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while unhappy do

1. read next image file
2. decide placement

3. remove outliers

end while
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GPU hardware characteristics

Parallelism

Heterogeneous memory
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Massive parallelism

AMD HD5870*

31,000
active threads

NVIDIA Fermi*

23,000
active threads
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Heterogeneous memory

CPU GPU

/L/10-BZGB/S l * * ‘ 208GB/s

Memory Memory
‘ 6-16 GBIs |
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GPUfs: principled redesign of the
whole file system stack

e Relaxed FS APl semantics for massive
parallelism

* Relaxed distributed FS consistency for
non-uniform memory

« GPU-specific implementation of
synchronization primitives, lock-free data
structures, memory allocation, ....
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High-level design

CPU GPU

Massive
parallelism

GPUfs hooks GPUfs GPU

e Syst ite File 1/O library

GPUfs Distributed Buffer Cache
Heterogeneous

memory

Host File System

Disk
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GPU File I/0O API

open/close -
read/write -
mmap/munmap -
fsync/msync -
ftrunc -

gopen/gclose
gread/gwrite
gmmap/gmunmap
gfsync/gmsync

gftrunc

Should we preserve CPU semantics?
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Parallel square root on CPU

cpu thread(thread id 1) {

}

float buffer;
int fd=open (filename, O GRDWR) ;

offset=sizeof (float) *i;

pread (fd, sizeof (float), &buffer,offset);

buffer=sqgrt (buffer) ;
pwrite (fd, sizeof (float), &buffer,offset);

close (fd) ;

Mark Silberstein - UT Austin
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find i-th element in file

read ai

‘%“VQ;

write new a .
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Parallel square root on GPU

gpu thread(thread id 1) {
float buffer;
int fd=gopen (filename, O GRDWR) ;

offset=sizeof (float) *i; .
gread (£d, sizeof (float), sbuffer, offset) ; This code runs
14 14 ’ ’ in 100,000

buffer=sqgrt (buffer) ;
| | GPU threads
gwrite (fd,sizeof (float), &buffer,offset);

gclose (fd) ;
}
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Structured parallelism problem

float buffer;

int fd=gopen (filename,O GRDWR) ;

SIMD divergence

Reminder:
lf(}fcoo(() ; f SIMD vector
}
else{
bar(); x=0 x=0 x=1 x=1
! if if if  if
foo() foo() — —

— — bar() bar()
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API call granularity

GPU

GPU memory

All threads in the same
SIMD group collaboratively
execute the same API call

SIMD vector

Thread Ctx 1

u peaJyl
| peaiyL

Thread Ctx k
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Too many opens

sgrt gpu (char* filename ) {

int fd=gopen (filename,O GRDWR) ;

Do we need many

FDs?
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Only 1 real open on CPU

sgrt gpu(char* filename ) {

int fd=gopen (filename,O GRDWR) ;
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Parallel read/write

sgrt gpu(char* filename ) { |

int fd=gopen (filename, O GRDWR) ;
offset=BLOCK SIZE*sizeof (float) *blockIdx.x;

gread (fd, offset, &buffer, BLOCK SIZE*sizeof (float));

buffer[threadldx.x]=sqgrt (buffer[threadldx.x]);

gwrite (fd,offset, &ébuffer, BLOCK SIZE*sizeof (float))

Mark Silberstein - UT Austin
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When to sync?

sgrt gpu(char* filename ) { g

int fd= =n (filename, O GRDWR) ;
offset=BLOCK SIZE*sizeof (float) *blockIdx.x;
ad (fd, offset, ébuffer, BLOCK SIZE*sizeof (float));

buffer[threadldx.x]=sqgrt (buffer[threadIldx.x]);

(fd, offset, &ébuffer, BLOCK SIZE*sizeof (float));

~lose (fd) ;

Mark Silberstein - UT Austin

52



When to sync?

GPU: gclose() will eventually sync?

Option 1: Let GPU sync asynchronously
NO — No GPU threads

Option 2: Let CPU sync asynchronously
NO — GPU-CPU atomics necessary

Mark Silberstein - UT Austin
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Sync on /ast close?

 No: hardware non-deterministic scheduling

Which call is the last one?

fd=gopen(“file”);
gclose(fd);

« Kernel invoked in 3 threads

Mark Silberstein - UT Austin
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Sync on /ast close?

 No: hardware non-deterministic scheduling

Which call is the last one?
fd=gopen(“file”);
gclose(fd);

e Kernel invoked in 3 threads
* Run 1: 0,0,0,c,c,C Run 2: 0,0,c,C,0,C

sync here spurious sync here

sync here
Mark Silberstein - UT Austin
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GPUfs APl semantics

sgrt gpu(char* filename ) {

int fd=gopen (filename,O GRDWR) ;

offset=BLOCK SIZE*sizeof (float) *blockIdx.x;
gread(fd,offset,&buffer,BLOCK;SIZE*sizeof(float));

buffer[threadldx.x]=sqgrt (buffer[threadIldx.x]);

gwrite (fd, offset, &buffer, BLOCK SIZE*sizeof (float));

1f (is last block()) gfsync(fd):

gclose (fd) ;
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GPUfs high-level design

CPU

GPUfs hooks

GPU

GPUfs GPU
File 1/O library

OS

GPUfs Distributed Buffer Cache

Host File System

Disk
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Buffer cache semantics

Local (strong) or
Distributed (weak) file system
data consistency?
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Weak data consistency model

 close(sync)-to-open semantics (AFS)

open() read(1)

CPU v

Not visible to CPU
GPU °

write(1) fsync() write(2)

Reason
Minimize inter-processor synchronization

Implications
* Undefined results for overlapping writes
» Explicit sync necessary
« Cache page false sharing

>>
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Implementation bits
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4. Implementation

GPUfs: Three main software
layers

Layer 1 (Core)
e GPUfs API
e Open file states
e Buffer cache

Layer 2 (Communication)
e CPU-GPU comms
e Shared data structures
write-shared CPU
memory
e CPU-GPU Remote
Procedure Call (RPC)

( GPUfs AP i
GPU .
GPU File State - GPU
memory 4 ~kernel
GPU Buffer Cache program
CP_tU-GhPU . CPU-GPU RPC
rite-share =
Vr;;mory CPU-GPU daemon } ;)pSa(l:Jeser

CPU OS Kernel
memory space

Figure 2. Main GPUfs software layers and their location in the
software stack and physical memory.

Layer 3 (Consistence Layer)
e OS Kernel Module

e Consistency between CPU buffer cache and
GPU buffer cache

RPC: “is when a computer program causes a procedure to
execute in another address space, which is coded as if it were a

normal procedure call, without the programmer explicitly coding
it



4.1 - File System Operations

OPEN & CLOSE
e Open file table - pointer to index of file page, pathname, cpu file descriptor,
reference count of the number of thread blocks holding the file open
e \When closed, retained in GPU memory
e Close file table - pointers to caches of closed files, hash table indexed by

inode
READ & WRITE
GPUfs API
> gread(fd,offset) e Check cache for block -> forward request to
Py CPU to allocate cache
: yes setin ETTORT
ST ‘\'?L“ffgfrfg?h?/ e Many threads copy data or initialize pages
yro collaboratively - “gread”
g i no :
e e Reference counts protect pages during
it (Frepaed transfers
LB P e ‘“gwrites” end with issuing a memory fence to
(- F;;:g = (cudaMem;py/ﬁ< ,,d(ffs@ update GPU memory for consistency
CPU-GPUdaemon _ FILE MANAGEMENT
. e Generate RPC to the CPU to request the

respective operation on the host

Figure 3. Functional diagram of a call to gread. Color scheme
is the same as Figure 2.



4.2 - GPU Buffer Cache

e GPUfs pre-allocates pages - contiguous memory array - raw data array
e PFRAME structure holds metadata - size, status, offset - allocated in an array

e Buffer cache - keeps replicas of previous content - file granularity

e PAGE LOOKUP via dynamic radix tree indexing of file’s buffer cache
o leaf nodes contain arrays of fpage - containing pframe data
o Fpage : concurrent access | reference count | spinlock

e CACHE MANAGEMENT - Daemon threads are inefficient - own threadblock
e Constantly running or part of each GPU application?
e GPUfs - implements FIFO-like policy for tracking allocation of leaf nodes

o Newly allocated nodes placed at head of doubly-linked-list

o To evict a page perform traversal to reclaim a page - closed < read-only

e CACHE ACCESS - buffer cache radix tree major point of contention
e To avoid data races - lock free read & locked updates




4.3 - Remote
Procedure Calls

Co-ordinate data transfer between CPU and GPU

PROTOCOL - Synchronous | client-server protocol | FIFO request channel
GPU-AS-CLIENT instead of GPU-as-coprocessor

GPU issues request to file server on CPU

e GPU-CPU MEMORY FENCES
o GPU file read and write need to be delivered to CPU when the kernel is
running
o Consistent bi directional updates of the CPU-GPU shared memory

e GPU CACHE BYPASS
o For consistent reads of GPU memory, GPUs must bypass the GPUs L1
and L2 cache to read the CPU initiated memory updates

e Current API - coarse grained naotifications when kernel completes. CPU polls
the GPU-CPU shared memory region



Implementation Overview
On-demand data transfer

Write-shared
CPU memory

RPC queue

GPU memory

CPU
RPC daemon

[ GPU kernel J

gread()

Buffer
cache

cudaMemcpy ()

staging
area

Ack
- |
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4.4 - File Consistency Management

e WRITER CONCURRENCY - only one writer at a time | no diff-and-merge

e Lazy invalidation propagation - invalidating the contents of a closed file's
cache

e No direct way to push changes on one GPU to another unless reopened

e Uses WRAPFS for file consistency - modified for GPUfs
e Software layer over the GPUfs file system - interposition on calls to FS

4.5 - Limitations

e GPU kernels launched by one CPU process cannot access GPU memory of
kernels launched by other processes

e GPUfs cannot protect the contents of its GPU buffer caches from corruption
by the application it serves




Example Code - 1

__global void file cpy to gpu(char* src file)
{

int zfd=gopen(src,0 GRDONLY);
int filesize=fstat(zfd);
for(size t me=0; me<ONE BLOCK READ; me+=FS BLOCKSIZE)
: int my offset=blockIdx.x*ONE BLOCK READ;
unsigned int toRead=min((unsigned int)FS BLOCKSIZE, (unsigned int)

(filesize-me-my offset));
volatile void* data=gmmap(NULL, toRead, 0 , O GRDONLY,zfd,my offset+me);

gmunmap (data,0);

}
gclose(zfd);
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Example Code - 1

__global void file cpy to gpu(char* src file)

{
int zfd=gopen(src,0 GRDONLY);
int filesize=fstat(zfd);
for(size t me=0; me<ONE BLOCK READ; me+=FS BLOCKSIZE)
{
int my offset=blockIdx.x*ONE BLOCK READ;
unsigned int toRead=min((unsigned int)FS BLOCKSIZE, (unsigned int)
(filesize-me-my offset));
VoTaT I Te Vo Tar daCa=gMMap (NULE,; —COREad,;, U U G
B e e et et e et el o
process data from file
*% [
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}
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Example Code - 2
GPUfs APl semantics

sgrt gpu(char* filename ) {
int fd=gopen(filename,O GRDWR) ;
offset=BLOCK SIZ2E*sizeof(float) *blockIdx.x;
gread(fd, offset, ébuffer, BLOCK SIZE*sizeof (float));

buffer[threadIldx.x]=sqrt (buffer[threadIldx.x]);

gwrite (fd,offset, &buffer, BLOCK SIZE*sizeof (float));

if (is_last block()) gfsync(fd);

gclose (fd) ;
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5. Evaluation - Sequential File Read

| single 1.8GB File |

6000

B CUDA pipeline GPU File 110

| Maximum PCI bandwidth (6731MB/s)

5000

[GPUfs 28 threadblocks ]

B
o
o
o

Whole file transfer (2100MB/s)

guin

m 256K 512K
[Wlthln 5% of CUDA version Page size I GPUfs > Whole File Transfer ]

Throughput (MB/s)
3
8

Figure 4. Sequential read performance as a function of the page
size. The red line i1s the maximum achievable PCI bandwidth on
this hardware configuration. Higher is better.




5. Evaluation - Sequential File Read
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Figure 5. Contribution of different factors to the file I/O perfor-
mance as a function of the page size. Lower 1s better.
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Figure 5. Contribution of different factors to the file I/O perfor-
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5. Evaluation - Random File Read

10000 1000
9000 ® Unique pages accessed 900

[ B Throughput 800

112 Thread blocks 700
32 32KB data blocks per TB

7000

GisE) random offsets in 1GB file
5000 32KB array in shared memoP9°
4000 400
3000 A0,
2000 -

1000

0 | .

16K 32K 64K 128K 256K 512K 4M

8000

Unique pages accessed

Effectl ve

Page size

Figure 6. Random read/write performance as a function of page
size. Higher 1s better.
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8000 ) \ 800
v 7000, “without GPUfs, random access to files 700 2
7] . y . s
§ 6000 Whose size exceeds the GPU S phys:cal 600 &
© memory is complex and inefficient in hand 2
@ 5000 . 500 2
=2 coded GPU programs, requiring frequent c
o “% kernel invocations between each random 4003
g 3000, access” 300 E

2000 200

1000 100

0 0

16K 32K 64K 128K 256K 512K 1M 2M  4M 8M 16M

Page size

Figure 6. Random read/write performance as a function of page
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5. Evaluation - Buffer Cache Access Performance

1
0.9 - GPUfs Lock-free —— GPUfs Locked

———————=8
0.8.'/././-"k
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(@)
C
©
£ 06
O
"é 0.5 For high contention during page
o 04 accesses

0.1

0 .

16K 32K 64K 128K 256K 512K 1M 2M 4M 8M 16M

Page size

Figure 7. Buffer cache access performance with and without lock-
free radix tree traversal, normalized by the raw memory access
time.
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5. Evaluation - Matrix-Vector Product
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Figure 8. Matrix-vector product for large matrices
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5. Evaluation - Image Search & Text Search

Buffer | Time (s) Pages | Lock-free Locked
cache size reclaimed accesses accesses
2G 53 0 | 1,088,838 21,516

1G 69 11,509 547,819 574,463

0.5G 99 38,317 176,758 | 1,351,903

Table 2. Impact of the buffer cache size on the running time and
locking behavior for the image search workload. Locked access
count also includes unlocked retries.

e Find the databases that contain an image that is within a threshold of
similarity w.r.t a reference image
o Predefined order | Find first match only
o Randomly generated images | Conditions with no matches
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5. Evaluation - Image Search & Text Search

Distributed across 4 GPUs

Input CPUx8 #GPUs
1 2 3 4
No match 119s | 53s 27s 18s 13s |
(2.0x)| (2.9%)| (4.1x)
Exact match 100s 40s 21s 14s 11s
(1.9%) | (2.9%)| (3.6%)

Table 3. Approximate image matching performance. Speedup for
multi-GPU runs relative to a single GPU are given in parentheses.




5. Evaluation - Image Search & Text Search

Input CPUx8 GPU-GPUTfs GPU-vanilla
Linux source 6.07h 53m (6.8 %) 50m (7.2X%)
Shakespeare 292s 40s (7.3 %) 40s (7.3 %)
LOC (semicolon) 80 140 (+52) 178

Table 4. GPU exact string match “grep -w”’ performance.

Grep -w style matching

Words are short - one word per thread
Output buffers become unbounded
Count frequency of word in dataset
Frequent calls to gopen and gclose




5. Evaluation - Image Search & Text Search

OpenMP
[ )
Input CPUx8 GPU-GPUTfs GPU-vanilla
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Grep -w style matching
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Output buffers become unbounded
Count frequency of word in dataset
Frequent calls to gopen and gclose

PREFETCHED




5. Evaluation - Image Search & Text Search

Without GPUfs
Input CPUx8 GPU-GPUTfs GPU-vanilla
Linux source 6.07h 53m (6.8 %) 50m (7.2X%)
Shakespeare 292s 40s (7.3 %) 40s (7.3 %)
LOC (semicolon) 80 140 (+52) 178

\ =/

Table 4. GPU exact string match “grep -w”’ performance.
PREFETCHED

Grep -w style matching

Words are short - one word per thread
Output buffers become unbounded
Count frequency of word in dataset
Frequent calls to gopen and gclose




5. Evaluation - Image Search & Text Search

GPUfs
Input CPUx8 GPU-GPUTfs GPU-vanilla
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\

Table 4. GPU exact string match “grep -w” performance.

Grep -w style matching
Words are short - one word per thread
Output buffers become unbounded
Count frequency of word in dataset
Frequent calls to gopen and gclose




6. Related Work

e GPUfs is the first extension of the file system abstraction to modern
GPU architectures.

e However, other work exists related to technology related to individual
components




Questions - |




Q. Could you talk more about the section on:
Concurrent non-overlapping writes to the same file.
Specifically the parts about "memory page
thrashing’, a single-writer MESI protocol, false
sharing of buffer cache pages among different gpus,
and why two copies of each cached block per GPU
are needed?




Q. The underlying assumption throughout seems to
be that multiple kernels access discrete parts of the
same file in parallel, so they never really step on
each others toes. What happens though if two
separate running processes access the same location
of the same file/ Or say, the CPU and GPU are both
accessing the same location of the same file?




0. What is the difference between NUMA and UMA?
(see page 487/)




0. |
upc
pIro

n section 3.2 under file mapping - "Improper
ates to such "quasi-read-only" pages are never
nagated back to the host CPU". How is this

achi

eved If there's not a real read-only mechanism

here?

A. Aread-only page is never marked as dirty.




0. In 3.4, "GPUfs is less intrusive than a complete OS
because it has no active, continuously running
components. " Could you please explain what are
the continuously running components that are not
present in GPUfs?

daemons?




Q. Section 3.4 talks about a scheduling-related
weakness that makes daemon threads inefficient it
running on a GPU. What exactly is the weakness? Is
It the fact that it needs to be constantly running?

| think so, too. The daemon blocks could have been
used for computations.




Q. Because CPUs and GPUs share the same |/O buffer
In GPUfs architecture, prioritizing between different
jobs and CPUs/GPUs would be crucial. How do you
think if 1t's worth it for this tradeoff’




Q. "There Is no guarantee that gmmap will map the
entire file region the application requests—instead
It may map only a prefix of the requested
region, and return the size of the successfully
mapped prefix.” How is this a more efficient
implementation than mmap in terms of access time?




Questions - Il




0. File operations are done at warp, rather than
thread granularity, is this done so as to avoid thread
divergence?’




0. File operations are done at warp, rather than
thread granularity, is this done so as to avoid thread
divergence?

( )
Parallel invocation of the GPUfs APl is supported at thread block and not warp

granularity

e Simplicity and minimal divergence
L pLcity g )




0. Why Is a radix tree structure relevant in the
buffered caches? |s it not better to have a hash-table
based memory structure to achieve higher storage
density?




0. Why Is a radix tree structure relevant in the
buffered caches? |s it not better to have a hash-table
based memory structure to achieve higher storage
density?

-

e Radix trees have excellent memory usage characteristics and optimal

search time characteristics - only store edges related to bit differences
e Hash tables require more memory for table loads. Collisions require
handling too.




0.In 5.1.2, it seems to say the throughput of
510MB/s isn't bad. But | am not convinced why the
number is promising because it is not compared to
anything.




0.In 5.1.2, it seems to say the throughput of
510MB/s isn't bad. But | am not convinced why the
number is promising because it is not compared to
anything.

4 )

| think the comparison trying to be made here is that GPU code without
GPUfs would typically have a throughput of 310MB/s (1/10th of
5100MB/s), roughly equal to the worst performance seen by GPUfs.

\_ /




Q.In 5.1.4, it says "the GPUfs buffer cache is sized to
2GB, with 2ZMB pages.” With a different page size
chosen, will the throughput improve for some matrix
size?




Q.In 5.1.4, it says "the GPUfs buffer cache is sized to

2GB, with 2ZMB pages.” With a different page size

chosen, will the throughput improve for some matrix

Size?

(

nowever greater accuracy in this example is achieved because of multiple
2MB page reads rather than larger chunks being read (causing spurious
paging of the CPU buffer, stalling CPU-GPU comms).

Could possibly show marginal improvement for small increase in page sizes,

\

J




Thank You




