
1	

Teaching Statement 

Joseph	Devietti,	University	of	Pennsylvania	
	
Since	arriving	at	Penn,	I	have	worked	to	improve	the	quality	of	computer	engineering	

education	by	updating	the	undergraduate	and	graduate	computer	architecture	curriculum.	
I	have	also	designed	and	taught	a	series	of	new	graduate-level	seminars.	Outside	the	
classroom,	I	have	worked	to	create	a	vibrant	and	diverse	computer	architecture	
community	through	teaching-focused	outreach	activities.	

CIS 371: Undergraduate Computer Architecture 
CIS	371	at	Penn	was	the	course	that,	when	I	took	it	as	an	undergraduate,	convinced	

me	to	pursue	a	career	in	computer	architecture.	I	have	tried	to	recreate	that	seminal	
experience	for	students	in	my	version	of	the	class,	while	also	introducing	more	digital	
design	rigor.	In	this	class,	students	design	a	5-stage	pipelined,	2-way	superscalar	processor	
in	Verilog	to	execute	a	simple	RISC-like	assembly	language	called	LC31.	As	this	is	a	required	
class	in	our	undergraduate	computer	science	curriculum,	most	students	will	go	on	to	
careers	in	software	instead	of	hardware.	From	the	first	day,	I	describe	the	value	of	taking	
this	class	as	two-fold:	first,	hardware	pipelines	do	not	admit	many	useful	internal	
abstractions	so	students	must	grapple	with	the	complexity	of	the	entire	pipeline	to	get	it	
working;	second,	hardware	design	offers	myriad	opportunities	to	hone	debugging	skills.		

Historically,	the	focus	in	CIS	371	has	been	exclusively	on	correctness,	not	
performance.	However,	designing	hardware	must	always	consider	performance	(with	
power	and	area	as	first-class	concerns	as	well).	I	now	walk	students	through	timing	
analysis	of	their	designs,	ensuring	that	they	reach	timing	closure	by	relaxing	the	clock	if	
needed.	I’ve	also	worked	to	remove	some	of	the	bottlenecks	in	the	assignments	that	led	to	
highly	unintuitive	results,	e.g.,	moving	from	a	single-cycle	to	a	5-stage	pipeline	design	
originally	resulted	in	a	~5%	frequency	boost	due	to	severe	stage	imbalance.	Finally,	I’ve	
added	more	interactive	elements	to	the	class	so	that	students	can	see	their	design	running	
on	an	FPGA	board	and	manipulate	it	via	switches	and	LEDs.	

CIS 501: Graduate Computer Architecture 
During	my	time	at	Penn,	I	have	increased	the	rigor	in	the	graduate	computer	

architecture	course.	Over	my	first	few	years	with	the	course,	I	revamped	the	homework	
assignments	to	task	students	with	building	a	detailed	uniprocessor	pipeline	model,	with	
caches	and	branch	prediction,	over	a	series	of	cumulative	assignments.	Crucially,	the	
students	are	required	to	integrate	the	different	components	into	a	larger	design,	which	
gives	them	a	better	overview	of	how	the	entire	processor	works.		

Starting	this	year	I	have	revised	the	assignments	again	to	have	the	students	build	a	
processor	in	Verilog,	mirroring	the	assignments	in	the	undergraduate	version	of	the	class.	
This	removed	a	peculiarity	in	our	curriculum	where	undergraduate	architecture	was	more	
rigorous	than	the	graduate	version.	
																																																								
1	Yale	N.	Patt	and	Sanjay	J.	Patel.	Introduction	to	Computing	Systems:	From	Bits	and	Gates	to	
C	and	Beyond.	2nd	Edition.	McGraw-Hill	Education.	



2	

	
Several	students	who	have	taken	CIS	501	have	gone	on	to	take	an	advanced	

architecture	seminar	with	me	and	to	pursue	research	in	my	group,	which	has	led	to	two	
published	papers	thus	far.	Two	other	501	students	have	gone	on	to	computer	architecture	
jobs	in	industry,	both	working	for	Oracle	on	chip	design,	and	have	mentioned	that	CIS	501	
was	valuable	to	advancing	their	careers.		

New Seminar Courses 
I	have	taught	a	number	of	new	seminar	courses	at	Penn,	helping	to	end	a	drought	of	

computer	architecture	seminar	courses	extending	back	three	years	before	my	arrival.	I	
have	taught	seminars	on	multicore	programmability,	security	issues	in	multicore	
architectures	such	as	side-channel	attacks,	and	twice	a	seminar	on	GPGPU	programming.	
My	GPGPU	course	teaches	students	Nvidia’s	CUDA	language	and	programming	model	for	
GPUs.	I	place	a	special	emphasis	on	the	correctness	and	performance	bugs	that	are	possible	
with	GPU	code,	and	the	work	done	in	this	seminar	has	had	a	tight	connection	with	my	work	
on	detecting	safety	and	performance	bugs	in	GPU	code.	One	of	the	class	projects	even	
resulted	in	a	new	race	detector	for	GPU	code,	which	was	later	published	in	PLDI	2017.	
Students	regularly	approach	me	to	ask	about	the	next	iteration	of	this	course,	as	many	
students	across	engineering	are	using	GPUs	for	general-purpose	computing	in	both	
research	and	their	post-graduation	careers.	

Teaching-Centric Department Service: CIS Minicourses 
I	serve	as	one	of	two	faculty	coordinators	of	our	department’s	“minicourses”,	which	

are	1-hour-per-week	courses	on	a	range	of	practical	topics	like	iOS	programming	and	
JavaScript.	Minicourses	in	our	department	are	an	enormously	popular	way	for	students	to	
gain	exposure	to	relevant	technologies	in	a	formal	classroom	setting.	Total	enrollment	
across	the	minicourses	regularly	approaches	200	students	per	semester.	A	unique	feature	
of	these	minicourses	in	our	department	is	that	they	are	taught	by	graduate	or	
undergraduate	students.	Graduate	student	instructors	gain	valuable	preparation	for	a	
pedagogical	career	–	several	former	minicourse	instructors	have	gone	on	to	teaching	
faculty	positions	at	institutions	including	Grinnell	College,	Bryn	Mawr	College,	and	the	US	
Naval	Academy.	Undergraduate	instructors	are	invariably	prior	minicourse	enrollees	and	
treasure	the	opportunity	to	train	“the	next	generation”	of	industry	developers.	As	most	
minicourse	instructors	have	never	taught	before,	we	host	monthly	meetups	for	all	
instructors	to	discuss	pedagogy	and	share	best	practices.	

Teaching-Centric Outreach Efforts 
To	foster	participation	in	computer	science	beyond	my	institution	I	have	volunteered	

at	our	department’s	annual	Women	in	Computer	Science	High	School	Day	for	Girls	for	the	
past	five	years,	a	full-day	outreach	event	that	brings	over	100	local	female	high	school	
students	to	Penn	to	learn	what	computer	science	is	and	how	rewarding	a	computer	science	
career	can	be.	My	contribution	is	a	1-hour	lesson	on	“thinking	in	parallel”.	I	teach	20-30	
students	about	data	parallelism	and	pipeline	parallelism	through	interactive	
demonstrations	such	as	counting	a	large	collection	of	Starburst	candies	and	making	
origami	frogs	in	an	assembly	line.	While	forms	of	outreach	like	this	are	necessarily	longer-



3	

term	in	impact,	I	have	found	these	activities	to	be	personally	both	rewarding	and	
rejuvenating,	and	I	intend	to	continue	my	participation	going	forward.	

To	help	make	core	computer	architecture	concepts	like	branch	prediction	and	caching	
more	accessible,	I	have	built	a	series	of	web-based	visualizations	to	demonstrate	how	these	
structures	operate.	These	visualizations	are	available	at	http://comparchviz.com.	I	have	
found	that	explaining	these	topics	via	whiteboard	or	PowerPoint	slides	provides	space	for	
only	a	limited	set	of	examples	–	e.g.,	one	or	two	branches	flowing	through	a	branch	
direction	predictor	and	updating	its	internal	state.	Other	cases	can	only	be	discussed	
briefly.	With	the	visualizations	I’ve	built,	however,	students	can	supply	their	own	inputs	to	
see	how	the	machinery	responds	–	the	visualizations	are	fully	“executable”.	This	allows	
students	to	explore	a	wider	range	of	cases	with	relative	ease,	deepening	their	
understanding.	I	first	used	these	visualizations	in	my	Spring	2019	architecture	class,	and	
received	informal	positive	feedback	from	students	and	TAs	in	the	course.	Going	forward,	in	
addition	to	building	out	the	library	of	visualizations,	I	plan	to	evaluate	their	effectiveness	
more	formally	in	collaboration	with	teaching	faculty	in	my	department,	to	see	how	these	
visualizations	can	be	improved	further.	


