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A Multithreaded Program
global x=0

t := x
x := t + 1

t := x
x := t + 1

Thread 1 Thread 2

What is x?

x == 2 x == 2 x == 1
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A Multithreaded Program
global x=0

t := x
x := t + 1

t := x
x := t + 1

Thread 1 Thread 2

What is x?

x == 2 x == 2 x == 1

data race

atomicity violation {

We’re not trying to make these bugs
go away

We’re trying to make them come back!
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Another Multithreaded Program
global x=0

lock(L)
assert(x!=42)
unlock(L)

lock(L)
x := 42
unlock(L)

Thread 1 Thread 2

no bug BUG!
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The Problem With Multithreading
• Shared-memory access interleavings are a hidden 

source of nondeterminism

hard to test

hard to replicate

hard to debug
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Determinism Can Help!

hard to test

hard to replicate

hard to debug

✓ test inputs, not interleavings
✓ software behaves as tested

✓ no more heisenbugs!
✓ reproduce bugs from the field

✓ easy to synchronize replicas

hard to test

hard to replicate

hard to debug
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Deterministic MultiProcessing
Goal:  deterministic execution ...
•of arbitrary multithreaded programs
•without sacrificing scalability

Eliminate shared-memory nondeterminism
•execution is a function of inputs (including I/O)

DMP [prior work,  ASPLOS’09]:
•hardware architecture for determinism
•using ownership-tracking and transactions
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CoreDet
CoreDet:  deterministic execution ...
•of arbitrary, unmodified C/C++ pthreads programs
•without special hardware
•without sacrificing scalability
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CoreDet
CoreDet:  deterministic execution ...
•of arbitrary, unmodified C/C++ pthreads programs
•without special hardware
•without sacrificing scalability
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CoreDet
CoreDet:  deterministic execution ...
•of arbitrary, unmodified C/C++ pthreads programs
•without special hardware
•without sacrificing scalability

Contributions:
•new algorithm for deterministic execution
‣uses store-buffering and relaxed memory consistency

• compiler (LLVM pass) and a runtime library
‣ static optimizations
‣ dealing with external code
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Related Work

helps with . . .
Record +

Replay
Kendo DMP CoreDet

. . . testing?

. . . debugging?

. . . replication? /
assumes race 
free?

sometimes yes no no

needs hw? usually no yes no

examples:
FDR, Rerun,

Respec
[ASPLOS’09

]
[ASPLOS’0

9]

FDR, Rerun [ISCA’03,’08]:
- offline replay (for debugging)
- in hardware

Respec [ASPLOS’10]:
- online replay (for replicas)
- in software

sync-only
determinism
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Outline

DMP-Ownership

DMP-TM

Recap of DMP [ASPLOS’09]:

CoreDet:

DMP-Buffering

What’s wrong with doing these in software?

Performance Evaluation

less complexity than DMP-TM
with comparable scalability

not sequentially consistent!
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DMP-Serial [ASPLOS’09]

a := x
b := y

x := a * 2
y := a + b

Thread 1
c := x
d := y

x := a * 3
y := a - b

Thread 2

qu
an

tu
m
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DMP-Serial [ASPLOS’09]

a := x
b := y

x := a * 2
y := a + b

Thread 1

c := x
d := y

x := a * 3
y := a - b

Thread 2

qu
an

tu
m
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DMP-Serial [ASPLOS’09]

end of roundtime

T1

T3

T2

quantum

Execution is completely serialized
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Recovering Parallelism [ASPLOS’09]

T1

T3

T2

To recover parallelism . . .
. . . must resolve conflicts deterministically

by partitioning ownership (DMP-Ownership)

by using transactions (DMP-TM)

x=..

x=..

conflict!
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DMP-Ownership [ASPLOS’09]

Parallel Serial

Parallel mode: no communication (can write only to private data)
Serial mode: arbitrary communication

end of roundtime

T1

T3

T2

MOT

x owned-by T1

y shared

z owned-by T2

:
: :

:
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DMP-TM [ASPLOS’09]

end of roundtime

T1

T3

T2

Start with DMP-Serial, then add transactions . . .

quantum
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DMP-TM [ASPLOS’09]

time

T1

T3

T2

Execution is parallel and transactional

commit
implicit

transactions
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DMP in software

✓ yes (we have!)
x sub-optimal scalability

(too conservative about what can run in parallel)

Can we implement DMP-Ownership in CoreDet?

Can we implement DMP-TM in CoreDet?
x not efficiently

why not use STM?
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DMP-TM in software
What’s wrong with STM?

DMP-TM breaks important STM assumptions,
specifically . . .

1) Transactions are rare
2) Transactions are short
3) Transactions are scoped

void foo() {
...
begin_transaction()
return

}

An unscoped transaction:
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Speculation makes things hard

Good scalability by allowing parallel updates of 

versioned memory (private transaction buffers)

DMP-TM:  what can we learn?

CoreDet’s Insight:
Enable parallel updates without requiring speculation



23

Outline

DMP-Ownership

DMP-TM

Recap of DMP [ASPLOS’09]:

CoreDet:

DMP-Buffering

What’s wrong with DMP in software?

Performance Evaluation
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DMP-Buffering

end of roundtime

T1

T3

T2

Parallel SerialCommit
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DMP-Buffering

Parallel mode: buffer all stores (no communication)

Global Memory
(read only)

Thread

x := .. y ..

Store Buffer

end of roundtime

T1

T3

T2

Parallel SerialCommit
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DMP-Buffering

Parallel mode: buffer all stores (no communication)
Commit mode: deterministically publish store buffers

Global Memory

...

Store Buffer

Thread

time

T1

T3

T2

Parallel SerialCommit

end of roundstores are reordered

x=..
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DMP-Buffering

Parallel mode: buffer all stores (no communication)

Global Memory
(read/write)

lock(x)

Store Buffer

Thread

Commit mode: deterministically publish store buffers
Serial mode: used for synchronization (e.g. atomic ops)

end of roundtime

T1

T3

T2

Parallel SerialCommit
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DMP-Buffering

T1

T3

T2

Parallel mode: buffer stores locally

Commit mode: publish local store buffers

Serial mode: used for synchronization (e.g. atomic ops)

• ends at synchronization (atomic ops and fences), and quantum boundaries

• logically serial for determinism
• executes in parallel for performance
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DMP-Buffering

A = 1
if (B == 0)
...

B = 1
if (A == 0)
...

Thread 1 Thread 2

Dekker’s Algorithm
(there is a data race)



30

DMP-Buffering

A = buffer[A] B = buffer[B]

Thread 1 Thread 2
buffer[A] = 1
if (B == 0)
...

buffer[B] = 1
if (A == 0)
...



31

DMP-Buffering

A = buffer[A]

B = buffer[B]

Thread 1 Thread 2
parallel

com
m

it

buffer[A] = 1
if (B == 0)
...

buffer[B] = 1
if (A == 0)
...

This is deterministic . . .

re
or

de
re

d
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DMP-Buffering

A = buffer[A]

B = buffer[B]

Thread 1 Thread 2
parallel

com
m

it

buffer[A] = 1
if (B == 0)
...

buffer[B] = 1
if (A == 0)
...

. . . but not sequentially consistent
(cycle in the happens-before graph)
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DMP-Buffering
Thread 1 Thread 2

A = 1
tmp1 = B

if (tmp1 == 0)
...

B = 1
tmp2 = A

if (tmp2 == 0)
...

Dekker’s Algorithm (again)
Let’s remove the data race . . .
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DMP-Buffering

A = 1
tmp1 = B

Thread 1 Thread 2
lock(L)

unlock(L)

lock(L)

unlock(L)

if (tmp1 == 0)
...

B = 1
tmp2 = A

if (tmp2 == 0)
...

Dekker’s Algorithm
(no data race)
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DMP-Buffering

A = 1
tmp1 = B

lock(L)

unlock(L)
lock(L)

unlock(L)

if (tmp1 == 0)
...

B = 1
tmp2 = A

if (tmp2 == 0)
...

parallel +
commit

serial

serial

parallel +
commit

serial

parallel +
commit

Synchronization
happens sequentially
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DMP-Buffering

A = 1
tmp1 = B

lock(L)

unlock(L)
lock(L)

unlock(L)

if (tmp1 == 0)
...

B = 1
tmp2 = A

if (tmp2 == 0)
...

parallel +
commit

serial

serial

parallel +
commit

serial

parallel +
commit

Synchronization
is a full fence
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DMP-Buffering

A = 1
tmp1 = B

lock(L)

unlock(L)
lock(L)

unlock(L)

if (tmp1 == 0)
...

B = 1
tmp2 = A

if (tmp2 == 0)
...

parallel +
commit

serial

serial

parallel +
commit

serial

parallel +
commit

Synchronization
is a full fence

Data race free programs are sequentially consistent
(required by C++ and Java memory models)

37
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DMP-Buffering: Parallel Commit
For determinism, the commit order must be deterministic
i.e. logically serial

For performance, the commit must happen in parallel

Basic idea:
•Publish store buffers in parallel
•Preserve the commit order on collisions
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0xA 0

0xB 0

0xC 0

addr    value

0xD 0

0xE 0

Global Memory

DMP-Buffering: Parallel Commit

0xA 1

0xB 1

0xC 1

0xC 2

0xD 2

0xE 2

addr    value addr    value

T
hr

ea
d 

1 T
hread 2

Basic idea:
•Publish store buffers in parallel
•Preserve the commit order on collisions

Collision!
Resolve for Thread 2
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DMP-Buffering: Parallel Commit
Basic idea:
•Publish store buffers in parallel
•Preserve the commit order on collisions

Detecting collisions
•keep global record of published locations 
•locks to serialize writes

• bloom filter to reduce locking overhead

0xC

0xD

commit
table · · ·

1 2
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Outline

DMP-Ownership

DMP-TM

Recap of DMP [ASPLOS’09]:

CoreDet:

DMP-Buffering

What’s wrong with DMP in software?

Performance Evaluation
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What We Evaluated

DMP-Ownership

DMP-Buffering

Three algorithms implemented in CoreDet:

- a hybrid of DMP-Ownership and DMP-Buffering

- decides dynamically which data to buffer

DMP-PartialBuffering
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Experimental Methodology

PARSEC and SPLASH2 benchmark suites

What is the scalability?

What are the overheads?

Goal:  in comparison to nondeterministic execution ...

8-core Intel Xeon

scaled inputs to run for about a minute
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Scalability

splash mean parsec mean

2.4x speedup
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Overheads

splash mean parsec mean

Since we preserve scalability, we can
overcome overheads by adding cores

5.2x slowdown
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Wrap Up
CoreDet
•guarantees determinism in software of arbitrary
C/C++ multithreaded programs

DMP-Buffering
•uses a relaxed memory consistency model
•scales comparably to nondeterministic execution



47

Also in the paper . . .
Compiler details
•static optimizations
•forming balanced quanta

Runtime details
•dealing with external libraries
•threading libraries
•memory allocation

Evaluation
•more detailed performance characterization
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Thank you!

Questions?

the CoreDet source code is available at
http://sampa.cs.washington.edu

http://sampa.cs.washington.edu
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(backup slides)
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DMP-Buffering
Atomic ops must happen in serial mode

CAS(X,a,b) CAS(X,a,c)
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DMP-Buffering
Atomic ops must happen in serial mode

tmp = x
if (tmp == a)

x = b

tmp = x
if (tmp == a)

x = c
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DMP-Buffering
Atomic ops must happen in serial mode

tmp = x
if (tmp == a)

x = b

tmp = x
if (tmp == a)

x = c

parallel
com

m
it

not atomic

Synchronization, e.g. lock(), must happen in serial mode
•These are atomic ops
•There is an implied fence (must flush store buffers)
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CoreDet: Implementation

A runtime library

A compiler (LLVM pass)
• instruments the code with calls to the runtime
• static optimizations to remove instrumentation

- escape analysis
- redundancy analysis

• scheduling threads
• tracks interthread communication
• deterministic wrappers for . . .

- pthreads
- malloc
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Quantum Formation
“Just” instruction counting

Tension between:
•Perfect counting, for maximal balance
-e.g. every basic block

•Minimal counting, for minimal overhead
-e.g. only backedges and recursive calls

Heuristic compromise:

: :

:

cnt += 5cnt += 3

cnt += 50cnt += 54

3 5

50
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• Redundant accesses
y = ... x ...
z = ... x ...

Remove Instrumention From ...
• Accesses to thread-local (non-escaping) objects

don’t need to instrument this
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Remove Instrumention From ...
• Accesses to thread-local (non-escaping) objects

don’t need to instrument this

DMP-Buffering:  requires unification-based points-to
analysis

int local;
int *p = (...) ? &local : &global;
... must access through the store buffer

• Redundant accesses
y = ... x ...
z = ... x ...
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Remove Instrumention From ...
• Accesses to thread-local (non-escaping) objects

don’t need to instrument this

• Redundant accesses
y = ... x ...
z = ... x ...

DMP-Buffering:  requires unification-based points-to
analysis

int local;
int *p = (...) ? &local : &global;
... must access through the store buffer
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Remove Instrumention From ...
• Accesses to thread-local (non-escaping) objects

don’t need to instrument this

• Redundant accesses
y = ... x ...
z = ... x ...

DMP-Buffering:  requires unification-based points-to
analysis

int local;
int *p = (...) ? &local : &global;
... must access through the store buffer

DMP-Buffering:  this does not apply
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External Libraries
We do not instrument external shared libraries, such
as the system libc
1.External calls must be serialized

Preventing over-serialization:
•We check indirect calls at runtime
•We provide deterministic wrappers for common libc
functions, e.g. memcpy and malloc
•We do not serialize pure libc functions, e.g. sqrt


