
GPUfs: Integrating a File 
System with GPUs
Yishuai Li & Shreyas Skandan



Von Neumann Architecture

CPU I/OMem



Von Neumann Architecture

CPU I/OMem

slowerfastslow



Direct Memory Access

CPU I/OMem

slowerfastslow



File System

CPU I/OFS



Adding GPU?

CPUFS GPU

fastslow faster



Traditional approach

CPU GPU
FS



Traditional approach

CPU GPU
FS



Face Collage

while unhappy do
1. read next image file
2. decide placement
3. remove outliers
end while

https://www.codeproject.com/articles/36347/face-collage



Traditional approach

CPU GPU
FS



Ideal structure

GPUCPU
FS



Ideal structure

GPUCPU
FS















































4. Implementation
GPUfs: Three main software 
layers

Layer 1 (Core)
● GPUfs API
● Open file states
● Buffer cache

Layer 2 (Communication)
● CPU-GPU comms
● Shared data structures 

write-shared CPU 
memory

● CPU-GPU Remote 
Procedure Call (RPC)

Layer 3 (Consistence Layer)
● OS Kernel Module
● Consistency between CPU buffer cache and 

GPU buffer cache

RPC: “is when a computer program causes a procedure to 
execute in another address space, which is coded as if it were a 
normal procedure call, without the programmer explicitly coding 
it”



4.1 - File System Operations
OPEN & CLOSE
● Open file table - pointer to index of file page, pathname, cpu file descriptor, 

reference count of the number of thread blocks holding the file open
● When closed, retained in GPU memory 
● Close file table - pointers to caches of closed files, hash table indexed by 

inode
READ & WRITE
● Check cache for block -> forward request to 

CPU to allocate cache
● Many threads copy data or initialize pages 

collaboratively - “gread” 
● Reference counts protect pages during 

transfers
● “gwrites” end with issuing a memory fence to 

update GPU memory for consistency
FILE MANAGEMENT
● Generate RPC to the CPU to request the 

respective operation on the host



4.2 - GPU Buffer Cache
● GPUfs pre-allocates pages - contiguous memory array - raw data array
● PFRAME structure holds metadata - size, status, offset - allocated in an array

● Buffer cache - keeps replicas of previous content - file granularity
● PAGE LOOKUP via dynamic radix tree indexing of file’s buffer cache

○ leaf nodes contain arrays of fpage - containing pframe data
○ Fpage : concurrent access | reference count | spinlock

● CACHE MANAGEMENT - Daemon threads are inefficient - own threadblock
● Constantly running or part of each GPU application?
● GPUfs - implements FIFO-like policy for tracking allocation of leaf nodes

○ Newly allocated nodes placed at head of doubly-linked-list
○ To evict a page perform traversal to reclaim a page - closed < read-only

● CACHE ACCESS - buffer cache radix tree major point of contention
● To avoid data races - lock free read & locked updates



4.3 - Remote 
Procedure Calls
● Co-ordinate data transfer between CPU and GPU 
● PROTOCOL - Synchronous | client-server protocol | FIFO request channel 
● GPU-AS-CLIENT instead of GPU-as-coprocessor
● GPU issues request to file server on CPU

● GPU-CPU MEMORY FENCES
○ GPU file read and write need to be delivered to CPU when the kernel is 

running
○ Consistent bi directional updates of the CPU-GPU shared memory 

● GPU CACHE BYPASS
○ For consistent reads of GPU memory, GPUs must bypass the GPUs L1 

and L2 cache to read the CPU initiated memory updates
 

● Current API - coarse grained notifications when kernel completes. CPU polls 
the GPU-CPU shared memory region



Implementation Overview



4.4 - File Consistency Management
● WRITER CONCURRENCY - only one writer at a time | no diff-and-merge
● Lazy invalidation propagation - invalidating the contents of a closed file’s 

cache
● No direct way to push changes on one GPU to another unless reopened

● Uses WRAPFS for file consistency - modified for GPUfs
● Software layer over the GPUfs file system - interposition on calls to FS

4.5 - Limitations
● GPU kernels launched by one CPU process cannot access GPU memory of 

kernels launched by other processes

● GPUfs cannot protect the contents of its GPU buffer caches from corruption 
by the application it serves

 



Example Code - 1



Example Code - 1



Example Code - 1



Example Code - 1



Example Code - 1



Example Code - 1



Example Code - 2



5. Evaluation - Sequential File Read
Single 1.8GB File

GPUfs 28 threadblocks

GPUfs > Whole File TransferWithin 5% of CUDA version



5. Evaluation - Sequential File Read
Total Time 

Eliminating PCI transfer - RPC Traffic only

Eliminating PCI & CPU - page cache access Eliminating CPU file reads



5. Evaluation - Sequential File Read
Total Time 

Eliminating PCI transfer - RPC Traffic only

Eliminating PCI & CPU - page cache access Eliminating CPU file reads

DMA 
TRANSFERS



5. Evaluation - Sequential File Read
Total Time 

Eliminating PCI transfer - RPC Traffic only

Eliminating PCI & CPU - page cache access Eliminating CPU file reads

DMA 
TRANSFERS

FIXED MEMORY 
MAPPING per TB



5. Evaluation - Random File Read

● 112 Thread blocks
● 32 32KB data blocks per TB
● random offsets in 1GB file
● 32KB array in shared memory



5. Evaluation - Random File Read

POOR

ALSO POOR
- too much data 
not read



5. Evaluation - Random File Read

POOR

ALSO POOR
- too much data 
not read



5. Evaluation - Random File Read

“without GPUfs, random access to files 
whose size exceeds the GPU’s physical 
memory is complex and inefficient in hand 
coded GPU programs, requiring frequent 
kernel invocations between each random 
access”



5. Evaluation - Buffer Cache Access Performance

For high contention during page 
accesses



5. Evaluation - Buffer Cache Access Performance

Only for when high contention 
during page accesses exists

3X



5. Evaluation - Matrix-Vector Product



5. Evaluation - Matrix-Vector Product

> GPU Memory

4X



5. Evaluation - Image Search & Text Search

● Find the databases that contain an image that is within a threshold of 
similarity w.r.t a reference image
○ Predefined order | Find first match only
○ Randomly generated images | Conditions with no matches



5. Evaluation - Image Search & Text Search

● Find the databases that contain an image that is within a threshold of 
similarity w.r.t a reference image
○ Predefined order | Find first match only
○ Randomly generated images | Conditions with no matches

Freeing pages that 
were used



5. Evaluation - Image Search & Text Search

Distributed across 4 GPUs



5. Evaluation - Image Search & Text Search

● Grep -w style matching
● Words are short - one word per thread
● Output buffers become unbounded
● Count frequency of word in dataset
● Frequent calls to gopen and gclose



5. Evaluation - Image Search & Text Search

● Grep -w style matching
● Words are short - one word per thread
● Output buffers become unbounded
● Count frequency of word in dataset
● Frequent calls to gopen and gclose

OpenMP

PREFETCHED



5. Evaluation - Image Search & Text Search

● Grep -w style matching
● Words are short - one word per thread
● Output buffers become unbounded
● Count frequency of word in dataset
● Frequent calls to gopen and gclose

Without GPUfs

PREFETCHED



5. Evaluation - Image Search & Text Search

● Grep -w style matching
● Words are short - one word per thread
● Output buffers become unbounded
● Count frequency of word in dataset
● Frequent calls to gopen and gclose

GPUfs



6. Related Work

● GPUfs is the first extension of the file system abstraction to modern 
GPU architectures.

● However, other work exists related to technology related to individual 
components



Questions - I



Q. Could you talk more about the section on: 
Concurrent non-overlapping writes to the same file. 
Specifically the parts about "memory page 
thrashing", a single-writer MESI protocol, false  
sharing of buffer cache pages among different gpus, 
and why two copies of each cached block per GPU 
are needed?



Q. The underlying assumption throughout seems to 
be that multiple kernels access discrete parts of the 
same file in parallel, so they never really step on 
each others toes. What happens though if two 
separate running processes access the same location 
of the same file? Or say, the CPU and GPU are both 
accessing the same location of the same file?



Q. What is the difference between NUMA and UMA? 
(see page 487)



Q. In section 3.2 under file mapping - "Improper 
updates to such "quasi-read-only" pages are never 
propagated back to the host CPU". How is this 
achieved if there's not a real read-only mechanism 
here?

A. A read-only page is never marked as dirty.



Q. In 3.4, "GPUfs is less intrusive than a complete OS 
because it has no active,  continuously  running 
components. " Could you please explain what are 
the continuously running components that are not 
present in GPUfs?

daemons?



Q. Section 3.4 talks about a scheduling-related 
weakness that makes daemon threads inefficient if 
running on a GPU. What exactly is the weakness? Is 
it the fact that it needs to be constantly running?

I think so, too. The daemon blocks could have been 
used for computations.



Q. Because CPUs and GPUs share the same I/O buffer 
in GPUfs architecture, prioritizing between different  
jobs and CPUs/GPUs would be crucial. How do you 
think if it's worth it for this tradeoff? 



Q. "There is no guarantee that gmmap will map the 
entire file region the application requests—instead  
it  may  map  only  a  prefix  of  the requested  
region,  and return the size of the successfully 
mapped prefix." How is this a more efficient 
implementation than mmap in terms of access time? 



Questions - II



Q. File operations are done at warp, rather than 
thread granularity, is this done so as to avoid thread 
divergence?



Q. File operations are done at warp, rather than 
thread granularity, is this done so as to avoid thread 
divergence?

Parallel invocation of the GPUfs API is supported at thread block and not warp 
granularity

● Simplicity and minimal divergence



Q. Why is a radix tree structure relevant in the 
buffered caches? Is it not better to have a hash-table 
based memory structure to achieve higher storage 
density?



Q. Why is a radix tree structure relevant in the 
buffered caches? Is it not better to have a hash-table 
based memory structure to achieve higher storage 
density?

● Radix trees have excellent memory usage characteristics and optimal 
search time characteristics - only store edges related to bit differences

● Hash tables require more memory for table loads. Collisions require 
handling too.



Q. In 5.1.2, it seems to say the throughput of 
310MB/s isn't bad. But I am not convinced why the 
number is promising because it is not compared to 
anything.



Q. In 5.1.2, it seems to say the throughput of 
310MB/s isn't bad. But I am not convinced why the 
number is promising because it is not compared to 
anything.

I think the comparison trying to be made here is that GPU code without 
GPUfs would typically have a throughput of 310MB/s (1/10th of 
3100MB/s) , roughly equal to the worst performance seen by GPUfs.



Q. In 5.1.4, it says "the GPUfs buffer cache is sized to 
2GB, with 2MB pages." With a different page size 
chosen, will the throughput improve for some matrix 
size?



Q. In 5.1.4, it says "the GPUfs buffer cache is sized to 
2GB, with 2MB pages." With a different page size 
chosen, will the throughput improve for some matrix 
size?

Could possibly show marginal improvement for small increase in page sizes, 
however greater accuracy in this example is achieved because of multiple 
2MB page reads rather than larger chunks being read (causing spurious 
paging of the CPU buffer, stalling CPU-GPU comms).



Thank You


