
1

Question 1
If all memory locations are marked as volatile in a Java program,
what is the result?
1.SC
2.TSO consistency
3.normal Java memory model semantics
4.deadlock

Question 2
For reads and writes of volatile locations in Java, running
on a TSO processor, when are fences necessary?
1.after reads
2.after writes
3.after both
4.after neither

Question 3
What guarantee does the Java Memory Model provide for
correctly synchronized programs?
1.termination
2.TSO consistency
3.SC
4.no guarantees

2

Question 4
In Sevcik and Aspinall's example of Redundant Write after
Read Elimination, why is it unlikely that the two reads
(r1=x and r2=x) would return different values in practice?
1.JVMs don't perform redundant write-after-read elimination
2.JVMs are likely to eliminate the now-redundant read of r2=x
3.The example program will always execute in an SC manner

because it is data-race-free.
4.Returning different values is the result of out-of-thin-air

values, which the JMM prohibits.

Question 5
In Sevcik and Aspinall's discussion of Irrelevant Read Introduction
(page 6), they mention that hardware can introduce irrelevant
reads through speculation, and thus violate the JMM. Is Java code
running on modern architectures broken?
1.No, because hardware is non-speculative.
2.No, because hardware always commits speculative operations

in program order.
3.No, because reads do not modify any architected state.
4.Yes, because hardware does not track control dependences for

speculative operations.

TOTAL STORE ORDER AND THE x86 MEMORY MODEL 43

possibly after it in memory order), with option (b) taking precedence (i.e., write buffer bypassing
overrides the rest of the memory system).

(3) Part (1) must be augmented to define FENCEs: /* Change 4: FENCEs Order Every-
thing */

If L(a) p FENCE L(a) m FENCE /* Load FENCE */
If S(a) p FENCE S(a) m FENCE /* Store FENCE */
If FENCE p FENCE FENCE m FENCE /* FENCE FENCE */
If FENCE p L(a) FENCE m L(a) /* FENCE Load */
If FENCE p S(a) FENCE m S(a) /* FENCE Store */

Because TSO already requires all but the Store Load order, one can alternatively define
TSO FENCEs as only ordering:

If S(a) p FENCE S(a) m FENCE /* Store FENCE */
If FENCE p L(a) FENCE m L(a) /* FENCE Load */

We choose to have TSO FENCEs redundantly order everything because doing so does not
hurt and makes them like the FENCEs we define for more relaxed models in the next chapter.

We summarize TSO’s ordering rules in Table 4.4. This table has two important differences
from the analogous table for SC (Table 3.4). First, if Operation #1 is a store and Operation #2 is

•
•
•
•
•

•
•

TABLE 4.4: TSO Ordering Rules. An “X” Denotes an
Enforced Ordering. A “B” Denotes that Bypassing is

Required if the Operations are to the Same Address. Entries
that are Different from the SC Ordering Rules are Shaded

and Shown in Bold.

52

• If S(a) <p FENCE ==> S(a) <m FENCE /* Store-->FENCE */

• If FENCE <p FENCE ==> FENCE <m FENCE /* FENCE-->FENCE */

• If FENCE <p L(a) ==> FENCE <m L(a) /* FENCE-->Load */

• If FENCE <p S(a) ==> FENCE <m S(a) /* FENCE-->Store */

Because TSO already requires all but the Store --> Load order, one can alternatively define TSO

FENCEs as only ordering:

• If S(a) <p FENCE ==> S(a) <m FENCE /* Store-->FENCE */

• If FENCE <p L(a) ==> FENCE <m L(a) /* FENCE-->Load */

We choose to have TSO FENCEs redundantly order everything, since doing so doesn’t hurt and makes

them like the FENCEs we define for more relaxed models in the next chapter.

We summarize TSO’s ordering rules in Table 4-4. This table has two important differences from the

analogous table for SC (Table 3-4). First, if Operation #1 is a store and Operation #2 is a load, the entry at

that intersection is a “B” instead of an “X”; if these operations are to the same address, the load must obtain

the value just stored even if the operations enter memory order out of program order. Second, the table

includes FENCEs, which were not necessary in SC; an SC system behaves as if there is already a FENCE

before and after every operation.

We conjecture that the x86 memory model is equivalent to TSO (for normal cacheable memory and

normal instructions). AMD and Intel publicly define the x86 memory model with examples and prose in a

process that is well summarized in Section 2 of Sewell et al. [7]. All examples conform to TSO and all

prose seems consistent with TSO. This equivalence can be proven only if a public, formal description of

TABLE 4-4. TSO ordering rules. An “X” denotes an
enforced ordering. A “B” denotes that bypassing is

required if the operations are to the same address. Entries
that are different from the SC ordering rules are shaded

and shown in bold.

Operation 2

Load Store RMW FENCE

O
pe

ra
tio

n
1 Load X X X X

Store B X X X
RMW X X X X
FENCE X X X X

3

design goal of the JMM

JVMsgood JMM

4

goal

Flag-based synchronization

// wait for condition
while (!ready) {}

// go for it... // initialize...

ready = true;

boolean ready = false;

5

double-checked locking

6

class Foo {
 private Singleton s = null;
 public Singleton getS() {
 if (s == null) {
 s = new Singleton();
 }
 return s;
 }
}

Dekker’s algorithm

7

flag[0] = false
flag[1] = false
turn = 0

flag[0] = true;
while (flag[1] == true) {
 if (turn ≠ 0) {
 flag[0] = false;

 while (turn ≠ 0) {}

 flag[0] = true;
 }
}

// critical section

turn = 1;
flag[0] = false;

Is the JMM fatally flawed?

JVMsgood JMM

after S+A

8

ideal

