sl
\

HiPEAC Summer School, July 2015
Tor M. Aamodt

aamodt@ece.ubc.ca
University of British Columbia

NVIDIA Tegra X1 die photo

What is a GPU?

* GPU = Graphics Processing Unit
— Accelerator for raster based graphics (OpenGL, DirectX)
— Highly programmable (Turing complete)
— Commodity hardware
— 100’s of ALUs; 10’s of 1000s of concurrent threads

The GPU is Ubiquitous

THE FUTURE BELONGS TO THE APU: AMDZ
BETTER GRAPHICS, EFFICIENCY AND COMPUTE

“SANDY BRIDGE” “IVY BRIDGE” “HASWELL” 2014 AMD A:'?:SESR{SODENAM ED

(Estimated)

17% GPU* 27% GPU* 31% GPU* 47% GPU DELIVERS

BREAKTHROUGHS
IN APU-BASED:

HUMA Shared Memory Controller
eeeeeeeeeeee “x86| AMD Radeon™ Graphics (GCN) Cores

4 Compute
— (OpenCL™, Direct Compute)

4 Gaming
UVD & VCE AMD TrueAudio - (Directx', openGL, Mantle)

PCIE Gen2/3 | | Display

4 Experiences
— (Audio, Ultra HD, Devices,
New Interactivity)

[APU13 keynote]

— 1981.:
— 1996:
— 1999:
— 2001:
— 2002:
— 2005:
— 2006:

“Early” GPU History

IBM PC Monochrome Display Adapter (2D)
3D graphics (e.g., 3dfx Voodoo)

register combiner (NVIDIA GeForce 256)
programmable shaders (NVIDIA GeForce 3)
floating-point (ATl Radeon 9700)

unified shaders (ATI R520 in Xbox 360)
compute (NVIDIA GeForce 8800)

GPU: The Life of a Triangle

process commands

Host/ Front End/ Vertex Fetch

Frame Buffer Controller

v
transform vertices .
to screenspace Vertex Processing
v
generate per- PR
ke ceEleie Primitive Assembly,Setup
v
generate pixels delete pixels .
that cannot be seen Rasterize & Zcull
v
Pixel Shader
v
determine the colorstransparencies <«
and depth of the pixel Texture >
v
do final hidden surface test,blend . . <«
and write out color and new depth Pixel Engines (ROP) >

[David Kirk / Wen-mei Hwul]

MDA

Why use a GPU for computing?

e GPU uses larger fraction of silicon for computation than CPU.

* At peak performance GPU uses order of magnitude less
energy per operation than CPU.

Rewrite Application

GPU
200pJ/op

Order of Magnitude More
Energy Efficient

However.... I
| Application must perform well |

GPU

m [T TTTTTTITTTT]
m [T TTTTTTITTTT]
e [T TTTTTITTTT]
[[[[T T T TTTTTTTTIT]
[[[[T T T TTTTTTTTT]
[[[[T T T TTTTTTTTT]
[[[[T T T T TTTTTTTT]
[[T T TTTTTTTTTTTIT]

GPU uses larger fraction of silicon for
computation than CPU?
CPU

[NVIDIA]

Growing Interest in GPGPU

* Supercomputing — Green500.org Nov 2014

“the top three slots of the Green500 were powered by three
different accelerators with number one, L-CSC, being powered by
AMD FirePro™ S9150 GPUs; number two, Suiren, powered by
PEZY-SC many-core accelerators; and number three, TSUBAME-
KFC, powered by NVIDIA K20x GPUs. Beyond these top three, the
next 20 supercomputers were also accelerator-based.”

 Deep Belief Networks map very well to GPUs

(e.g., Google keynote at 2015 GPU Tech Conf.)
http://blogs.nvidia.com/blog/2015/03/18/google-gpu/
http://www.ustream.tv/recorded/60071572

GPGPUs vs. Vector Processors

e Similarities at hardware level between GPU
and vector processors.

* (I like to argue) SIMT programming model
moves hardest parallelism detection problem
from compiler to programmer.

Course Learning Objectives

After course you should be able to:

1.

Explain motivation for investigating novel GPU-like
computing architectures

Understand basic CUDA / PTX programs

Describe features of a generic GPU architecture
representative of contemporary GPGPUs

Describe selected research on improving GPU
computing programming models and hardware
efficiency

Further Reading?

The following title is under development:

Tor M. Aamodt, Wilson W. L. Fung, Tim G. Rogers,
General Purpose Graphics Processor Architectures,
Morgan and Claypool (late 2015 or early 2016)

Other resources (primarily research papers) will be
mentioned throughout the lectures.

Course Outline

* Part 1: Introduction to GPGPU Programming
Model

e Part 2: Generic GPGPU Architecture

e Part 3: Research Directions

— Mitigating SIMT Control Divergence

— Mitigating High GPGPU Memory Bandwidth
Demands

— Coherent Memory for Accelerators
— Easier Programming with Synchronization

Part 1: Introduction to GPGPU
Programming Model

GPGPU Programming Resources

* 9 week MOOC covering CUDA, OpenCL, C+
+AMP and OpenACC
https://www.coursera.org/course/hetero

e Kirk and Hwu, Programming Massively Parallel
Processors, Morgan Kaufmann, 2"¢ edition,
2014 (NOTE: 2" edition includes coverage of
OpenCL, C++AMP, and OpenACC)

GPU Compute Programming Model

EEEEEEEE EEEEEEEN
ANEEEERN EEERENEN

CPU GPU

How is this system programmed (today)?

1.16

GPGPU Programming Model

« CPU “Off-load” parallel kernels to GPU

cpu| - [cPule--[cPU] e
spawn spawn
\ %:e \
GPU GPU
—

Time

— Transfer data to GPU memory
— GPU HW spawns threads

— Need to transfer result data back to CPU main
memory

17

CUDA/OpenCL Threading Model

CPU spawns fork-join style “grid” of parallel threads

kernel()
thread block O thread block 1 thread block N
"E'H"r'éga"é'r'i'a ..

Spawns more threads than GPU can run (some may wait)

Organize threads into “blocks” (up to 1024 threads per block)
Threads can communicate/synchronize with other threads in block
Threads/Blocks have an identifier (can be 1, 2 or 3 dimensional)

Each kernel spawns a “grid” containing 1 or more thread blocks.
Motivation: Write parallel software once and run on future hardware

18

SIMT Execution Model

Programmers sees MIMD threads (scalar)

GPU bundles threads into warps (wavefronts) and runs them
in lockstep on SIMD hardware

An NVIDIA warp groups 32 consecutive threads together
(AMD wavefronts group 64 threads together)

Warp Weft

Aside: Why “Warp”? In the textile
industry, the term “warp” refers to
“the threads stretched lengthwise
in a loom to be crossed by the
weft” [Oxford Dictionary].

Jacquard Loom => Babbage’s
Analytical Engine => ... => GPU.
[https://en.wikipedia.org/wiki/Warp_and_woof]

1.19

SIMT Execution Model

* Challenge: How to handle branch operations when
different threads in a warp follow a different path
through program?

* Solution: Serialize different paths.

fool[] = {4,8,12,16};
A: v = foo[threadIdx.x]; -
B: if (v < 10) B
. _ A =
C: vV = O, C 3
(]
else
5 v~ 10, D
E: w = bar[threadIldx.x]+v; E

1.20

CUDA Syntax Extensions

» Declaration specifiers
__global__ void foo(...); // kernel entry point (runs on GPU)
__device _ void bar(...); // function callable from a GPU thread

« Syntax for kernel launch
foo<<<500, 128>>>(...); // 500 thread blocks, 128 threads each

 Built in variables for thread identification
dim3 threadldx; dim3 blockldx; dim3 blockDim;

Example: Original C Code

void saxpy serial (int n, float a, float *x, float *y)

{

for (int 1 = 0; 1 < n; ++1)
y[li] = a*x[1] + y[i];
}
int main () {

// omitted: allocate and initialize memory
saxpy serial(n, 2.0, x, y); // Invoke serial SAXPY kernel
// omitted: using result

CUDA Code

__global void saxpy(int n, float a, float *x, float *y) ({
int i = blockIdx.x*blockDim.x + threadIdx.x;
if(i<n) yl[il=a*x[1i]+y[i];

} Runs on GPU
int main () {

// omitted: allocate and initialize memory

int nblocks = (n + 255) / 256;

cudaMalloc ((void**) &d x, n);

(
cudaMalloc ((void**) &d y, n);
cudaMemcpy (d x,h x,n*sizeof (float), cudaMemcpyHostToDevice) ;
cudaMemcpy (d y,h y,n*sizeof (float), cudaMemcpyHostToDevice) ;
saxpy<<<nblocks, 256>>>(n, 2.0, d x, d vy);
cudaMemcpy (h y,d y,n*sizeof (float), cudaMemcpyDeviceToHost) ;
// omitted: using result

OpenCL Code

__kernel void saxpy(int n, float a, _ global float *x, _ global float *y) {
int i = get global id(0);
if (i<n) ylil=a*x[il+yl[i];

) Runs on GPU

int main () {
// omitted: allocate and initialize memory on host, variable declarations

int nblocks = (n + 255) / 256;
int blocksize = 256;

clGetPlatformIDs (1, &cpPlatform, NULL);

clGetDevicelDs (cpPlatform, CL DEVICE TYPE GPU, 1, &cdDevice, NULL);

cxGPUContext = clCreateContext (0, 1, &cdDevice, NULL, NULL, &ciErrl):;

cgCommandQueue = clCreateCommandQueue (cxGPUContext, cdDevice, 0, &ciErrl);

dx = clCreateBuffer (cxGPUContext, CL MEM READ ONLY, sizeof(cl float) * n, NULL, &ciErrl);
dy = clCreateBuffer (cxGPUContext, CL MEM READ WRITE, sizeof(cl float) * n, NULL, &ciErrl);

// omitted: loading program into char string cSourceCL
cpProgram = clCreateProgramWithSource (cxGPUContext, 1, (const char **)&cSourceCL, &szKernellength,

&ciErrl) ;
clBuildProgram(cpProgram, 0, NULL, NULL, NULL, NULL);
ckKernel = clCreateKernel (cpProgram, “saxpy serial”, &ciErrl);

clSetKernelArg (ckKernel,
clSetKernelArg (ckKernel,

(sizeof(cl int), (void*)é&n);

(
clSetKernelArg (ckKernel,

(

(
sizeof (cl float), (void¥*)é&a);
sizeof (cl mem), (void*)&dx);
((void*) &dy) ;

~

w NP O
~ 0~

~

clSetKernelArg (ckKernel, sizeof (cl mem),

clEnqueuelWriteBuffer (cgCommandQueue, dx, CL FALSE, 0, sizeof(cl float) * n, x, 0, NULL, NULL);
clEnqueueWriteBuffer (cgCommandQueue, dy, CL FALSE, 0, sizeof(cl float) * n, y, 0, NULL, NULL);
clEnqueueNDRangeKernel (cqCommandQueue, ckKernel, 1, NULL, &nblocks, & blocksize, 0, NULL, NULL);
clEnqueueReadBuffer (cgCommandQueue, dy, CL TRUE, 0, sizeof(cl float) * n, y, 0, NULL, NULL);

// omitted: using result 24

C++AMP Example Code

#include <amp.h>
using namespace concurrency;

int main () {
// omitted: allocation and initialization of y and x
array view<int> xv(n, X);
array view<int> yv(n, y);

parallel for each(yv.get extent(), [=] (index<l> 1) restrict (amp)
yv[i] = a * xv[1] + yv[i];
)i Runs on GPU

yv.synchronize () ;
// omitted: using result

OpenACC Example Code

void saxpy serial (int n, float a, float *x, float *y)

{

#pragma acc kernels

for (int 1 = 0; 1 < n; ++1)
yl1i] = a*x[1] + y[1];

Runs on GPU

Review: Memory

* E.g., use to save state between stepsin a
computation.

 Each memory location has an associated address
which identifies the location. The location contains
a value:

address value

Example: Memory with 4
one byte locations. 0| OxFF

Location with address 1 1| 0x42
contains value 0x42. 21 ox00
3| O0x01

GPU Memory Address Spaces

* GPU has three address spaces to support increasing
visibility of data between threads: local, shared,
global

* In addition two more (read-only) address spaces:
Constant and texture.

Local (Private) Address Space

Each thread has own “local memory” (CUDA) “private

Qemory” (OpencCL).
e

V¢'VVVVV

Note: Location at address 100 for thread 0 is different from
location at address 100 for thread 1.

Contains local variables private to a thread.

29

thread
block X

Global Address Spaces

1y,

il

thread
block Y

Each thread in the different
thread blocks (even from
different kernels) can access
a region called “global

memory” (CUDA/OpenCL).

Commonly in GPGPU
workloads threads write their
own portion of global
memory. Avoids need for
synchronization—slow; also
unpredictable thread block
scheduling.

30

History of “global memory”

* Prior to NVIDIA GeForce 8300 and CUDA 1.0,
access to memory was through texture reads

and raster operations for writing.

* Problem: Address of memory access was
highly constrained function of thread ID.

* CUDA 1.0 enabled access to arbitrary memory
location in a flat memory space called “global”

Example: Transpose (CUDA SDK)

__global__ void transposeNaive(float *odata, float* idata, int width, int height)
{

int xIndex

(blockIdx.x * TILE_DIM) + threadIdx.x; // TILE DIM = 16

int yIndex = (blockIdx.y * TILE DIM) + threadIdx.y;
int index_in = xIndex + (width * yIndex); 112 113
int index_out = yIndex + (height * xIndex);
for (int i=@; i<TILE DIM; i+=BLOCK_ROWS) { // BLOCK ROWS = 16 314 214
odata[index_out+i] = idata[index_in+(i*width)];
}
}

NOTE: “xIndex”, “yIndex”, “index_in”, “index_out”, and “i” are in local memory
(local variables are register allocated but stack lives in local memory)

“odata” and “idata” are pointers to global memory
(both allocated using calls to cudaMalloc -- not shown above)

“Coalescing” global accesses

* Not same as CPU write combining/buffering:

* Aligned accesses request single 128B cache blk
128 255

T sesaomms evo0e0

* Memory Divergence:
128 256 1024 1152

.
.
~~~~~~~~~~~~~~~~~~
e ~.

ld.global rl1,0(r2)



Example: Transpose (CUDA SDK)

__global__ void transposeNaive(float *odata, float* idata, int width, int height)

{
int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;
int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;
int index_in = xIndex + width * yIndex;

int index_out = yIndex + height * xIndex;
for (int_i=@; i<TILE DIM; i+=BLOCK_ROWS) {
(::Eagia[index_out+i] =2 idata[index_in+i*width];
}

}

Assume height=16 and consider i=0:

Thread x=0,y=0 has xIndex=0, yIndex=0 so accesses odata[0]
Thread x=1,y=0 has xIndex=1, yIndex=0 so accesses odata[16]

Write to global memory highlighted above is not “coalesced”.

34



Redundant Global Memory Accesses

__global _ void matrixMul (float *C, float *A, float *B, int N)
{

int xIndex

blockIdx.x * BLOCK_SIZE + threadIdx.x;
blockIdx.y * BLOCK_SIZE + threadIdx.y;

int yIndex
float sum = 0O;

for (int k=0; k<N; i++)
sum += A[yIndex][k] * B[k][xIndex];

C[yIndex][xIndex] = sum;
}

E.g., both thread x=0,y=0 and thread x=32, y=0 access A[0][O0]
potentially causing two accesses to off-chip DRAM. In general,
each element of A and B is redundantly fetched O(N) times.



Tiled Multiply Using Thread Blocks

[David Kirk & Wen-mei Hwu / UIUC ECE 498AL]

One computes one square sub-matrix
P, Of size BLOCK_SIZE
One computes one element of P,

Assume that the dimensions of M and N are
multiples of BLOCK_SIZE and square shape

A
v
A

36

v



History of “shared memory”

* Prior to NVIDIA GeForce 8300 and CUDA 1.0,
threads could not communicate with each
other through on-chip memory.

e “Solution”: small (16-48KB) programmer
managed scratchpad memory shared between
threads within a thread block.



thread
block

Shared (Local) Address Space

0
o
o
o
o
o
o
3
o
o

Each thread in the same thread block
(work group) can access a memory
region called “shared memory” (CUDA)
“local memory” (OpenCL).

Shared memory address space is
limited in size (16 to 48 KB).

Used as a software managed “cache”
to avoid off-chip memory accesses.

Synchronize threads in a thread block
using __ syncthreads();



Optimizing Transpose for Coalescing

Step 1: Read block of data into shared memory

idata 1

=

3

4

N

1
3

Step 2: Copy from shared memory into global memory using coalesce write

odata

39



{

Optimizing Transpose for Coalescing

global _ void transposeCoalesced(float *odata, float *idata, int width, int height)

__shared__ float tile[TILE DIM][TILE_DIM];

int xIndex

(blockIdx.x * TILE DIM) + threadIdx.x;
(blockIdx.y * TILE DIM) + threadIdx.y;
int index_in = xIndex + (width * yIndex);

int yIndex

xIndex

(blockIdx.y * TILE DIM) + threadIdx.x;
(blockIdx.x * TILE DIM) + threadIdx.y;
int index_out = xIndex + (yIndex*height);

yIndex

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {
tile[threadIldx.y+i][threadIdx.x] = idata[index_in+(i*width)];
}

__syncthreads(); // wait for all threads in block to finish above for Loop

for (int i=0; i<TILE DIM; i+=BLOCK_ROWS) {
<:§§Efé[index_out+i*he%§EEI>=QEEEEEhreadIdx.x][threadIdx.iEEI:>
}

GOOD: Coalesced write BAD: Shared memory bank conflicts

40



Review: Bank Conflicts

* To increase bandwidth common to organize memory
into multiple banks.

* Independent accesses to different banks can proceed

in parallel
Bank O Bank 1 Bank 0 Bank 1 Bank O Bank 1
0 1 0 1 0 1
2 3 2 3 2 L‘.J 3
4 5 4 5 4 5
6 7 6 7 6 7

N

Example 1: Read 0, Read 1 Example 2: Read 0, Read 3 Example 3: Read 0, Read 2
(can proceed in parallel) i (can proceed in parallel) i (bank conflict)



Shared Memory Bank Conflicts
__shared__ int A[BSIZE];

A[threadIdx.x] = .. // no conflicts

32 33 34 63
64 65 66 95
96 97 98 127




Shared Memory Bank Conflicts

__shared  int A[BSIZE];

A[2*threadIdx.x] = // 2-way conflict

0

-

64
96

33
65
97

2

=

66
98

31

95
127

43



Optimizing Transpose for Coalescing

Step 1: Read block of data into shared memory

idata 117

3|4 _
\,12
3

Step 2: Copy from shared memory into global memory using coalesce write

|1

2
13 |4

Problem: Access two locations in same
shared memory bank.

odata

44



+ Eliminate Bank Conflicts

__global__ void transposeNoBankConflicts (float *odata, float *idata, int width, int height)

{
__shared__ float tile[TILE_DIM][TILE_D @

int xIndex = blockIdx.x * TILE_DIM + threadIdx.x;
int yIndex = blockIdx.y * TILE_DIM + threadIdx.y;
int index_in = xIndex + (yIndex)*width;

xIndex
yIndex

blockIdx.y * TILE_DIM + threadIdx.x;
blockIdx.x * TILE DIM + threadIdx.y;
int index_out = xIndex + (yIndex)*height;

for (int i=0; i<TILE_DIM; i+=BLOCK ROWS) {
tile[threadIdx.y+i][threadIdx.x] = idata[index_in+i*width];
}

__syncthreads();

for (int i=0; i<TILE_DIM; i+=BLOCK_ROWS) {
odata[index_out+i*height] = tile[threadIdx.x][threadIdx.y+i];



Optimizing Transpose for Coalescing

Step 1: Read block of data into shared memory

idata

=

1
3]

4

Bank O Bank 1
—]
112

3

[/
4

Step 2: Copy from shared memory into global memory using coalesce write

Bank O Bank 1

NP

odata

46



CUDA Streams

 CUDA (and OpenCL) provide the capability to
overlap computation on GPU with memory
transfers using “Streams” (Command Queues)

* A Stream orders a sequence of kernels and
memory copy “operations”.

* Operations in one stream can overlap with
operations in a different stream.



How Can Streams Help?

Serial: cudaMemcpy(H2D)

GPU idle GPU busy GPU idle

Streams: cudaMemcpy(H2D)

Savings

Time

http://on-demand.gputechconf.com/gtc-express/2011/presentations/StreamsAndConcurrencyWebinar.pdf

48



CUDA Streams

cudaStream t streams[3];
for(i=0; i<3; i++)
cudaStreamCreate(&streams[i]); // initialize streams

for(i=0; i<3; i++) {
cudaMemcpyAsync(pD+i*size,pH+i*size,size,
cudaMemcpyHostToDevice,stream[i]); // H2D
MyKernel<<<grid,block,0,stream[i]>>>(pD+i,size); // compute
cudaMemcpyAsync(pD+i*size,pH+i*size,size,
cudaMemcpyDeviceToHost,stream[1i]); // D2H

49



Recent Features in CUDA

Dynamic Parallelism (CUDA 5): Launch kernels from within a

kernel.

Reduce work for e.g., adaptive mesh refinement.

Unified Memory (CUDA 6): Avoid need for explicit memory
copies between CPU and GPU

CUDA 6 Code with Unified Memory

void sortfile(FILE *“fp, int N) { void sortfile(FILE “fp, int N) {

}

char “data; char <“data;
data = (char “Jmal1loc(N); cudaMallocManaged{&data, N);

fread(data, 1, N, fp); fread(data, 1, N, fp);

gsort(data, N, 1, compare); gsort<<<...>>»>(data ,N,1,compare);

use_data(data); use_data(data);

free(data); cudaFree(data);
¥

http://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/

See also, Gelado, et al. ASPLOS 2010.



GPU Instruction Set Architecture (ISA)

NVIDIA defines a virtual ISA, called “PTX” (Parallel
Thread eXecution)

More recently, Heterogeneous System Architecture
(HSA) Foundation (AMD, ARM, Imagination, Mediatek,

Samsung, Qualcomm, Tl) defined the HSAIL virtual ISA.

PTX is Reduced Instruction Set Architecture (e.g., load/
store architecture)

Virtual: infinite set of registers (much like a compiler
intermediate representation)

PTX translated to hardware ISA by backend compiler
(“ptxas”). Either at compile time (nvcc) or at runtime
(GPU driver).




Some Example PTX Syntax

e Registers declared with a type:
.reg .pred p, g, r;
.reg .ulé6 rl, r2;
.reg .f64 1, f2;

* ALU operations
add.u32 x, y, z; // X =y + Z
mad.lo.s32 d, a, b, ¢c; // d = a*b + c

* Memory operations:
ld.global.f32 f, [a];
ld.shared.u32 g, [b];
st.local.f64 [c], h
* Compare and branch operations:
setp.eq.f32 p, y, 0; // 1s y equal to zero?
@p bra L1 // branch to L1 1f y equal to zero



Part 2: Generic GPGPU Architecture



Extra resources

GPGPU-Sim 3.x Manual
http://gpgpu-sim.org/manual/index.php/
GPGPU-Sim 3.x Manual

54



GPU Microarchitecture Overview

Single-Instruction, Multlple-Threads

' GPU

: SIMT Core Cluster SIMT Core Cluster SIMT Core Cluster

'oSIMT || SIMT SIMT || SIMT SIMT || SIMT

: Core Core Core Core Core Core

I

| i i i

: Interconnection Network

; } t }

I Memory Memory Do Memory

: Partition Partition Partition
GDDR5 GDDR5 Off-chip DRAM GDDR5




GPU Microarchitecture

 Companies tight lipped about details of GPU
microarchitecture.

e Several reasons:
— Competitive advantage
— Fear of being sued by “non-practicing entities”

— The people that know the details too busy building
the next chip

* Model described next, embodied in GPGPU-Sim,
developed from: white papers, programming
manuals, IEEE Micro articles, patents.



GPGPU-SIim v3.x w/ SASS

HW - GPGPU-Sim Comparison

250.00

200.00

PC

=150.00

im

00.00

GPGPU-S

50.00

0.00
0.00 50.00 100.00 150.00 200.00

Quadro FX5800 IPC

250.00

Correlation
~0.976

57



GPU Microarchitecture Overview

SIMT Core Cluster

SIMT Core Cluster

SIMT
Core

SIMT
Core

SIMT SIMT
Core Core

SIMT Core Cluster

SIMT
Core

SIMT
Core

58



Inside a SIMT Core

v

SIMT
Front End

Fetch

Reg
File

{

SIMD Datapath

¢

Decode

Schedule

Memory Subsystem

Branch

SMem

L1 DS

Tex S

ConstS

Icnt.
Network

e SIMT front end / SIMD backend

* Fine-grained multithreading
— Interleave warp execution to hide latency
— Register values of all threads stays in core




Inside an “NVIDIA-style” SIMT Core

SIMT Front End

Branch Target PC
SIMT-Stack
Valid[1:N] Active | Scheduler 3 |
I-Buffer Mask y— - LU ;

I-Cache [ Decode ¢ Issue  f—Pp Operand

Collector
Score
::I Board

MEM [—»

Done (WID)

 Three decoupled warp schedulers
e Scoreboard

* Large register file
 Multiple SIMD functional units



Fetch + Decode

e Arbitrate the I-cache
among warps

— Cache miss handled by
fetching again later

e Fetched instruction is

decoded and then stored

in the |-Buffer
— 1 or more entries / warp

— Only warp with vacant
entries are considered in
fetch

> TEE
-
YY K@)

wn

election

A

Valid[1:N]

Fetch

Score-

¢ A

Valid[1:N] I-Buffer

I-Cache

=

Decode

e




Instruction Issue

e Select a warp and issue an instruction from its
I-Buffer for execution Score-

— Scheduling: Greedy-Then-Oldest (GTO) Decode Board

* run a warp until it stalls (greedy), then pick
the oldest warp to run next

— GT200/later Fermi/Kepler:
Allow dual issue (superscalar)

— To avoid stalling pipeline might
keep instruction in I-buffer until
know it can complete (replay)




Review: In-order Scoreboard

Scoreboard: a bit-array, 1-bit for each register
— If the bit is not set: the register has valid data

— If the bit is set: the register has stale data
I.e., some outstanding instruction is going to change it

Issue in-order: RD €< Fn (RS, RT)
— If SB[RS] or SB[RT] is set > RAW, stall
— If SB[RD] is set > WAW, stall
— Else, dispatch to FU (Fn) and set SB[RD]

Complete out-of-order Scoreboard Register File
— Update GPR[RD], clear SB[RD]




In-Order Scoreboard for GPUs?

Problem 1: 32 warps, each with up to 128 (vector)
registers per warp means scoreboard is 4096 bits.

Problem 2: Warps waiting in I-buffer needs to have
dependency updated every cycle.
Solution?

— Flag instructions with hazards as not ready in |-Buffer
so not considered by scheduler

— Track up to 6 registers per warp (out of 128)
— |-buffer 6-entry bitvector: 1b per register dependency

— Lookup source operands, set bitvector in I-buffer. As
results written per warp, clear corresponding bit

ST




Warp 0
Warp 1

Example

Code

1d r7 <- [ro]
mul ré6 <- r2, r5
add r8 <- r6, r7

Scoreboard
Index 0 Index 1 Index 2 Index 3

r8

Warp O

Warp 1

Instruction Buffer

10 i1 i2 i3

add r8, r6, r7




SIMT Using a Hardware Stack

Stack approach invented at Lucasfilm, Ltd in early 1980’s
Version here from [Fung et al., MICRO 2007]

Stack
A/1111 Reconv. PC Next PC Active Mask
TOS —* - E 1111
TOS —> E D 0110
B/1111 TOS —* E E 1001

A

C/1001| |D/0110] |F

\/ Thread Warp Common PC

E/1111 Thread | Thread | Thread | Thread
1 2 3 4

G/1111

B | c || o | E || A
e | e | i | | === - =T
L= [ —> =1 —{ —
....: : :: :: : : :
e B | — i 4 i 1
et Bl e | e Ml [Nt

| > Time

SIMT = SIMD Execution of Scalar Threads 66



SIMT Notes

* Execution mask stack implemented with
special instructions to push/pop. Descriptions
can be found in AMD ISA manual and NVIDIA

patents.

* |n practice augment stack with predication
(lower overhead).



SIMT outside of GPUs?

* ARM Research looking at SIMT-ized ARM ISA.

* Intel MIC implements SIMT on top of vector
hardware via compiler (ISPC)

* Possibly other industry players in future



Register File

« 32 warps, 32 threads per
warp, 16 x 32-bit registers
per thread = 64KB register
file.

 Need “4 ports” (e.g., FMA)
greatly increase area.

« Alternative: banked single

ported register file. How to .
avoid bank conflicts? anch Unit

Issue —p

Yone (WID)




Banked Register File

Strawman microarchitecture:

ID/RR Pipeline Register

[wo| ada [rs|1]rs]o]x1]o]--]

RR/EX Pipeline

=T Register
$vlvd
—>| - Bank QO -- 4?» B
—»{0,2,.., 1% B
—> - Bank 1 -- BT
Arbitrator > B —
—» | -~ Bank2 -- T :
> —— >
—> - Bank 3 -- ™ B
R I *
egister lavout: Single-Ported SIMD
8 Y Register File Banks Grosshar Execution Unit
Bank 0 Bank 1 Bank 2 Bank 3
w1:rd w1:rs w1:ré w1:r7
w1:r0 w1:r1 w1:r2 w1:r3
wO:r4 wO:r5 wO:ré wO:r7
wO:r0 wO:r1 wO0:r2 wO0:r3

70



Register Bank Conflicts

il: mad r2,, r5,, r4,, ré6,
i2: add r5,, r5,, rl, |
Decode
Cycle|Warp i Instruction
Of..w3 i il: mad 12, r5, rd, r6 o
l ... w0 i..d2: add TS5, TS50 IL e
4 wl Poi2: add r5, r5, rl
Cycle >
1 2 3 i 4 5 6
Olw3:ilerdi i s
= 1W311r5w°12r1W012r5W112r1W012r5W1121’5
@ 2[w3:il:re ETERRE: SN S
3 . : .
EU W3 WO

« warp 0, instruction 2 has two source operands in bank
1: takes two cycles to read.

« Also, warp 1 instruction 2 is same and is also stalled.
« Can use warp ID as part of register layout to help.



Operand Collector

Bank 0

RO

Bank 1

R4

R1

R8

R5

R9

Bank 2

R2

Bank 3

R6

R3

R10

R7

R11

=

R1, R2;

mul.s32 R3, RO, R4;

No Conflict

Conflict at bank O

* Term “Operand Collector” appears in figure in NVIDIA Fermi Whitepaper

* Operand Collector Architecture (US Patent: 7834881)
— Interleave operand fetch from different threads to achieve full utilization

S




Operand Collector (1)

(from instruction decode stage)
| |—> issue
i w0 mad
Bank 0 30 ———— |
- .o an .o 1710 —_——— L
T I e I
w3 add B
218, 3, ... 0>
—>| | -- Bank1 -+ | it i Y B
_ [0 S I e —
Arbitrator T < B L
Wl add .
I . r2[10,0,... 0> .
Bank 2 ™ 02, i :
e
Bank 3 W2 add :
—>> *+ Ban oo > r2[1[1,2,.., 6>
* o] e I S
Single-Ported . SIMD
. . Crossbar Collector Units . .
Reqister File Banks Execution Unit

Issue instruction to collector unit.

Collector unit similar to reservation station in tomasulo’s algorithm.
Stores source register identifiers.

Arbiter selects operand accesses that do not conflict on a given cycle.
Arbiter needs to also consider writeback (or need read+write port)

73



Operand Collector (2)

« Combining swizzling and

access scheduling can give il: add r1, r2, r5 ‘
up to ~ 2x improvement in i2: mad rd4, r3, r7, rl
throughput Cycle|Warp : Instruction
O] wi { il: add rl1,, r2,, r5,
N s sl e
12 ..... e
[ e e
Cycle >
1 2 3 i 4 5 6
0 w2:r2 w3:r5 w3:rl
= VTR TENPOON 1" TT IR SO TR
@ 2 wi:rs: & Gwlepdi G
3|lwl:r2i fw2:r5:w0:r3iw2:rliv0:r;
EU : twl w2 w3 : :

Bank O Bank 1 Bank 2 Bank 3

w1:r7 w1:rd w1:r5 w1:ré
w1:r3 w1:r0 w1:r1 w1:r2
wO0:r4 wO0:r5 wO0:ré wO:r7
wO0:r0 wO:r1 wO0:r2 wO0:r3




AMD Southern Islands

e SIMT processing often includes redundant
computation across threads.

thread 0...31:
for(i=0; i < runtime_constant_N; i++ {

/* do something with “i” */



AMD Southern Islands SIMT-Core

ISA visible scalar unit executes computation
identical across SIMT threads in a wavefront

C Ultra Threaded Dispatcher )
SIMD 3
susr.{%%z ?1 indexed

SIMD 0
pc_ | waveO inst buffer |

vy

ec | wave1 inst buffer |

LDS

Vector Inst&

¢ Vector GPRs |H
Scalar Insty & A .

pc_ | wave2 inst buffer |}

b4
w
J‘

-1 el
X
w

a e

o=
| indexed

pc | wave3 inst buffer |

°c | waved inst buffer |

| vec-mem ‘ —:D:_
B} lds/exp | —m1
= v

°c | wave5 inst buffer |}

oo e

— I e

¢ | wave inst buffer }
pc_ | wave? instbufter } Scalar ALU Vector ALU
Pc | waveB inst buffer | | l 1
pc | wave$ inst buffer | _N_D_’ IIK$
Cache
T scalarmem r/o »| (RIO)
Instruction r/o *




float £n0(float a,float b)
{
if (a>b)
return (a * a - b);
else
return (b * b - a);

Example

// Registers r0 contains “a”, rl contains “b”
// Value is returned in r2
v_cmp gt £32 r0, rl // a>b
s_mov_b64 sO0, exec // Save current exec mask
s_and b64 exec, vcc, exec // Do “if”
s cbranch vcez label0 // Branch if all lanes fail
v mul £32 r2 r0, r0 // result = a * a
v_ sub £32 r2, r2, rl // result = result - b
labelO
s_not b64 exec, exec // Do “else”
s_and b64 exec, s0, exec // Do “else”
s cbranch execz labell // Branch if all lanes fail
v_mul £32 r2, rl, rl // result =b * Db
v_sub_f32 r2, r2, r0 // result = result - a
labell:
s_mov _b64 exec, s0 // Restore exec mask

[Southern Islands Series Instruction Set Architecture, Aug. 2012]

77



Southern Islands SIMT Stack?

Instructions: S_CBRANCH_* FORK; S_CBRANCH_JOIN
Use for arbitrary (e.g., irreducible) control flow
3-bit control stack pointer

Six 128-bit stack entries; stored in scalar general
purpose registers holding {exec[63:0], PC[47:2]}

S_CBRANCH_* FORK executes path with fewer active
threads first



A Modern GPU: Nvidia GTX 1080

> |
g_




NVIDIA GPU Specification Comparison

_m

CUDA Cores
Texture Units
ROPs

Core Clock
Boost Clock

Memory Clock

Memory Bus Width
VRAM

FP64

TDP

GPU

Transistor Count

Manufacturing Process

Launch Date
Launch Price

2560
160
64
1607MHz
1733MHz

10Gbps
GDDR5X

256-bit
8GB
1/32
180W
GP104
7.2B
TSMC 16nm
05/27/2016

MSRP: $599
Founders $699

1920
120
64
1506MHz
1683MHz

8Gbps GDDRS

256-bit
8GB
1/32
150w
GP104
7.2B
TSMC 16nm
06/10/2016

MSRP: $379
Founders $449

2048
128
64
1126MHz
1216MHz

7Gbps GDDRS

256-bit
4GB
1/32
165W

GM204
5.2B

TSMC 28nm

09/18/14

$549

104
56
1050MHz
1178MHz

7Gbps GDDRS

256-bit
4GB
1/32
145W

GM204
5.2B

TSMC 28nm
09/18/14

$329
80






Dispatch Unit Dispatch Unit
3 3

Register File (16,384 x 32-bit)

I
I =
I -
=
B = .
B -
=
B = .

Dispatch Unit Dispatch Unit
3 3

Register File (16,384 x 32-bit)

Dispatch Unit Dispatch Unit
3 3

Register File (16,384 x 32-bit)

I B
I .
I
I I =
I =
I =

Register File (16,384 x 32-bit)

I I
11 B

Dispatch Unit Dispatch Unit
R 43

Register File (16,384 x 32-bit)




NVIDIA Pascal SM

Dispatch
1a 1b

Dispatch

e

Crossbar

!

@
|

Issue Iss: Issue.
Core  Core LO/ST SFU
Core  Core LO/ST SFU
Core  Core LO/ST SFU
Core  Core LO/ST SFU
Core  Core LO/ST SFU
Core  Core LO/ST SFU
Core  Core LO/ST SFU
Core  Core LO/ST SFU
Core  Core
Core  Core
Core  Core
Core  Core
Core  Core
Core  Core
Core  Core
Core  Core

N

Crossbar

f

i

Issue Iss

. - = core

4
=
[
g
3
[
3

4
=
[
g
3
[
3

4
=
[
g
3
[
3

=
[
g
3
[
3

4
=
[
3
[
3

=
[
g
3
[
3

Dispatch
3a

N

Crossbar

ﬂ

I
i

[
3

4
=
[
3
[
3

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

N

Crossbar

Core Lo/ST
Core Lo/ST
Core Lo/ST
Core Lo/ST
Core Lo/ST
Core Lo/ST
Core
Core
Core
Core
Core
Core
Core

Core

NVIDIA Pascal SM

Dispatch Dispatch

1a 1b

.

Crossbar




PCI Express 3.0 Host Interface

Memory Controller

Memory Controller

Memory Controller

Memory Controller

Raster Engine

PolyMorph Engine

PolyMorph Engine PolyMorph Engine

k-
£
[}
=
[
S
=
=
5
o
@
S
=)
3
w
<
2
S
=
=
5
o

Raster Engine

TPC

C

TPC
PolyMorph Engine PolyMorph Engine PolyMorph Engine

TP!

TPC
PolyMorph Engine PolyMorph Engine

TPC

PolyMorph Engine PolyMorph Engine PolyMorph Engine PolyMorph Engine PolyMorph Engine

|

Raster Engine

PolyMorph Engine PolyMorph Engine

PolyMorph Engine PolyMorph Engine

PolyMorph Engine

=
]

| 8

Raster Engine

J9]j03u0) Alowapy

J19]j03u0) Alowapy

J9jj013u0) Kiowapy

Jajj013u0) Alowapy




Part 3: Research Directions



Decreasing cost per unit computation

System Capability (log)

o
sK

B

| —

——
ﬂﬁﬂmﬂ"ﬂ” —
P ————
“'\"; = _."r

== 1981: IBM 5150

"~

86



Ease of
Programming

A

Single Core 000 Superscalar CPU

Brawny (OoQ) Multicore

- Wimpy (In-order) Multicore

Better

(how to get here?)

Hardware Efficiency

87



Start by using right tool for each job...

Ease of
Programming

Hardware Efficiency

88



Amdahl’s Law Limits this Approach

Hard to accelerate Easy to accelerate

1

overall — 1 - Fraction
Fraction, , + e

Improvement

Improvement

easy

89



Question: Can dividing line be moved?

easy to accelerate (Acc. Arch1l)
< easy to accelerate (Acc. Arch2)

90



Forward-Looking GPU Software
 Still Massively Parallel
e Less Structured

— Memory access and control flow patterns are less
predictable

Less efficient on
today’s GPU

Molecular
Dynamics

Raytracing

Execute efficiently
on a GPU today

Object
Classification

Graphics
Shaders

Matrix
Multiply

[Tim Rogers] 91



Ease of
Programming

Two Routes to “Better”

Better

Energy Efficiency

92



Research Direction 1:
Mitigating SIMT Control Divergence



Recall: SIMT Hardware Stack

Potential for significant loss of throughput when control flow diverged!

Stack
A/llll Reconv. PC Next PC Active Mask
TOS —» - E 1111
TOS — E D 0110
B/1111 TOS — E E 1001
C/1001 D/0110] |F
\/ Thread Warp Common PC
E/1111 Thread | Thread | Thread | Thread
1 3 4
G/1111
A_ILB_ DI E 1 &G | A
o f —| { [N . [
N NG G g Y NG Y e
I —> i —p| —>:l — 5 — {1 —
Tt | Il Tt Tt B
[ > T|me

94



Performance vs. Warp Size
* 165 Applications

1.8 ]

& 1.6 ——Warp Size 4 {”"
g 1.4
=1.
8-1 2 --/j
g .1 ‘:::M
(@)
20.8
go.e
20.4
O
a 0.2

0

Application

Convergent Warp-Size Insensitive Divergent
Applications Applications Applications

Rogers et al., A Variable Warp-Size

Architecture, ISCA 2015 9



awiL

Dynamic Warp Formation

Reissue/Memory
Latency

SIMD Efficiency 2> 88%

(Fung MICRO’07)
Warp 0 Warp 1 Warp 2
A 1234
___________________________ 5678
_________________________ A|9101112 |
B 1234
5678
B| 9101112
= 2o Pack
5--78 —
C| ----1112

C

12738

C

5--1112

How to pick threads to pack into warps?

E

1234

5678

Ip| 910--- |

9101112

96



Dynamic Warp Formation:
Hardware Implementation

A: BEQ R2, B

Thread Scheduler
Warp Update Register T

(5)X2GX8)lo110] B

Warp Update Register NT

1A6)x N(4)|1001] C
A

PC-Warp LUT

B

C

i

AOBQSIIA
AWwoD

@@@@ N = 218017 anss|

No Lane Conflict




DWF Pathologies: Starvation

B: if (K > 10)

C: K = 10;
* Majority Scheduling else
. D: K =0;
— Best Performing B B = Cltid.x] + K.

— Prioritize largest group of threads

with same PC c| 1278
C 5--1112
* Starvation E| 1278
. | E| 5--1112
— LOWER SIMD Efficiency! 00deB e 2.3 4
D| 9634

* Other Warp Scheduler? s 5
— Tricky: Variable Memory Latency E| -10---




DWF Pathologies:

Extra Uncoalesced Accesses

* Coalesced Memory Access = Memory SIMD

— 15t Order CUDA Programmer Optimization

* Not preserved by DWF

E: B =C[tid.x] + K;

No DWF

With DWF

Wilson Fung, Tor Aamodt

E 12314
E 5678
E| 9101112
E 12712
E 9638
E 510114

#Acc=3

—> 0x100
—> 0x140
—> 0x180

#Acc=9

0x100
0x140
0x180

Thread Block Compaction

L1 Cache Absorbs
Redundant
Memory Traffic

L1S Port Conflict

99




DWF Pathologies: Implicit Warp Sync.

 Some CUDA applications depend on the

lockstep execution of “static warps”

Warp 0 Thread 0...31
Warp 1 Thread 32 ... 63
Warp 2 Thread 64 ... 95

— E.g. Task Queue in Ray Tracing

int wid = tid.x / 32;
if (tid.x % 32 == 0) {
sharedTaskID[wid] = atomicAdd (g TaskID, 32);

Implicit  }
Warp my_fasEIB = sharedTaskiD|wid] + tid.x 3% 32;
Sync. ProcessTask (my_ TaskID) ;

Wilson Fung, Tor Aamodt Thread Block Compaction 100



Observation

* Compute kernels usually contain o
divergent and non-divergent Coherent | | \yarp
(coherent) code segments Divergence

* Coalesced memory access usually N,
in coherent code segments Divergent | | \varp

— DWEF no benefit there Etec"g
Reset Warps '
Coales. LD/ST )
Static
Coherent
Warp




Thread Block Compaction

* Run a thread block like a warp
— Whole block move between coherent/divergent code

— Block-wide stack to track exec. paths reconvg.

_ Implicit
* Barrier @ Branch/reconverge pt. \/Warp Sync.

— All avail. threads arrive at branch StoprrtioT™
— Insensitive to warp scheduling

* Warp compaction W
— Regrouping with all avail. threads ory Access

— If no divergence, gives static warp arrangement

Wilson Fung, Tor Aamodt Thread Block Compaction 102



Thread Block Compaction

PC RPC Active Threads A 1234 A 1234
E| -]112|3|4|5|6|7(8|9]10{11]12| [aA| 567 8 Al 5678
D el Bl el el el Bl Bl el el el B A| 9101112 Al 9101112
C | mm | mm | m | m | o | o | o | e | e | o | - [ J [ J
[ [
[ [
[ J [ J
A: K = A[tid.x]; C| 1278 ¢, 12--
C| 5--1112 cC| 5--78
B: if (K > 10
( ) bl 963a c| --1112
C: K = 10; D| --10---- D| ---34
else E| 1234 D=6 ==
D: K =0; El 5678 DL
. E| 9101112 E| 1278
E: B = C[tid.x] + K; E| 5678
E| 9101112

Wilson Fung, Tor Aamodt

Thread Block Compaction

103




Thread Compactor

 Convert activemask from block-wide stack to
thread IDs in warp buffer

* Array of Priority-Encoder

C

E

1

2 |-

5 |--

7

8 |--|--

Enc | [

5

1(5]- 2
|P-Enc|| |P-

11

-7 (11
P-Enc | |

11|12
-18 (12
| P-Enc | |
12

Warp Buffer

C

1278

C

5--1112




Experimental Results

* 2 Benchmark Groups:
— COHE = Non-Divergent CUDA applications
— DIVG = Divergent CUDA applications

Serious Slowdown from

pathologies
No Penalty for COHE

22% Speedup on DIVG

IPC Relative to Baseline

Per-Warp Stack

Wilson Fung, Tor Aamodt Thread Block Compaction 105



Recent work on warp divergence

Intel [MICRO 2011]: Thread Frontiers — early reconvergence for
unstructured control flow.

UT-Austin/NVIDIA [MICRO 2011]: Large Warps — similar to TBC except
decouple size of thread stack from thread block size.

NVIDIA [ISCA 2012]: Simultaneous branch and warp interweaving. Enable
SIMD to execute two paths at once.

Intel [ISCA 2013]: Intra-warp compaction — extends Xeon Phi uarch to
enable compaction.

NVIDIA: Temporal SIMT [described briefly in IEEE Micro article and in more
detail in CGO 2013 paper]

NVIDIA [ISCA 2015]: Variable Warp-Size Architecture — merge small warps
(4 threads) into “gangs”.

106



Thread Frontiers
[Diamos et al., MICRO 2011]

{Active Threads}, {Thread Frontier} T0O T1 T2 T3 To 1 T2 T3
{70, T1, T2, T3}, {} Entry| Entry|Entry|Entry Entry|Entry|Entry[Entry
881 . 1 |BB1|BB1|BB1|BB1| PushB3onTO 1 |BB1|BB1|BB1|BB1
ra con BB1 Push Exi ™
i T0}, {} 2 BB2[BB2[BB2| PUsh EX!ton
if( { {T1, T2, T3}, {BB3} 2 |"IBB2|BB2|BB2
BB2 i
(cond1() || cond2()) | |bra condzo)| e?:;]l:t[e-.—(;,t#;e / \ Push B5 on T2 thread-frontier
s 2 3 BB3|BB3 3 |BB3 BB3|BB3| reconvergence
(cond3() || cond4()) BB3 BB3 | (11}, 3| BB2 3 54| Push Exiton T3 — om0
) bra cond3()| 5 ! {T2, T3}, {Exit}
{ ~~'BB4 exﬁ:g?‘:;;]"ce l \ ::I': ::‘a.‘:.: thread-frontier
bra cond4() = RS 5 BB5 g reconvergence
} itch to B5 on T2 ol
executed twice l {T2}, {EX‘iV wﬁ}, {BBS5, Exit} 6 :::, (s:tat:( N Exit | Exit |Exit | Exit | Post dominator
[TO], [T2] Exit on T1 reconvergence
BB5 BB5 BB4 7 Pop stack of T1and T3
l switch to B3 on TO
; 8
post dominator
cut [ xi [ [ et | foconergerce
a) compound conditionals  b) unstructured control flow ¢) dynamic code expansion d) immediate post-dominator re-convergence  €) re-convergence at thread frontiers

Figure 1: An example of an application with unstructured control flow leading to dynamic code expansion.

107



time

Temporal SIMT

Spatial SIMT (current GPUs)

32-wide datapath

< o
< »

bﬂ::) Y Yy Yy Y YYYYYYYYYYYYYYYYYYYwyw

thread thread
0 31

S,
ot
-

‘e
.
e
.
e

1 warp instruction = 32 threads

[slide courtesy of Bill Dally]

- Pure Temporal SIMT

- time

1 cyc

1-wide

I-»n:>:

(threads)

B\OOO\IO\M-kwNuQ



Temporal SIMT Optimizations

Control divergence — hybrid MIMD/SIMT

32-WideIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 4-wide 1-wide
(41%) 65%) o (100%) g

O
011
EEEE

O

Scalarization

Factor common instructions from multiple threads
Execute once — place results in common registers
[See: SIMT Affine Value Structure (ISCA 2013)]

O000000000o0

[slide courtesy of Bill Dally]



Scalar Instructions in SIMT Lanes

Scalar Scalar register
instruction visible to all
spanning warp threads

' T: thread : : :
§ § Cfwes i [was [P i wals
'R: thread | [ [WOT3R] i [WLT3R| i [W2T3R] | gee: [W3LT3.R
" registers |4 [WOI2R| | [WLT2R| { [WaT2Rf: i [W3LT2R
; /1 [WOTLR| ¢ [WLTLR| : [W2TLR]: | [W3LTLR
ES: scalar W0.T0.R W1.T0.R W2.T0.R W31.T0.R
. register VRN Y 28N VN Y
I \/ gg_g
\ ]
Temporal Y
execution of Multiple
Warp lanes/warps

[slide courtesy of Bill Dally]



Variable Warp-Size Architecture

* Most recent work by NVIDIA [ISCA 2015]

* Split the SM datapath into narrow slices.
— Extensively studied 4-thread slices

* Gang slice execution to gain efficiencies of wider warp.
Slices share an L1
I-Cache and Memory Unit
Frontend execute |
L1 I-Cache independently

Slice ‘ Slice

Slice Datapath Slice Datapath

i

Tim Rogers A Variable Warp-Size Architecture 111



Divergent Application Performance

E-VWS: Break +
Reform

1.8 BWS 32 0OWS4 0OI-VWS RE-VWS

c 1

ON B~ O

CoMD Lighting GamePhysics ObjClassifier Raytracing HMEAN-DIV

IPC norn;glisge_g,t_gw

Divergent Applications

Tim Rogers A Variable Warp-Size Architecture 112



Convergent Application Performance

- N

BWS

32 O0OWS4

O1-VWS

o o

IPC norma_&jze_d,to gwarp,size 32__\
o N N8

Tim Rogers

Game 1

MatrixMultiply Game 2

E-VWS: Break +
Reform

FeatureDetect Radix Sort HMEAN-CON

Convergent Applications

A Variable Warp-Size Architecture

Warp-Size Insensitive
Applications Unaffected

113



Research Direction 2:
Mitigating High GPGPU Memory
Bandwidth Demands



Reducing Off-Chip Access / Divergence

* Re-writing software to use “shared memory”
and avoid uncoalesced global accesses is bane
of GPU programmer existence.

 Recent GPUs introduce caches, but large
number of warps/wavefronts lead to

thrashing.



NVIDIA: Register file cache (ISCA 2011, MICRO)
— Register file burns significant energy
— Many values read once soon after written

— Small register file cache captures locality and saves
energy but does not help performance

— Recent follow on work from academia

Prefetching (Kim, MICRO 2010)
nterconnect (Bakhoda, MICRO 2010)
lee & Kim (HPCA 2012) CPU/GPU cache sharing




Thread Scheduling Analogy

[MICRO 2012]
* Human Multitasking
— Humans have limited attention capacity

>

o

Productivity
Q
@

Tasks at Once

— GPUs have limited cache capacity
GPU Core

Q
Q
c &
£ %@
€ o
Processor Cache (o)
“ O
| -
()]
Q.

Threads Actively Scheduled



Use Memory System Feedback
[MICRO 2012]
r _I Cache Misses

-
I

I___Q_
S —_

—*

o Performance
C0000000

Threads Actively Scheduled

GPU Core

Thread
Scheduler = Processor =3  Cache

T A |
] Feedback I

118



Programmability case study [MICRO 2013]

Sparse Vector-Matrix Multiply

GPU-Optimized Version
SHOC Benchmark Suite [ Simple Version ]
(Oakridge National Labs)

Example 2 GPU-Optimized SPMV-Vector Kernel
__global__ void Example 1 Highly Divergent SPMV-Scalar Kernel

spmv_csr_vector_kernel (const floats val,
const int« cols,
const int+ rowDelimiters,

__global__ void
spmv_csr_scalar_kernel (const floatx val,

const int dim, const intx cols
float » out) const intx rowDelimiters,
{ const int dim,
int t = threadIdx.x; I float* out)

int id = t & (warpSize-1);
int warpsPerBlock = blockDim.x / warpSize;

Explicit Scratchpad Use

__shared _ volatile
float partialSums[BLOCK SIZE];
// Divergent Branch

Dependenton | e
Warp Size S Complication TR I

for (int j = warpStart + id;
j < warpEnd; j += warpSize)

int myRow = blockIdx.x *
+ threadIdx.x;
texReader vecTexReader;

Divergence

if (myRow < dim)
{
float t = 0.0f;

Added int start = rowDeljmjih€

int end = rowDeli

// Uncoalesced Load
int col = cols[jl;

Each thread
t += val[j] = vecTe .
, has locality

out [myRow] = t;

{
int col = cols[jl;
mySum += val[j] * vecTexReade
}
partialSums[t] = mySum;

// Reduce partial sums
if (id < 16)
partialSums([t] += partialSums[t+16];
if (id < 8)
partialSums([t] += partialSums[t+ 8];
if (id < 4)
partialSums([t] += partialSums[t+ 4];

Parallel Reduction

tialSums [t+ 2];

tialSums[t+ 1];

Using DAWS scheduling
within 4% of optimized
with no programmer input

JORGE CHAM © 2014

119



Sources of Locality

Intra-wavefront locality Inter-wavefront locality

Wave, Wave,
Wave,

LD Sline (X) LD Sline (X)

LD Sline (X)

e

Data Cache

LD Sline (X)

Data Cache

120



(Hits/Miss) PKI

120

100

(0]
o

(o]
o

S
o

N
o

o

Misses PKI

Inter-Wavefront Hits PKI

Intra-Wavefront Hits PKI

AVG-Highly Cache Sensitive

121



Scheduler affects access pattern

Round Robin Scheduler Greedy then Oldest Scheduler

122

|
I
I
Wave, Wave, I Wave, Wave,
Wavefront | | Wavefront
Id A,B,C,D... dzyxw | | Scheduler : dABCD. Scheduler
wl
X I
Id A,B,C,D Id Z,Y,X,W Y | Id A,B,C,D...
7 I
[
D ]
C |
B I
A |
V I
Memo , Memory
Y System
System |
I
I
|
[
|



Use scheduler to shape access pattern

Cache-Conscious Wavefront Scheduling
[MICRO 2012 best paper runner up,

Greedy then Oldest Scheduler Top Picks 2013, CACM Research Highlight]

123

I
I
I
Wave, Wave, I Wave, Wave,
Wavefront | | Wavefront
Id A,B,C,D dzyxw | | Scheduler : dABCD. dzyxw.. | ocheduler
[
&S W |
X I
Id A,B,C,D v |
7 I
I
D :
C I
B |
[
VIA_ I
Memo : Memory ||
Y System
System |
I
[
I
I
I






1.5

0.5

Speedup
[

"""" BMIRR OGTO BCCWS

HMEAN-Highly Cache-Sensitive

125



Static Wavefront Limiting
[Rogers et al., MICRO 2012]

* Profiling an application we can find an optimal
number of wavefronts to execute

e Does a little better than CCWS.

e Limitations: Requires profiling, input
dependent, does not exploit phase behavior.



Improve upon CCWS?

 CCWS detects bad scheduling decisions and
avoids them in future.

 \Would be better if we could “think ahead” /
“be proactive” instead of “being reactive”



Observations
[Rogers et al., MICRO 2013]

« Memory divergence in static instructions is predictable

Main Memory

Divergence

Both Used To

>
Create Cache

- Data touched by divergent loads dependent on active mask | dali
Prediction

— = "~ ) gccesses

128



Footprint Prediction

1. Detect loops with locality

||
mm ——~

- \
/’ , ,
Some loops have locality Some don’t
L -

-_—am s == =

Limit multithreading

here

2. Classify loads in the loop " Loop with locality

while(...) {
load 1 Diverged

ELPA | Not Diverged

}
3. Compute footprint from active mask
[\Loop with locality ]

Warp’O }Nhlle( IR

load 1 Diverged 4 accesses

ees +
ELPA Not Diverged 1 access

Warp 0’s

Footprint
=5 cache lines




DAWS Operation Example

Cache Example Compressed Sparse Row Kernel
A[0] int C[]={0,64,96,128,160,160,192,224,256};
void sum_row_csr(float* A, ...) {
A[96] float sum = 0;
int i =C[tid];
A[128]

——————————— v ¢ —F—--—-m-—--_"—

| while(i < C[tid+1]) { Divergent Branch

- o e e - — o e o e e mm M e e Rm M M e M M M e M M e e

Cache Footprint

— ! " arps profile
-~ Warp 0 has branch aivergence ¢ |- iar
No \ YEY, - Rath warps capture PS
Footprint Footprint decreased 'together _ 4yq

S



Sparse MM Case Study Results

* Performance (normalized to optimized version)

Within 4% of optimized
with no programmer input

=
N

[

o
o

Divergent Code
Execution time

Other Schedulers CCWS DAWS

131



Memory Request Prioritization Buffer
[Jia et al., HPCA 2014]

YAY 2 YAY 8

V\ V\ —» Reorder requests by warp ID
I R S

-

Bahd Baad Bypass accesses to hot set

* Reorder requests by sorting by Warp ID.
* Bypass when too many accesses to same cache set.

132



Priority-Based Cache Allocation in Throughput
Processors [Li et al., HPCA 2015]

e CCWS leaves L2 and DRAM underutilized.

* Allow some additional warps to execute but do not allow
them to allocate space in cache:

! Warp O :
Normal Warps - Warp 1 : Schedule and allocate in L1

! Warp 2

Non-Polluting | Warp 3 Schedule and bypass L1
Warps
Warp 4
) Warp 5

Throttled Warps | Not scheduled

Warp n-1

133



Coordinated criticality-Aware Warp
Acceleration (CAWA) [Lee et al., ISCA 2015]

Some warps execute longer than others due to lack
of uniformity in underlying workload.

Give these warps more space in cache and more
scheduling slots.

Estimate critical path by observing amount of branch
divergence and memory stalls.

Also, predict if line inserted in line will be used by a
warp that is critical using modified version of SHiP
cache replacement algorithm.



Other Memory System Performance
Considerations

* TLB Design for GPUs.

— Current GPUs have translation look aside buffers
(makes managing multiple graphics application
surfaces easier; does not support paging)

— How does large number of threads impact TLB
design?

— E.g., Power et al., Supporting x86-64 Address
Translation for 100s of GPU Lanes, HPCA 2014.
Importance of multithreaded page table walker +
page walk cache.



Research Direction 3:
Coherent Memory for Accelerators



Why GPU Coding Difficult?

Manual data movement CPU < GPU
Lack of generic |/O, system support on GPU

Need for performance tuning to reduce
— off-chip accesses

— memory divergence

— control divergence

For complex algorithms, synchronization
Non-deterministic behavior for buggy code
Lack of good performance analysis tools



Manual CPU << GPU Data Movement

Problem #1: Programmer needs to identify data
needed in a kernel and insert calls to move it to GPU

Problem #2: Pointer on CPU does not work on GPU
since different address spaces

Problem #3: Bandwidth connecting CPU and GPU is
order of magnitude smaller than GPU off-chip

Problem #4: Latency to transfer data from CPU to
GPU is order of magnitude higher than GPU off-chip

Problem #5: Size of GPU DRAM memory much
smaller than size of CPU main memory



ldentifying data to move CPU < GPU

 CUDA/OpenCL: Job of programmer ®
 C++AMP passes job to compiler.

* OpenACC uses pragmas to indicate loops that
should be offloaded to GPU.



Memory Model

Rapid change (making programming easier)

e Late 1990’s: fixed function graphics only

2003:
2006:
2009:
2011:
2014.

programmable graphics shaders
+ global/local/shared (GeForce 8)
+ caching of global/local

+ unified virtual addressing

+ unified memory / coherence



Caching

e Scratchpad uses explicit data movement. Extra
work. Beneficial when reuse pattern statically
predictable.

* NVIDIA Fermi / AMD Southern Island add
caches for accesses to global memory space.



CPU memory vs. GPU global memory

* Prior to CUDA: input data is texture map.

* CUDA 1.0 introduces cudaMemcpy

— Allows copy of data between CPU memory space to
global memory on GPU

 Still has problems:
— #1: Programmer still has to think about it!
— #2: Communicate only at kernel grid boundaries

— #3: Different virtual address space

e pointer on CPU not a pointer on GPU => cannot easily share
complex data structures between CPU and GPU



Fusion / Integrated GPUs

* Why integrate?
— One chip versus two (cf. Moore’s Law, VLSI)

— Latency and bandwidth of communication: shared
physical address space, even if off-chip, eliminates
copy: AMD Fusion. 1%t iteration 2011. Same
DRAM

— Shared virtual address space? (AMD Kavari 2014)

— Reduce latency to spawn kernel means kernel
needs to do less to justify cost of launching



CPU Pointer not a GPU Pointer

* NVIDIA Unified Virtual Memory partially
solves the problem but in a bad way:

— GPU kernel reads from CPU memory space

* NVIDIA Uniform Memory (CUDA 6) improves
by enabling automatic migration of data

 Limited academic work. Gelado et al. ASPLOS
2010.



CPU <~ GPU Bandwidth

e Shared DRAM as found in AMD Fusion (recent
Core i7) enables the elimination of copies from
CPU to GPU. Painful coding as of 2013.

* One question how much benefit versus good
coding. Our limit study (WDDD 2008) found only
~50% gain. Lustig & Martonosi HPCA 2013.

e Algorithm desigh—MummerGPU++



CPU <~ GPU Latency

* NVIDIA’s solution: CUDA Streams. Overlap
GPU kernel computation with memory
transfer. Stream = ordered sequence of data
movement commands and kernels. Streams
scheduled independently. Very painful
programming.

* Academic work: Limit Study (WDDD 2008),
Lustig & Martonosi HPCA 2013, Compiler data
movement (August, PLDI 2011).



GPU Memory Size

* CUDA Streams

 Academic work: Treat GPU memory as cache
on CPU memory (Kim et al., ScaleGPU, IEEE
CAL early access).



Solution to all these sub-issues?

* Heterogeneous System Architecture:
Integrated CPU and GPU with coherence
memory address space.

* Need to figure out how to provide coherence
between CPU and GPU.

e Really two problems: Coherence within GPU
and then between CPU and GPU.



Review: Cache Coherence Problem

@ I/O devices
NI

u:5

Memory

— Processors see different values for u after event 3
— With write back caches, value written back to memory depends on order of

which cache writes back value first
— Unacceptable situation for programmers

149



Coherence Invariants

1. Single-Writer, Multiple-Reader (SWMR) Invariant

v

read-write read-only read-write | read-only read-only
Core 0 Core 0,2 Core 3 Core 0,3 Core 0,1,3
CO: store A C2: load A C3:storeA  CO:load A C1:load A

2. Data-Value Invariant. The value of the memory
location at the start of an epoch is the same as the
value of the memory location at the end of its last
read-write epoch.

150



Coherence States
How to design system satisfying invariants?

Track “state” of memory block copies and
ensure states changes satisfy invariants.

Typical states: “modified”, “shared”,
“invalid”.

Mechanism for updating block state called a
coherence protocol.

151



Intra-GPU Coherence

[Singh et al., HPCA 2013, IEEE Micro Top Picks 2014]

Coherent memory space
e Efficient critical sections
* Load balancing

Stencil computation

lock shared structure

"

Workgroups

/

computation

unlock

152



GPU Coherence Challenges

* Challenge 1: Coherence traffic

No coherence

2.2

B GPU-VI
1.5 p-=----

©

8

o

‘9

Do not require

coherence

1 MESI

Recalls

Load C Load G Load K Load O
Load D Load H Load L Load P
Load E Load | Load M Load Q
Load F Load J Load N Load R
Load C
C1 C2 C3 Cc4
L1D L1D L1D L1D
rcl A clA rcl A
a
a a rcl A
L2/Directory
gets C

153




GPU Coherence Challenges

* Challenge 2: Tracking in-flight requests
* Significant % of L2

154



GPU Coherence Challenges
* Challenge 3: Complexity MESI L2 States

WB
L1 GET L1 L1 L1 — L2 — Mem WB | Ack Unblock|([Exclusive
insTR || GETS | “PCETX | ypGRrADE [PUTX N:I:x Replacemem&'w Data || Data 3&%:: Akl [Unblockl et | Unblock
p [a1nis |gInisalglix fu o
on-coheren 3 T N T
d fwm u
— snu |dsnuset|” . " [fwmtsuset| . .
L1 L1 L1 Data 'WBorA tomic| SS [T T T T setj/SS | canem  ILE ity ifr/st ifril
— - = 228 iy Y Roralomic set SS MB
Load WThru | Atomic |[Rs laeemallllm Done R Done sl ¢ MB b
0 1 pr+ ||1 pw+ ds |[I pw+ ds dn u set||dd u set j |d u set j
1 ;k%_Skﬁ gbl_l N M li/ss [/MTMB /M MB ti o ti icrs/NP |lirs/NP
i pw ds|fi pw+ ds ] busetj|busetj |busetj Imrtj /
St T o ~ Events 1M vy g [fMT I8 M1 MB v 4 ECMIL e /MCTI
— - cts
= k /11 fk/atl [} /8L /NP
+ds |pw+dsa r-h|pr-hs
1lprs g k[PeE s |[pwtdsall, Pe=RIPERS | ho w-hso! MCT qqcts 0
Lifpre a iy k Z o o/ ao ason 1= lzz lzz zz zz 2z o /NP s 0 /NP NP
50
\ D” 11 ||z lzz lzz zz ty ity ae |inp
cts
States Vol = B o bk 4 o
— /NP
n
N nsuj [nsuj md ex £
- | 188 l;g L 2z tj iti lzz zz od /MT
s S MB
s
= . md e s od
; L2 L2 Replacement IS [nsuj |nsuj |z t it z e
LIGETS || WBData | L2 Atomic L2 L2 Replacement|y, . 1y, L | ! PR i “ ss
Replacement clean md e s
- L md ce s
Np [4PBisajlqpBdixas|qlpBdixas] 5 |z 2z 2z tio i |z zz od /MT
/1SS L/l_ IMA ] MB
. IfIpW d de mr |f IpW d M| SS mu k
SS [[IpR ds set j [;jT——‘L ;;T-ﬂl fIpE c r/NP (£ IpE r /NP MB [Z |7 z z z |z =z = RS e
ISSfipRsj |z z z z meso/SS E ﬁ zz 2z 2z zz z |z |z zz k /MT H/';',l—uTk
SIN—— —
mmteeso =
IM |[z z z z z it w M mu k
iz z z z /ss W B 2z 2z 2z 2z ti i 2z 2z MT
AdMB MT
Z Z Z Z z mmteas MT mo |mo K
z iz z z z o /SS B |2 2z zz zz z |z 2z 2z /MT|/MT ;Iﬂu'ltls
1B B sB MT IB
MT . mo
1B [~ 2z zz zz ti ity zz zz iss m o /SS k /MT
% 2z iz 2z HE ty tl ZZ “E nu k /SS

155



Coherence Challenges

* Challenges of introducing coherence messages on a GPU
1. Traffic: transferring messages
2. Storage: tracking message
3. Complexity: managing races between messages

* GPU cache coherence without coherence messages?
* YES — using global time



Temporal Coherence

Related: Library Cache Coherence

Local Timestamp

Global time > Global Time = VALID
Core 1 Core 2
/\/1,6 L1D Emm
N A-0 |

Global Timestamp

Interconnect

< Global Time =
L2 Bank NO L1 COPIES

157



Temporal Coherence Example

Core 1

L

Core 2

L

No coherence
messages

10

A=1

158



2.0

1.5

Speedup
=
o

0.5

0.0

O MESI

Require
coherence

Performance

ENO-L1
HGPU-VI ETC-Weak

 TC-Weak with simple
predictor performs 85%
better than disabling L1
caches



CPU-GPU Coherence?

Many vendors have introduced chips with both CPU
and GPU (e.g., AMD Fusion, Intel Core i7, NVIDIA
Tegra, etc...)

What are the challenges with maintaining coherence
across CPU and GPU?

One important one: GPU has higher cache miss rate
than CPU. Can place pressure on directory
impacting performance.

Power et al., Heterogeneous System Coherence for
Integrated CPU-GPU Systems, ISCA 2013: Use
“region coherence” to reduce number of GPU
requests that need to access directory.



Review: Consistency Model

 Memory consistency model specifies
allowable orderings of loads and stores to
different locations

* The number of allowable execution orderings
generally far greater than one.

* Ordering of operations from different
processors is non-deterministic. Software
must use synchronization (mutexes,
semaphores, etc...) to provide determinism.



Sequential Consistency

e Sequential consistency is basically a “naive”
programmer’s intuition of allowable orderings:

sequential p rocessors Py
1s uing mem ory references ® e @
as per p rogram o rder

switch iqrand omly
A setafter each m an ory
reference

Memory




Total Store Order (TSO/x86)
Memory Model

Use of write (store) buffer considered very
important by Intel and AMD for x86.

Leads to total store order memory model
supported by x86.

In general, memory model on multicore
processors is hot sequential consistency.

163



Example, TSO/x86 ordering

Program order of core C1 Memory order Program order of core C2
_______ S1: x=NEW_/* NEW */ S2: y=NEW /* NEW */
_________ Llirl=y /X 0%/ s 12: 122X /* 0 */
' \\ < ___________________________________________
g /
v
v v
v

(r1, r2) = (0, 0) is legal outcome under TSO/x86 (!)

164



Current GPU Memory Consistency Models?

 NVIDIA Fermi: No coherence. Can have stale data in
first level data cache (e.g., Barnes Hut example from
GPU Gems). “Consistency”: Write from kernel N
guaranteed to be visible to load from kernel N+1.

* NVIDIA Kepler restricts caching in L1D to global data
compiler can prove is read only.

e See also: Alglave et al., “GPU Concurrency: Weak
Behaviours and Programming Assumptions”, ASPLOS
2015.



Impact of Consistency Model on
Performance of GPU Coherence?

* [Singh HPCA 2013] Assumes release consistency
as do more recent AMD/Wisconsin papers on
CPU-GPU coherence

 Hechtman and Sorin [ISCA 2013]: large number of
threads on GPU may enable one to implement
sequential consistency with same performance as
more relaxed consistency models.

* One caveat: Write back caches in their study
versus write through in existing GPUs.



Research Direction 4:
Easier Programming with
Synchronization



Synchronization

* Locks are not encouraged in current GPGPU
programming manuals.

* |nteraction with SIMT stack can easily cause deadlocks:

while( atomicCAS(&lock[a[tid]],0,1) != 0 )
; // deadlock here 1if a[1] = a[j] for any 1,7 = tid in warp

// critical section goes here

atomicExch (&lock[a[tid]], @) ;

168



Correct way to write critical section for GPGPU:

done = false;
while( !done ) {
if( atomicCAS (&lock[a[tid]], © , 1 )==0 ) {

// critical section goes here

atomicExch(&lock[a[tid]], © ) ;

}
}

Most current GPGPU programs use barriers within
thread blocks and/or lock-free data structures.

This leads to the following picture...



* Lifetime of GPU Application Development

Functionality
Performance

E.g. N-Body with 5M bodies
: CUDA SDK: O(n?) — 1640 s (barrier)
Time Barnes Hut: O(nLogn) — 5.2 s (locks)

Fine-Grained Locking/Lock-Free Transactional Memory

Time Time

170



Transactional Memory

* Programmer specifies atomic code blocks
called transactions [Herlihy’93]

Lock Version: TM Version:
Lock (X[a]) ; atomic {
Lock (X[b]) ; j>| X[c] = X[a]+X[Db];
Lock (X[c]) ; }
X[c] = X[a]+X[Db];
Unlock (X[c]) ; Potential Deadlock!

Unlock (X[b]) ;
Unlock (X[a]) ;

171



Transactional Memory

Programmers’ View:

TX1
TX2

Non-conflicting transactions
may run in parallel

TX1
v

Commit

Memory
— 1A

~

\

B
C/
D

TX2
v

Commit

TX2
TX1

Conflicting transactions

automatically serialized
Memory

TX1
v

Commit

«— | A

——| B

— TX2

i=4

Ab_ort
TX2

Commit



Are TM and GPUs Incompatible?

GPU uarch very different from multicore CPU...

KILO TM [MICRO’11, IEEE Micro Top Picks]

* Hardware TM for GPUs
* Half performance of fine grained locking

m Chip area overhead of 0.5%



Hardware TM for GPUs
Challenge #1: SIMD Hardware

* On GPUs, scalar threads in a warp/wavefront
execute in lockstep

A Warp with 4 Scalar Threads

TxBegin

LD r2, [B]

ADD r2,r2,2 Branch Divergence!
ST r2, [A]

TxCommit I I

** * Committed / Aborted



KILO TM - Solution to
Challenge #1: SIMD Hardware

* Transaction Abort

— Like a Loop
— Extend SIMT Stack

TxBegin

LD r2, [B]
ADD r2,r2,2
ST r2, [A]
TxCommit

Abort



Hardware TM for GPUs
Challenge #2: Transaction Rollback

CPU Core

l

Register File

@ TX @ TX
Abort Entry

Checkpoint
Register File

10s of
Registers

GPU Core (SM)

Checkpoint?

32k Registers
Warp
HHHR I [ B
HI L File
2MB Total

/Un-Chip Storage

176



KILO TM - Solution to
Challenge #2: Transaction Rollback

* SW Register Checkpoint

— Most TX: Reg overwritten first appearance
(idempotent)

— TX in Barnes Hut: Checkpoint 2 registers

Overwritten

TxBegin

LD [B]

ADD r2/r212 Abort
ST r2, [A]

TxCommit



Hardware TM for GPUs
Challenge #3: Conflict Detection

Existing HTMs use Cache Coherence Protocol
m Not Available on (current) GPUs

m No Private Data Cache per Thread
Signatures?

m 1024-bit / Thread

m 3.8MB / 30k Threads



Hardware TM for GPUs
Challenge #4: Write Buffer

GPU Core (SM)

L1 Data Cache

Warp

-
-
-
-
-
-
< < < <
< < < <
< < < <
< < < <
< < < <

T < < < <

Problem: 384 lines / 1536 threads < 1 line per thread!

(48kB)
=384 X 128B Lines



KILO TM:
Value-Based Conflict Detection

Private Memory TX]- G IObaI
Read-log | g miey Memory

A=1 _
: TR egine—
Write-Log

LD rl, [A]
b= [N TX2

Private Memory

ST rl, [B] atomic
TxCommi t {A=B+2} Read-log
TxBegin B=0
LD r2, [B] Write-Log
ADD r2,r2,2 A=2
* Self-Validation + Al ST 2. [2l
TxCommit

— Only detects existence ot conflict (not identity)




Parallel Valgjat'?{acel?l

Private Memory TX1

"y at_omlc
A=1
Write-Log

Tx1 then Tx2:
Global
OR
Memory
Tx2 then Tx1:

TXZ Private Memory
atomic
{A=B+2} Read;l_gg
B=0
Write-Log




| Serlialize Validation?
TX1 TX2

V+C VI =— “oulull Global
l l Unit Memory
V = Validation
C = Commit

e Benefit #1: No Data Race

e Benefit #2: No Live Lock
e Drawback: Serializes Non-Conflicting Transactions

(“collateral damage”)




Solution: Speculative Validation

Key Idea: Split Conflict Detection into two parts
1. Recently Committed TX in Parallel

2. Concurrently Committing TX in Commit Order
d Approximate
I I I V = Validation

T™XI TX2 TX3

[

Conflict Rare 2 Good Commit Parallelism



Efficiency Concerns?

128X 2X

Spg\cleglrup Energy
CG-Locks Usage

* Scalar Transaction Management
— Scalar Transaction fits SIMT Model
— Simple Design
— Poor Use of SIMD Memory Subsystem
 Rereading every memory location
— Memory access takes energy

184



Inefficiency from
Scalar Transaction Management

* Kilo TM ignores GPU thread hierarchy
— Excessive Control Message Traffic

Send-Lo?I

— Scalar Validation and Commit
- Poor L2 Bandwidth Utilization

Commit 5 —
e — [ e [ — B Level
d *} Cache

* Simplify HW Design, but Cost Energy

185



Intra-Warp Conflict

Potential existence of intra-warp conflict

introduces complex corner cases:  Correct Outcomes

Global
Memory

All Committed

X4 @ Validation  (Wrong)

Global
Memory

Read Set E@Em
wiie sot AT




Intra-Warp Conflict Resolution

Validation

* Kilo TM stores read-set and write-set in logs
— Compact, fits in caches

Intra-Warp

Conflict
Resolution

O((R+W)?)
Comparisons

* Naive, pair-wise resolution too slow Each

— T threads/warp, R+W words/thread

—O(T? x (R+W)?), T > 32

— Inefficient for search




Fung, MICRO 2013
Intra-Warp Conflict Resolution:
2-Phase Parallel Conflict Resolution

* |nsight: Fixed priority for conflict resolution
enables parallel resolution

* O(R+W)

* Two Phases
— Ownership Table Construction

— Parallel Match



Results

KiloTM-Base

40%266% ,

FG-LOCk WarpTM+TCD |

Performance
KiloTM-Base
2X213X
WarpTM
Energy WarpTM+TCD | | i | |
Usage 0 1 2 3

Energy Usage Normalized to FGLock
Low Contention Workload:

Kilo TM w/ SW Optimizations on par with FG Lock

189




Other Research Directions....

* Non-deterministic behavior for buggy code
— GPUDet ASPLOS 2013

Result Variation (Kepler)

[y
o O
o O
X X

N b
o O
XN N

different results over
multiple executions
()]
o o
O\o Oo Oo O\o Oo Oo

20000 25000 30000 35000 40000 45000 50000
# edges

* Lack of good performance analysis tools
— NVIDIA Profiler/Parallel NSight
— AerialVision [ISPASS 2010]
— GPU analytical perf/power models (Hyesoon Kim)



Lack of I/O and System Support...

Support for printf, malloc from kernel in CUDA
File system I/O?

GPUfs (ASPLOS 2013):

— POSIX-like file system API

— One file per warp to avoid control divergence

— Weak file system consistency model (close->open)

— Performance APl: O_ GWRONCE, O_ GWRONCE
— Eliminate seek pointer

GPUnet (OSDI 2014): Posix like API for sockets
programming on GPGPU.



Conclusions

GPU Computing is growing in importance due
to energy efficiency concerns

GPU architecture has evolved quickly and
likely to continue to do so

We discussed some of the important

microarchitecture bottlenecks and recent
research.

Also discussed some directions for improving
programming model



