
1	

improved 

parallel 

programmability

memory consistency models

on
lin

e 
ca

ch
e 

co
nt

en
tio

n 
re

pa
ir

da
ta

 ra
ce

 d
et

ec
tio

n

determ
inistic 

execution
Research Statement: Improving the Performance and 

Correctness of Parallel Programs 
Joseph	Devietti,	University	of	Pennsylvania	

	
The	 last	 two	 decades	 have	 overseen	 a	 historic	 shift	 in	 processor	 design	 toward	

heterogeneous	 designs	 in	 which	 multicore	 CPUs	 are	 augmented	 with	 special-purpose	 graphics	
hardware	(GPUs)	and	a	growing	array	of	fixed-function	accelerators	for	uses	such	as	media	codecs	
and	 machine	 learning.	 The	 rise	 of	 heterogeneous	 parallel	 hardware	 has	 made	 the	 challenge	 of	
parallel	 programming	even	harder,	 introducing	new	kinds	of	 performance	and	 correctness	bugs,	
and	new	programming	models	for	which	debugging	tools	are	missing	or	lacking.	

My	research	seeks	ways	to	make	parallel	programming	easier,	safer	
and	 faster	 via	 innovations	 across	 the	 system	 stack,	 from	 computer	
architecture	to	runtime	systems,	programming	languages	and	algorithms.	
I	build	hardware	and	software	systems	that	can	find	and	fix	performance	
and	correctness	bugs	in	parallel	software.	As	parallelism	is	a	cross-cutting	
concern	 across	 many	 areas	 of	 computer	 science,	 my	 work	
correspondingly	 spans	 from	 architecture	 to	 algorithms	 and	 has	 been	
published	in	venues	ranging	from	MICRO	to	SODA.	

A	unifying	theme	throughout	my	work	has	been	a	deep	appreciation	
for	memory	consistency	models.	I	often	work	at	the	limits	of	these	models	
and	expand	their	boundaries:	 for	 example,	my	work	 is	 the	 first	 to	 show	
the	 benefits	 of	 multi-lingual	 memory	 consistency	 models	 [1].	 More	
broadly,	I	have	demonstrated	the	first	systems	for:	

• correct	and	efficient	online	cache	contention	repair	
• comprehensive	data	race	detection	on	GPUs	
• new	abstractions	in	high-performance	deterministic	execution	
My	 work	 has	 served	 as	 a	 building	 block	 for	 research	 at	 the	

University	of	Michigan	[2].	I	have	received	funding	from	Intel,	Google	and	Nvidia,	and	also	an	Intel	
Early	 Career	 Faculty	 Award.	 At	 Intel,	 my	 work	 has	 driven	 internal	 conversations	 about	 next-
generation	 hardware	 extensions	 for	 performance	 and	 security.	 To	 transition	 my	 work	 on	
deterministic	 containers	 into	 commercial	 reality,	 I	 co-founded	 the	 startup	 Cloudseal	 to	 bring	
fundamental	improvements	to	crash	reporting	technology.	

During	my	 time	at	Penn	 I’ve	graduated	 three	 PhD	 students.	 Christian	DeLozier,	my	 first	
student,	 is	 now	 an	 Assistant	 Professor	 of	 Electrical	 and	 Computer	 Engineering	 at	 the	 US	 Naval	
Academy.	My	student	Nimit	Singhania,	co-advised	with	Rajeev	Alur,	joined	a	program	analysis	team	
at	Google,	and	my	student	Yuanfeng	Peng	joined	a	network	debugging	team	also	at	Google.	

I’ve	worked	to	improve	the	rigor	of	computer	architecture	 teaching	at	Penn.	I	introduced	
hardware	 design	 into	 the	 graduate	 computer	 architecture	 class	 for	 the	 first	 time,	 and	 have	
developed	a	series	of	interactive	computer	architecture	visualizations	to	explain	core	concepts	and	
support	self-directed	exploration.	

My	community	service	 to	 the	academic	community	has	 included	organizing	workshops	at	
ASPLOS	and	EuroSys,	and	serving	as	Treasurer/Registration	Chair	for	HPCA	2015.	I’ve	been	on	the	
PC	of	many	first-tier	conferences,	including	ASPLOS,	HPCA,	PLDI	and	IEEE	MICRO	Top	Picks.	

Below,	 I	 outline	 the	progress	 I’ve	 achieved	along	 the	 three	main	directions	of	my	 research	
vision,	and	describe	my	plans	for	the	future.	

Figure	1:	Research	overview	



2	

Direction 1: Repairing Cache Contention Online 
One	 important	 class	 of	 multicore	 performance	 issues	 is	 cache	 contention	 bugs:	 they	 arise	

when	true	sharing	or	false	sharing	repeatedly	triggers	slow	paths	in	a	multicore	processor’s	cache	
coherence	protocol.	These	bugs	have	been	 found	 in	production	code	 like	 the	Boost	C++	libraries,	
MySQL	and	Linux.	Cache	contention	bugs	are	hard	 to	 identify	as	 they	arise	 from	opaque	memory	
layout	decisions	made	by	 compilers	 and	memory	allocators,	 and	 their	 severity	 is	 affected	by	 the	
details	 of	 each	 system	 like	 interconnect	 topology.	 To	 address	 these	 inherent	 challenges,	 we’ve	
shown	 that	 smart	 runtime	 systems	 can	 effectively	solve	many	 cases	of	 cache	 contention	without	
programmer	intervention,	and	without	even	stopping	program	execution.	

Our	 first	 system	 is	 Laser:	 Light,	 Accurate	 Sharing	 dEtection	 and	 Repair	 [3].	 Laser	 detects	
cache	contention	via	a	family	of	performance	counters,	available	in	recent	Intel	architectures,	that	
provide	 the	program	counter	 and	memory	 address	of	 instructions	 that	 trigger	 certain	 coherence	
protocol	 transitions.	 Laser’s	 repair	 mechanism	 implements	 a	 software-based	 store	 buffer	 using	
dynamic	binary	rewriting.	Like	a	hardware-based	store	buffer,	our	software	store	buffer	defers	the	
cost	 of	 cache	 coherence	 (and	 thus,	 contention)	 to	 improve	performance.	 Laser-Repair	 is	 the	 first	
online	contention	repair	scheme	to	adhere	to	the	TSO	consistency	model,	avoiding	semantic	pitfalls	
in	previous	approaches.	

While	sound,	Laser’s	repair	mechanism	is	slow	so	we	developed	the	Thread	Memory	Isolation	
(TMI)	system	[1]	that	implements	software-based	store	buffering	using	virtual	memory	techniques	
instead.	This	results	in	radically	lower	performance	overheads	–	compared	to	ideal	manual	repair	
of	false	sharing,	LASER	provides	just	24%	of	that	manual	speedup	while	TMI	provides	88%.	Once	
contention	 is	 detected,	 TMI	 employs	 a	 novel	 multithreaded	 fork	 primitive1	that	 upgrades	 each	
thread	to	live	in	its	own	process.	Now,	the	same	virtual	page	can	map	to	different	physical	pages	for	
different	threads,	resulting	in	an	efficient	store	buffer	mechanism	controlled	by	software.	While	our	
software	store	buffers	have	very	weak	consistency	semantics,	we	show	their	use	is	still	compatible	
with	the	C/C++	memory	model.	Along	the	way	we	discovered	that	while	existing	memory	models	
assume	monolingual	 programs,	many	programs	 (often	due	 to	 super-optimized	 libraries	 like	 libc)	
are	a	mix	of	languages	like	C	and	assembly.	TMI	accounts	for	the	vastly	differing	semantics	of	x86	
assembly	and	C/C++,	to	ensure	that	TMI	is	correct	even	for	complex	multilingual	programs.	TMI	[1]	
and	Laser	[3]	are	featured	as	building	blocks	in	follow-on	work	from	the	University	of	Michigan	[2].	

We	next	 explored	 the	potential	 for	 automatic	 cache	 contention	 repair	 in	managed	 runtime	
systems	with	Remix	[4],	the	first	system	to	detect	or	repair	cache	contention	in	a	language	virtual	
machine.	Remix	is	a	modified	version	of	the	Oracle	HotSpot	JVM	that	can	automatically	discover	all	
forms	 of	 cache	 contention	 bugs	 and	 repair	 false	 sharing	 bugs	 in	 programs	 running	 on	 the	 JVM.	
REMIX	repairs	 false	sharing	issues	as	efficiently	as	manual	 fixes,	and	sometimes	even	better:	one	
expert-tuned	 benchmark	 ran	 faster	 with	 Remix	 than	 without	 because	 the	 expert	 had	 coded	
defensively	against	false	sharing	that	did	not	materialize	on	our	hardware	platform.	Remix	avoided	
inserting	any	padding,	and	achieved	better	cache	locality	as	a	result.	

Current and future work 
We	are	 currently	 exploring	ways	 to	mitigate	 the	performance	 impact	 of	 limited	 instruction	

cache	(I$)	capacity,	by	adapting	code	layout	at	runtime	to	the	paths	a	program	is	currently	using.	
Changing	code	at	runtime	raises	consistency	model	issues,	though	with	instruction	memory	which	is	
largely	 ignored	 in	 the	 literature.	Establishing	 the	semantics	of	 instruction	 fetches	and	writes	will	
expand	 our	 understanding	 of	 memory	 consistency	 and	 enable	 future	 research	 in	 runtime	 code	
transformations.	

																																																								
1	Regular	fork,	in	a	multithreaded	process,	creates	a	new	process	with	only	the	calling	thread	and	no	others.	



3	

More	broadly,	there	are	many	untapped	opportunities	in	“self-driving”	optimization	based	on	
performance	 counters.	 Performance	 counter	 feedback	 can	 be	 used	 to	 tune	 application-level	
parameters,	 like	 the	 size	 of	 internal	 caches,	 beyond	 adjusting	 behavior	 solely	 at	 the	 ISA	 level.	
Heavyweight	 optimizations,	 like	memory	 prefetchers	 powered	 by	 deep	 learning,	 can	 be	 trained	
with	 the	 latest	runtime	data;	 concerns	 about	overfitting	are	also	minimized	 in	our	online	 setting	
where	 only	 the	 current	 execution	 is	 of	 interest.	 There	 are	 also	 likely	 opportunities	 to	 reduce	
training	overheads	by	transferring	optimizations	between	machines	or	even	applications.	I	believe	
automatic	runtime	optimizations	like	these	are	key	to	scaling	performance	in	future	architectures.	

Direction 2: Concurrency Bug Detection 
Multithreaded	programming	suffers	from	a	host	of	well-known	correctness	challenges.	One	of	

the	key	challenges	is	the	potential	for	programs	to	contain	data	races.	Data	races	can	introduce	non-
sequentially-consistent	 and	 even	 undefined	 behavior	 into	 programs,	 making	 programs	 hard	 or	
impossible	 to	understand.	The	possibility	 of	 data	 races	 also	 complicates	other	 analyses	we	often	
want	 to	 perform	 on	 multithreaded	 programs,	 such	 as	 recording	 and	 replaying	 multithreaded	
execution,	verifying	program	correctness,	and	enforcing	determinism.	

Our	work	on	concurrency	bug	detection	has	taken	many	forms.	On	the	theoretical	side,	we’ve	
worked	on	new	algorithms	for	richer	parallel	programming	models	[5],	and	our	work	mechanizing	
proofs	of	correctness	of	existing	algorithms	[6]	has	helped	identify	small	issues	in	the	paper	proof	
in	 a	 famous	 piece	 of	 related	 work	 [7].	 We’ve	 shown	 how	 to	 improve	 on	 the	 state-of-the-art	
FastTrack	 race	detection	algorithm	by	deduplicating	 the	massive	 amounts	of	 redundancy	 in	 race	
detection	metadata	[8].	We’ve	also	explored	a	new	hybrid	hardware-software	solution	for	data	race	
detection	to	reduce	its	performance	overheads	[9].	

With	 the	 rise	 of	 GPU	 architectures	 and	 the	 massive	 amounts	 of	 parallelism	 that	 these	
accelerators	support,	our	attention	turned	to	providing	efficient	race	detection	for	GPU	programs.	
CPU	 race-detection	algorithms	do	not	 fare	well	 on	 the	GPU,	 as	 they	have	many	 components	 that	
consume	time	or	space	linear	in	the	number	of	threads.	This	is	fine	for	multithreaded	applications	
that	 sport	 tens	 of	 threads,	 but	 is	 a	 huge	 stumbling	 block	 with	 GPU	 programs	 that	may	 literally	
spawn	millions	of	 concurrent	 threads.	Our	Barracuda	 system	 [10]	proposes	 a	new,	 scalable	 race	
detection	 algorithm	 that	 leverages	 the	 hierarchical	 structure	 of	 the	 GPU	 programming	model	 to	
keep	time	and	space	overheads	in	check.	Barracuda	is	also	the	first	race	detector	to	support	non-
trivial	parts	of	the	GPU	memory	consistency	model	like	fences	and	atomics.		

In	 follow-on	work,	we	designed	the	CURD	system	[11]	 that	performs	race	detection	on	 the	
GPU	 itself	 (Barracuda	 streamed	 events	 to	 the	 CPU	 to	 perform	 race	 detection	 there),	 providing	 a	
massive	performance	boost.	 CURD	 is	17x	 faster	 than	Barracuda	 and	2x	 faster	 than	Nvidia’s	 own	
CUDA-Racecheck	race	detector,	despite	the	fact	that	CURD	detects	many	more	classes	of	races	than	
CUDA-Racecheck	does.	Having	received	over	a	dozen	requests	for	access	to	the	CURD	source	code,	
we	are	working	with	Nvidia	to	open-source	it	and	upgrade	the	current	state	of	CUDA	race	detection.	

Synergistic work 
In	a	related	line	of	work	we’ve	built	a	series	of	static	analyses	for	GPU	programs	to	identify	

potential	 performance	 issues.	 Our	 GPUDrano	 system	 [12]	 detects	 uncoalesced	memory	 accesses	
which	can	artificially	inflate	a	program’s	memory	bandwidth	demands	by	an	order	of	magnitude	or	
more.	We	also	developed	the	first	analysis	for	block	size	independence	of	GPU	programs	[13]	(best	
paper	award	winner	at	SAS	 ‘18),	a	new	correctness	property	 that	guarantees	 that	changes	 to	 the	
block	size	parameter	of	a	GPU	program	will	not	affect	 the	program’s	semantics.	Tuning	 the	block	
size	is	a	common	performance	optimization,	as	the	optimal	block	size	varies	across	GPUs.	However,	
without	block	size	independence,	changing	the	block	size	can	silently	alter	the	computation	being	
performed.	Our	analysis	puts	the	common	practice	of	block	size	tuning	on	a	safe	semantic	footing	
for	the	first	time.	



4	

Direction 3: Improving Deterministic Execution 
Another	 core	 source	 of	 complexity	 in	 multithreaded	 programming	 is	 the	 presence	 of	

nondeterminism.	Research	into	deterministic	execution	seeks	to	alleviate	many	of	the	correctness	
issues	 that	 plague	 multithreaded	 programming,	 by	 making	 program	 behavior	 repeatable.	
Determinism	makes	it	much	simpler	to	debug	a	program,	makes	it	possible	to	replicate	programs	
for	 reliability,	 and	 facilitates	 archiving	 of	 computational	 artifacts.	 Through	 both	 research	 and	
commercialization	efforts,	we’ve	expanded	the	boundaries	of	determinism	to	encompass	new	and	
richer	classes	of	programs.	

Deterministic Shared Memory 
One	key	bottleneck	in	all	prior	deterministic	execution	systems	is	that	they	require	a	global	

total	ordering	of	synchronization.	Even	when	two	threads	acquire	distinct	locks,	both	acquires	are	
forced	 into	 a	 deterministic	 total	 order.	 The	 total	 order	 is	 only	 really	 needed	when	 two	 threads	
contend	on	the	same	lock	–	there	the	total	order	deterministically	orders	one	contender	before	the	
other.	While	threads	often	acquire	distinct	locks,	it	is	undecidable	which	lock	a	thread	will	acquire	
next	so	the	total	order	must	be	enforced	all	the	time,	just	in	case.	

Our	 Consequence	 system	 [14]	 was	 the	 first	 to	 demonstrate	 the	 irony	 of	 previous	
deterministic	systems	that	adopted	very	relaxed	memory	consistency	models	but	retained	a	total	
order	on	 synchronization.	 Consequence	was	 able	 to	outperform	 these	prior	 systems	and	provide	
stronger	 memory	 consistency	 through	 careful	 engineering	 and	 the	 first	 implementation	 of	
deterministic	blocking	synchronization.	Previous	deterministic	synchronization	mechanisms	are	all	
polling-based	 which	 is	 wasteful	 of	 processor	 resources.	 Unlike	 in	 a	 nondeterministic	 system,	
deterministic	blocking	is	non-trivial	because	unblocking	must	be	performed	deterministically	with	
respect	 to	all	 threads	 in	 the	system.	As	a	result	of	 these	and	other	 innovations,	 the	Consequence	
system	is	more	than	2x	faster	than	previous	deterministic	execution	systems.	

We	 also	 found	 a	 way	 to	 smash	 through	 the	 total-order	 bottleneck	 completely	 with	 the	
LazyDet	 system	 [15].	We	 identified	many	 instances	 in	 which	 the	 imposition	 of	 a	 total	 order	 on	
synchronization	 is	 unnecessarily	 pessimistic.	 LazyDet	 uses	 deterministic	 speculation	 to	 avoid	
stalling	 due	 to	 the	 total	 order,	 and	 later	 validates	 that	 the	 speculative	 execution	 was	
indistinguishable	from	what	the	total	order	would	have	enforced.	Maintaining	the	illusion	of	a	total	
order	is	needed	to	preserve	determinism,	but	makes	deterministic	speculation	much	subtler	than	
its	 nondeterministic	 counterpart.	 The	 upside	 is	 that	 deterministic	 speculation	 yields	 a	 big	
performance	 win	when	 threads	 acquire	 distinct	 locks,	 as	 the	 total	 order	 is	 unnecessary	 in	 such	
cases.	Compared	to	our	prior	Consequence	work,	LazyDet	is	nearly	an	order	of	magnitude	faster	on	
microbenchmarks	with	fine-grained	locking,	and	2x	faster	on	several	real	applications.	

Deterministic OS Abstractions 
Most	of	the	existing	work	on	deterministic	execution	(ours	included)	has	focused	on	shared	

memory	parallelism.	However,	to	bring	the	benefits	of	determinism	to	a	wider	audience	we	need	to	
broaden	the	scope	to	support	the	complex	multi-process	jobs	that	people	run,	like	software	builds,	
data	analytics	pipelines,	and	computational	science	workflows.	Our	DetFlow	system	[16]	takes	an	
initial	 step	 in	this	space,	providing	a	deterministic	process	group	abstraction	without	requiring	a	
custom	OS	 like	previous	 systems.	 Instead,	DetFlow	uses	 lightweight	 library	 call	 interception	(via	
LD_PRELOAD)	 to	 intercept	 system	calls	and	ensure	 that	parallel	processes	 are	 isolated	 from	one	
another	with	 respect	 to	 shared	 resources	 like	 the	 filesystem.	 Software	builds	 and	bioinformatics	
workflows	running	under	DetFlow	incur	just	a	2%	performance	overhead.	

In	ongoing	work,	our	DetTrace	system	provides	the	first	deterministic	container	abstraction.	
DetTrace	uses	Linux’s	ptrace	mechanism	to	provide	an	airtight	deterministic	guarantee;	in	contrast,	
DetFlow’s	library	call	 interception	could	be	circumvented	in	various	ways	such	as	making	system	
calls	 via	 inline	 assembly.	While	 DetTrace’s	 performance	 overhead	 is	 higher	 at	 around	 4-5x,	 the	



5	

container	abstraction	makes	DetTrace	much	more	readily	deployable.	We’ve	used	DetTrace	to	build	
over	17,000	Debian	packages	deterministically.	As	a	point	of	comparison,	the	Debian	Reproducible	
Builds	(DRB)	community	with	dozens	of	volunteers	took	nearly	two	years	to	accomplish	a	similar	
feat,	as	they	patch	individual	packages	by	hand	to	make	them	build	deterministically.	Our	generic	
approach	enforces	determinism	for	anything	inside	the	container.	Moreover,	100%	of	the	packages	
we	build	come	out	deterministic,	while	the	DRB	effort	currently	has	only	92%	of	Debian	packages	
building	deterministically	due	to	a	long	tail	of	corner	cases,	regressions,	and	so	on.	

The	DetTrace	technology	also	underpins	the	work	at	our	startup,	Cloudseal,	which	is	building	
the	world’s	 first	 deterministic	 container	 service.	 Cloudseal	 containers	 seek	 to	 banish	 heisenbugs	
forever:	any	software	that	crashes	or	goes	awry	in	our	container	can	be	effortlessly	reproduced	due	
to	 the	container-level	determinism	guarantee.	With	SBIR	Phase	1	 funding	 from	the	NSF,	we	have	
hired	our	first	two	employees	and	anticipate	an	alpha	product	release	by	year	end.	

Conclusion 
All	of	our	projects	share	a	consistent	focus	on	improving	the	experience	of	writing	software,	

whether	it	be	automatically	fixing	performance	bugs	to	save	developer	effort,	or	helping	developers	
uncover	 subtle	 concurrency	 errors,	 or	 providing	 determinism	 to	 make	 it	 straightforward	 for	 a	
developer	to	reproduce	bugs.	As	the	processor	industry	turns	to	specialization	to	compensate	for	a	
lack	 of	 transistor	 scaling,	 computing	 systems	 have	 become	 increasingly	 complex	 and	 difficult	 to	
reason	about.	This	makes	work	like	ours	ever	more	relevant	and	necessary	to	allow	developers	to	
remain	productive	in	the	face	of	massively	heterogeneous	hardware.	

References 
	
[1]		 C.	DeLozier,	A.	Eizenberg,	S.	Hu,	G.	Pokam	and	J.	Devietti,	"TMI:	Thread	Memory	

Isolation	for	False	Sharing	Repair,"	in	IEEE/ACM	International	Symposium	on	
Microarchitecture	(MICRO),	2017.		

[2]		 T.	A.	Khan,	Y.	Zhao,	G.	Pokam,	B.	Mozafari	and	B.	Kasikci,	"Huron:	Hybrid	False	Sharing	
Detection	and	Repair,"	in	ACM	SIGPLAN	Conference	on	Programming	Language	
Design	and	Implementation	(PLDI),	2019.		

[3]		 L.	Luo,	A.	Sriraman,	B.	Fugate,	S.	Hu,	G.	Pokam,	C.	Newburn	and	J.	Devietti,	"LASER:	
Light,	Accurate	Sharing	Detection	and	Repair,"	in	IEEE	International	Symposium	on	
High	Performance	Computer	Architecture	(HPCA),	2016.		

[4]		 A.	Eizenberg,	S.	Hu,	G.	Pokam	and	J.	Devietti,	"Remix:	Online	Detection	and	Repair	of	
Cache	Contention	for	the	JVM,"	in	ACM	SIGPLAN	Conference	on	Programming	
Language	Design	and	Implementation	(PLDI),	2016.		

[5]		 J.	Fineman,	K.	Agrawal,	J.	Devietti,	I.-T.	A.	Lee,	R.	Utterback	and	C.	Xu,	"Race	Detection	
and	Reachability	in	Nearly	Series-Parallel	DAGs,"	in	ACM-SIAM	Symposium	on	
Discrete	Algorithms	(SODA),	2018.		

[6]		 W.	Mansky,	Y.	Peng,	S.	Zdancewic	and	J.	Devietti,	"Verifying	Dynamic	Race	Detection,"	
in	ACM	SIGPLAN	International	Conference	on	Certified	Programs	and	Proofs	(CPP),	
2017.		

[7]		 C.	Flanagan	and	S.	N.	Freund,	"FastTrack:	Efficient	and	Precise	Dynamic	Race	
Detection,"	in	Proceedings	of	the	ACM	SIGPLAN	Conference	on	Programming	
Language	Design	and	Implementation	(PLDI),	2009.		



6	

[8]		 Y.	Peng,	C.	DeLozier,	A.	Eizenberg,	W.	Mansky	and	J.	Devietti,	"SlimFast:	Reducing	
Metadata	Redundancy	in	Sound	and	Complete	Dynamic	Data	Race	Detection,"	in	
IEEE	International	Parallel	&	Distributed	Processing	Symposium	(IPDPS),	2018.		

[9]		 Y.	Peng,	B.	Wood	and	J.	Devietti,	"PARSNIP:	Performant	Architecture	for	Race	Safety	
with	No	Impact	on	Precision,"	in	ACM	IEEE	International	Symposium	on	
Microarchitecture	(MICRO),	2017.		

[10]		A.	Eizenberg,	Y.	Peng,	T.	Pigli,	W.	Mansky	and	J.	Devietti,	"BARRACUDA:	Binary-level	
Analysis	of	Runtime	RAces	in	CUDA	Programs,"	in	ACM	SIGPLAN	Conference	on	
Programming	Language	Design	and	Implementation	(PLDI),	2017.		

[11]		Y.	Peng,	V.	Grover	and	J.	Devietti,	"CURD:	A	Dynamic	CUDA	Race	Detector,"	in	ACM	
SIGPLAN	Conference	on	Programming	Language	Design	and	Implementation	(PLDI),	
2018.		

[12]		R.	Alur,	J.	Devietti,	O.	S.	N.	Leija	and	N.	Singhania,	"GPUDrano:	Detecting	Uncoalesced	
Accesses	in	GPU	Programs,"	in	Computer-Aided	Verification	(CAV),	2017.		

[13]		R.	Alur,	J.	Devietti	and	N.	Singhania,	"Block-Size	Independence	for	GPU	Programs,"	in	
Static	Analysis	Symposium	(SAS),	Radhia	Cousot	Young	Researcher	Best	Paper	
Award,	2018.		

[14]		T.	Merrifield,	J.	Devietti	and	J.	Eriksson,	"High-Performance	Determinism	with	Total	
Store	Order	Consistency,"	in	European	Conference	on	Computer	Systems	(EuroSys),	
2015.		

[15]		T.	Merrifield,	S.	Roghanchi,	J.	Devietti	and	J.	Eriksson,	"Lazy	Determinism	for	Faster	
Deterministic	Multithreading,"	in	International	Conference	on	Architectural	Support	
for	Programming	Languages	&	Operating	Systems	(ASPLOS),	2019.		

[16]		R.	G.	Scott,	O.	S.	Navarro	Leija,	J.	Devietti	and	R.	R.	Newton,	"Monadic	Composition	for	
Deterministic,	Parallel	Batch	Processing,"	in	ACM	SIGPLAN	International	Conference	
on	Object-Oriented	Programming,	Systems,	Languages,	and	Applications,	2017.		

	
	


