replay (for debugging)
- in hardware

Respec [ASPLOS’10]:
- online replay (for replicas)
- in software

sync-only
determinism

12

Outline

DMP-Ownership

DMP-TM

Recap of DMP [ASPLOS’09]:

CoreDet:

DMP-Buffering

What’s wrong with doing these in software?

Performance Evaluation

less complexity than DMP-TM
with comparable scalability

not sequentially consistent!

13

DMP-Serial [ASPLOS’09]

a := x
b := y

x := a * 2
y := a + b

Thread 1
c := x
d := y

x := a * 3
y := a - b

Thread 2

qu
an

tu
m

14

DMP-Serial [ASPLOS’09]

a := x
b := y

x := a * 2
y := a + b

Thread 1

c := x
d := y

x := a * 3
y := a - b

Thread 2

qu
an

tu
m

15

DMP-Serial [ASPLOS’09]

end of roundtime

T1

T3

T2

quantum

Execution is completely serialized

16

Recovering Parallelism [ASPLOS’09]

T1

T3

T2

To recover parallelism . . .
. . . must resolve conflicts deterministically

by partitioning ownership (DMP-Ownership)

by using transactions (DMP-TM)

x=..

x=..

conflict!

17

DMP-Ownership [ASPLOS’09]

Parallel Serial

Parallel mode: no communication (can write only to private data)
Serial mode: arbitrary communication

end of roundtime

T1

T3

T2

MOT

x owned-by T1

y shared

z owned-by T2

:
: :

:

18

DMP-TM [ASPLOS’09]

end of roundtime

T1

T3

T2

Start with DMP-Serial, then add transactions . . .

quantum

19

DMP-TM [ASPLOS’09]

time

T1

T3

T2

Execution is parallel and transactional

commit
implicit

transactions

20

DMP in software

✓ yes (we have!)
x sub-optimal scalability

(too conservative about what can run in parallel)

Can we implement DMP-Ownership in CoreDet?

Can we implement DMP-TM in CoreDet?
x not efficiently

why not use STM?

21

DMP-TM in software
What’s wrong with STM?

DMP-TM breaks important STM assumptions,
specifically . . .

1) Transactions are rare
2) Transactions are short
3) Transactions are scoped

void foo() {
...
begin_transaction()
return

}

An unscoped transaction:

22

Speculation makes things hard

Good scalability by allowing parallel updates of

versioned memory (private transaction buffers)

DMP-TM: what can we learn?

CoreDet’s Insight:
Enable parallel updates without requiring speculation

23

Outline

DMP-Ownership

DMP-TM

Recap of DMP [ASPLOS’09]:

CoreDet:

DMP-Buffering

What’s wrong with DMP in software?

Performance Evaluation

24

DMP-Buffering

end of roundtime

T1

T3

T2

Parallel SerialCommit

25

DMP-Buffering

Parallel mode: buffer all stores (no communication)

Global Memory
(read only)

Thread

x := .. y ..

Store Buffer

end of roundtime

T1

T3

T2

Parallel SerialCommit

26

DMP-Buffering

Parallel mode: buffer all stores (no communication)
Commit mode: deterministically publish store buffers

Global Memory

...

Store Buffer

Thread

time

T1

T3

T2

Parallel SerialCommit

end of roundstores are reordered

x=..

27

DMP-Buffering

Parallel mode: buffer all stores (no communication)

Global Memory
(read/write)

lock(x)

Store Buffer

Thread

Commit mode: deterministically publish store buffers
Serial mode: used for synchronization (e.g. atomic ops)

end of roundtime

T1

T3

T2

Parallel SerialCommit

28

DMP-Buffering

T1

T3

T2

Parallel mode: buffer stores locally

Commit mode: publish local store buffers

Serial mode: used for synchronization (e.g. atomic ops)

• ends at synchronization (atomic ops and fences), and quantum boundaries

• logically serial for determinism
• executes in parallel for performance

29

DMP-Buffering

A = 1
if (B == 0)
...

B = 1
if (A == 0)
...

Thread 1 Thread 2

Dekker’s Algorithm
(there is a data race)

30

DMP-Buffering

A = buffer[A] B = buffer[B]

Thread 1 Thread 2
buffer[A] = 1
if (B == 0)
...

buffer[B] = 1
if (A == 0)
...

31

DMP-Buffering

A = buffer[A]

B = buffer[B]

Thread 1 Thread 2
parallel

com
m

it

buffer[A] = 1
if (B == 0)
...

buffer[B] = 1
if (A == 0)
...

This is deterministic . . .

re
or

de
re

d

32

DMP-Buffering

A = buffer[A]

B = buffer[B]

Thread 1 Thread 2
parallel

com
m

it

buffer[A] = 1
if (B == 0)
...

buffer[B] = 1
if (A == 0)
...

. . . but not sequentially consistent
(cycle in the happens-before graph)

33

DMP-Buffering
Thread 1 Thread 2

A = 1
tmp1 = B

if (tmp1 == 0)
...

B = 1
tmp2 = A

if (tmp2 == 0)
...

Dekker’s Algorithm (again)
Let’s remove the data race . . .

34

DMP-Buffering

A = 1
tmp1 = B

Thread 1 Thread 2
lock(L)

unlock(L)

lock(L)

unlock(L)

if (tmp1 == 0)
...

B = 1
tmp2 = A

if (tmp2 == 0)
...

Dekker’s Algorithm
(no data race)

35

DMP-Buffering

A = 1
tmp1 = B

lock(L)

unlock(L)
lock(L)

unlock(L)

if (tmp1 == 0)
...

B = 1
tmp2 = A

if (tmp2 == 0)
...

parallel +
commit

serial

serial

parallel +
commit

serial

parallel +
commit

Synchronization
happens sequentially

36

DMP-Buffering

A = 1
tmp1 = B

lock(L)

unlock(L)
lock(L)

unlock(L)

if (tmp1 == 0)
...

B = 1
tmp2 = A

if (tmp2 == 0)
...

parallel +
commit

serial

serial

parallel +
commit

serial

parallel +
commit

Synchronization
is a full fence

37

DMP-Buffering

A = 1
tmp1 = B

lock(L)

unlock(L)
lock(L)

unlock(L)

if (tmp1 == 0)
...

B = 1
tmp2 = A

if (tmp2 == 0)
...

parallel +
commit

serial

serial

parallel +
commit

serial

parallel +
commit

Synchronization
is a full fence

Data race free programs are sequentially consistent
(required by C++ and Java memory models)

37

38

DMP-Buffering: Parallel Commit
For determinism, the commit order must be deterministic
i.e. logically serial

For performance, the commit must happen in parallel

Basic idea:
•Publish store buffers in parallel
•Preserve the commit order on collisions

39

0xA 0

0xB 0

0xC 0

addr value

0xD 0

0xE 0

Global Memory

DMP-Buffering: Parallel Commit

0xA 1

0xB 1

0xC 1

0xC 2

0xD 2

0xE 2

addr value addr value

T
hr

ea
d

1 T
hread 2

Basic idea:
•Publish store buffers in parallel
•Preserve the commit order on collisions

Collision!
Resolve for Thread 2

40

DMP-Buffering: Parallel Commit
Basic idea:
•Publish store buffers in parallel
•Preserve the commit order on collisions

Detecting collisions
•keep global record of published locations
•locks to serialize writes

• bloom filter to reduce locking overhead

0xC

0xD

commit
table · · ·

1 2

41

Outline

DMP-Ownership

DMP-TM

Recap of DMP [ASPLOS’09]:

CoreDet:

DMP-Buffering

What’s wrong with DMP in software?

Performance Evaluation

42

What We Evaluated

DMP-Ownership

DMP-Buffering

Three algorithms implemented in CoreDet:

- a hybrid of DMP-Ownership and DMP-Buffering

- decides dynamically which data to buffer

DMP-PartialBuffering

43

Experimental Methodology

PARSEC and SPLASH2 benchmark suites

What is the scalability?

What are the overheads?

Goal: in comparison to nondeterministic execution ...

8-core Intel Xeon

scaled inputs to run for about a minute

44

Scalability

splash mean parsec mean

2.4x speedup

45

Overheads

splash mean parsec mean

Since we preserve scalability, we can
overcome overheads by adding cores

5.2x slowdown

46

Wrap Up
CoreDet
•guarantees determinism in software of arbitrary
C/C++ multithreaded programs

DMP-Buffering
•uses a relaxed memory consistency model
•scales comparably to nondeterministic execution

47

Also in the paper . . .
Compiler details
•static optimizations
•forming balanced quanta

Runtime details
•dealing with external libraries
•threading libraries
•memory allocation

Evaluation
•more detailed performance characterization

48

Thank you!

Questions?

the CoreDet source code is available at
http://sampa.cs.washington.edu

http://sampa.cs.washington.edu

49

(backup slides)

50

DMP-Buffering
Atomic ops must happen in serial mode

CAS(X,a,b) CAS(X,a,c)

51

DMP-Buffering
Atomic ops must happen in serial mode

tmp = x
if (tmp == a)

x = b

tmp = x
if (tmp == a)

x = c

52

DMP-Buffering
Atomic ops must happen in serial mode

tmp = x
if (tmp == a)

x = b

tmp = x
if (tmp == a)

x = c

parallel
com

m
it

not atomic

Synchronization, e.g. lock(), must happen in serial mode
•These are atomic ops
•There is an implied fence (must flush store buffers)

53

CoreDet: Implementation

A runtime library

A compiler (LLVM pass)
• instruments the code with calls to the runtime
• static optimizations to remove instrumentation

- escape analysis
- redundancy analysis

• scheduling threads
• tracks interthread communication
• deterministic wrappers for . . .

- pthreads
- malloc

54

Quantum Formation
“Just” instruction counting

Tension between:
•Perfect counting, for maximal balance
-e.g. every basic block

•Minimal counting, for minimal overhead
-e.g. only backedges and recursive calls

Heuristic compromise:

: :

:

cnt += 5cnt += 3

cnt += 50cnt += 54

3 5

50

55

• Redundant accesses
y = ... x ...
z = ... x ...

Remove Instrumention From ...
• Accesses to thread-local (non-escaping) objects

don’t need to instrument this

56

Remove Instrumention From ...
• Accesses to thread-local (non-escaping) objects

don’t need to instrument this

DMP-Buffering: requires unification-based points-to
analysis

int local;
int *p = (...) ? &local : &global;
... must access through the store buffer

• Redundant accesses
y = ... x ...
z = ... x ...

57

Remove Instrumention From ...
• Accesses to thread-local (non-escaping) objects

don’t need to instrument this

• Redundant accesses
y = ... x ...
z = ... x ...

DMP-Buffering: requires unification-based points-to
analysis

int local;
int *p = (...) ? &local : &global;
... must access through the store buffer

58

Remove Instrumention From ...
• Accesses to thread-local (non-escaping) objects

don’t need to instrument this

• Redundant accesses
y = ... x ...
z = ... x ...

DMP-Buffering: requires unification-based points-to
analysis

int local;
int *p = (...) ? &local : &global;
... must access through the store buffer

DMP-Buffering: this does not apply

59

External Libraries
We do not instrument external shared libraries, such
as the system libc
1.External calls must be serialized

Preventing over-serialization:
•We check indirect calls at runtime
•We provide deterministic wrappers for common libc
functions, e.g. memcpy and malloc
•We do not serialize pure libc functions, e.g. sqrt

