
Dynamic Warp Formation and Scheduling 
for Efficient GPU Control Flow

CIS 601 Paper Presentation
3/28/17

Presented by Grayson Honan, Romita Mullick, Eric Stahl

1

Dynamic Warp Formation and Scheduling for Efficient GPU Control Flow
Wilson W. L. Fung Ivan Sham George Yuan Tor M. Aamodt



Introduction
Trend toward parallel workloads led to need for implicit instruction level 
parallelism from a single thread on CPU

This made the job of the architect very difficult trying to design around 
complex instruction scheduling logic

GPGPU programming has moved toward solving this problem through explicit 
thread level parallelism 

The software developer now has to do the work in their programming model

2



Introduction
Exploiting explicit thread level parallelism is achieved through the SIMD 
programming model

In the Nvidia programming language CUDA, threads are grouped in SIMD 
warps

The SIMD warps are scheduled to execute based on their program counter

If the threads in the SIMD warp have different PCs as a result from different 
decisions on a branch, the warp will encounter branch divergence

SIMD instructions should execute in lockstep, if divergence is encountered, the 
execution in a warp should be forced to serialize 3



SIMD Stream Processor Architecture
SIMD - Single Instruction Multi Data 

Exploit parallelism in a single instruction by packing vector operations into a 
single instruction (Dot Product becomes a single ADD X1 X2 instruction)

In the GPGPU SIMD model, a warp operates on a single instruction and each 
thread in a warp operates on an individual piece of data

4



Latency Hiding
Requirement to hide latency from memory access time. We do not want to 
stall all other instructions on memory requests

When a thread makes a request to memory, the blocking thread is added to a 
fair round robin queue to be scheduled when it is ready to continue

The next warp is now scheduled, effectively giving us out of order warp 
execution to hide the memory latency incurred from a memory access.

This latency hiding is called barrel processing

5



Latency Hiding
Dynamic Warp Formation and Scheduling 
for GPU Control Flow

6

Decode

RF RFRF

ALU

ALU

ALU

D-Cache

Thread Warp 6

Thread Warp 1
Thread Warp 2DataAll 

Hit?

Miss?

Threads accessing
memory hierarchy

Thread Warp 3
Thread Warp 8

Writeback

Threads available
for scheduling

Thread Warp 7

I-Fetch

SIMD Pipeline



SIMD Execution of Scalar Threads
The GPGPU programming model is supported by the GPU hardware inorder 
to achieve performance increases from explicit parallelism 

The SIMD warp is spread across multiple scalar pipelines to be executed in 
“lock-step” 

The SIMD scheduler will only schedule threads in a warp with the same PC. As 
divergence occurs, the SIMD scheduler serializes divergent threads

7Grouping scalar threads into a SIMD warp



SIMD Control Flow Support
Predication is a natural way for programs to have fine-grained control flow on 
the SIMD pipeline

Predication does not eliminate branches, therefore, we still have issue of 
branch divergence

The SIMD pipeline is fully utilized when executing all threads in a warp in 
“lock-step”

Therefore, in software containing many branching instructions, it is lucrative 
to mitigate the performance latency incurred from branch divergence

8



SIMD Serialization
Naive approach is to serialize branching instructions. In the worst case, our 
warp performs as a SISD pipeline serializing n threads in the warp

SIMD Serialization loses the performance increase we gain from executing 
threads in parallel. If we wanted a serialized pipeline, it would be better to 
execute on CPU

 

9
Each node represents a PC. This shows worst case serialization, 
where all threads in a warp of 8 threads end up at different PCs



SIMD Reconvergence
Definitions:

Immediate Post-Dominator - reconvergence point of a diverging branch

Post-Dominator - A basic block X post-dominates basic block Y (x pdom y), iff 
all paths from y to the exit node go through X, where a basic block is a piece of 
code with a single entry and exit point

Immediately Post-Dominates - A basic block X, distinct from Y, immediately 
post-dominates basic block Y iff X pdom Y and there is no basic block Z such 
that X pdom Z and Z pdom Y

10



Post Dominator Example
E immediately post dominates B

G post dominates B

G immediately post dominates A

11

Program Example



SIMD Reconvergence
Reconverging control flow can decrease the number of threads in the warp 
that we must serialize.

We now group diverging threads based on equivalent PCs. 

We can increase warp utilization, but we are still forced to serialize diverging 
threads. 

We can still have worst case n diverging threads that we would be forced to 
serialize in a warp.

12



An example for PDOM

13



An example for PDOM

14



An example for PDOM

15



An example for PDOM

16



An example for PDOM

17



An example for PDOM

18



An example for PDOM

19



An example for PDOM

20



An example for PDOM

21



An example for PDOM

22



An example for PDOM

23



PDOM Performance

24



A Counterexample to PDOM

25



Question
What is parallel iterative matching allocator?

What exactly is the Needleman-Wunsch algorithm doing, as mentioned on page 
411?

26



Dynamic Warp Formation and Scheduling

27Image from “Dynamic Warp Formation and Scheduling for Efficient GPU Control Flow”, Wilson W. L. Fung, Ivan Sham, George Yuan, Tor M. Aamodt



Dynamic Warp Formation and Scheduling

28Image from “Dynamic Warp Formation and Scheduling for Efficient GPU Control Flow”, Wilson W. L. Fung, Ivan Sham, George Yuan, Tor M. Aamodt



Register File Access

29

● We’re assuming that all RFs 
are equally accessible by all 
lanes

● This is problematic...



Register File Access

30

● In reality, each lane has its 
own register file bank with 
data only accessible within 
that lane

● How do we avoid shuttling 
register values around?



Register File Access

31

● Figure 10(c) 
○ static warp formation
○ Depicts a warp of threads 

accessing their RFs
○ Each vertical RF/ALU pair is a 

lane for a thread
○ Depicts each lane’s copy of the 

desired register being accessed



Register File Access

32

● Figure 10(b)
○ naïve dynamic warp formation 

with no regard for home lanes
○ Bank conflicts are possible

● A crossbar is needed for 
when threads leave their 
home lane. The crossbar 
remaps RF banks such that 
the appropriate bank is 
available to a thread.

(TID
, R

eg #)



Q: In 4.1, register file crossbars are mentioned. 
Could you explain what the purpose of the crossbar 
is and how the authors fix the 'drawbacks' of this 
with the "lane aware dynamic warp formation"?

33



Q: In 4.1, register file crossbars are mentioned. Could you explain what the purpose of the crossbar is and how the authors fix the 'drawbacks' of this with the "lane aware dynamic warp formation"?

34

A: In this case, the crossbar is a hardware structure 
that allows one lane to access another lane’s 
register file bank. The authors propose “lane 
aware” warp formation to avoid the need for a 
crossbar. See Hardware slides for an illustrative 
example.



Register File Access

35

● Figure 10(c)
○ lane aware dynamic warp 

formation

● If we force threads to stay 
in their home lanes, we 
don’t need a crossbar!

(TID
, R

eg #)

(TID
, R

eg #)



Hardware Implementation

36A
ni

m
at

io
n 

an
d 

Im
ag

es
 fr

om
 fr

om
 “D

yn
am

ic
 W

ar
p 

Fo
rm

at
io

n 
an

d 
S

ch
ed

ul
in

g 
fo

r E
ffi

ci
en

t G
P

U
 C

on
tro

l F
lo

w
”, 

W
ils

on
 W

. L
. F

un
g,

 Iv
an

 S
ha

m
, 

G
eo

rg
e 

Y
ua

n,
 T

or
 M

. A
am

od
t



Hardware Implementation
Thread Scheduler

PC-Warp LUT Warp Pool Issue Logic

Warp Allocator

TID x N PC A

TID x N PC B

H

H

TID x NPC Prio
TID x NPC Prio

OCCPC IDX
OCCPC IDX

Warp Update Register T

Warp Update Register NT
REQ

REQ
TID x NPC Prio

37A
ni

m
at

io
n 

an
d 

Im
ag

es
 fr

om
 fr

om
 “D

yn
am

ic
 W

ar
p 

Fo
rm

at
io

n 
an

d 
S

ch
ed

ul
in

g 
fo

r E
ffi

ci
en

t G
P

U
 C

on
tro

l F
lo

w
”, 

W
ils

on
 W

. L
. F

un
g,

 Iv
an

 S
ha

m
, 

G
eo

rg
e 

Y
ua

n,
 T

or
 M

. A
am

od
t



Hardware Implementation
Thread Scheduler

PC-Warp LUT Warp Pool Issue Logic

Warp Allocator

TID x N PC A

TID x N PC B

H

H

TID x NPC Prio
TID x NPC Prio

OCCPC IDX
OCCPC IDX

Warp Update Register T

Warp Update Register NT
REQ

REQ
TID x NPC Prio

A: BEQ R2, B
C: …

4321A
A 8765

38A
ni

m
at

io
n 

an
d 

Im
ag

es
 fr

om
 fr

om
 “D

yn
am

ic
 W

ar
p 

Fo
rm

at
io

n 
an

d 
S

ch
ed

ul
in

g 
fo

r E
ffi

ci
en

t G
P

U
 C

on
tro

l F
lo

w
”, 

W
ils

on
 W

. L
. F

un
g,

 Iv
an

 S
ha

m
, 

G
eo

rg
e 

Y
ua

n,
 T

or
 M

. A
am

od
t



Hardware Implementation
Thread Scheduler

PC-Warp LUT Warp Pool Issue Logic

Warp Allocator

TID x N PC A

TID x N PC B

H

H

TID x NPC Prio
TID x NPC Prio

OCCPC IDX
OCCPC IDX

Warp Update Register T

Warp Update Register NT
REQ

REQ
TID x NPC Prio

A: BEQ R2, B
C: …

A 8765

4

3

2

1

X

39A
ni

m
at

io
n 

an
d 

Im
ag

es
 fr

om
 fr

om
 “D

yn
am

ic
 W

ar
p 

Fo
rm

at
io

n 
an

d 
S

ch
ed

ul
in

g 
fo

r E
ffi

ci
en

t G
P

U
 C

on
tro

l F
lo

w
”, 

W
ils

on
 W

. L
. F

un
g,

 Iv
an

 S
ha

m
, 

G
eo

rg
e 

Y
ua

n,
 T

or
 M

. A
am

od
t



Hardware Implementation
Thread Scheduler

PC-Warp LUT Warp Pool Issue Logic

Warp Allocator

TID x N PC A

TID x N PC B

H

H

TID x NPC Prio
TID x NPC Prio

OCCPC IDX
OCCPC IDX

Warp Update Register T

Warp Update Register NT
REQ

REQ
TID x NPC Prio

A: BEQ R2, B
C: …

4

3

2

1

X

8

7

6

5

Y

40A
ni

m
at

io
n 

an
d 

Im
ag

es
 fr

om
 fr

om
 “D

yn
am

ic
 W

ar
p 

Fo
rm

at
io

n 
an

d 
S

ch
ed

ul
in

g 
fo

r E
ffi

ci
en

t G
P

U
 C

on
tro

l F
lo

w
”, 

W
ils

on
 W

. L
. F

un
g,

 Iv
an

 S
ha

m
, 

G
eo

rg
e 

Y
ua

n,
 T

or
 M

. A
am

od
t



Hardware Implementation
Thread Scheduler

PC-Warp LUT Warp Pool Issue Logic

Warp Allocator

TID x N PC A

TID x N PC B

H

H

TID x NPC Prio
TID x NPC Prio

OCCPC IDX
OCCPC IDX

Warp Update Register T

Warp Update Register NT
REQ

REQ
TID x NPC Prio

A: BEQ R2, B
C: …

4

3

2

1

X

8

7

6

5

Y

41A
ni

m
at

io
n 

an
d 

Im
ag

es
 fr

om
 fr

om
 “D

yn
am

ic
 W

ar
p 

Fo
rm

at
io

n 
an

d 
S

ch
ed

ul
in

g 
fo

r E
ffi

ci
en

t G
P

U
 C

on
tro

l F
lo

w
”, 

W
ils

on
 W

. L
. F

un
g,

 Iv
an

 S
ha

m
, 

G
eo

rg
e 

Y
ua

n,
 T

or
 M

. A
am

od
t



Hardware Implementation
Thread Scheduler

PC-Warp LUT Warp Pool Issue Logic

Warp Allocator

TID x N PC A

TID x N PC B

H

H

TID x NPC Prio
TID x NPC Prio

OCCPC IDX
OCCPC IDX

Warp Update Register T

Warp Update Register NT
REQ

REQ
TID x NPC Prio

A: BEQ R2, B
C: …

4

3

2

1

X

8

7

6

5

Y

42A
ni

m
at

io
n 

an
d 

Im
ag

es
 fr

om
 fr

om
 “D

yn
am

ic
 W

ar
p 

Fo
rm

at
io

n 
an

d 
S

ch
ed

ul
in

g 
fo

r E
ffi

ci
en

t G
P

U
 C

on
tro

l F
lo

w
”, 

W
ils

on
 W

. L
. F

un
g,

 Iv
an

 S
ha

m
, 

G
eo

rg
e 

Y
ua

n,
 T

or
 M

. A
am

od
t



Hardware Implementation
Thread Scheduler

PC-Warp LUT Warp Pool Issue Logic

Warp Allocator

TID x N PC A

TID x N PC B

H

H

TID x NPC Prio
TID x NPC Prio

OCCPC IDX
OCCPC IDX

Warp Update Register T

Warp Update Register NT
REQ

REQ
TID x NPC Prio

A: BEQ R2, B
C: …

4

3

2

1

X

8

7

6

5

Y

43A
ni

m
at

io
n 

an
d 

Im
ag

es
 fr

om
 fr

om
 “D

yn
am

ic
 W

ar
p 

Fo
rm

at
io

n 
an

d 
S

ch
ed

ul
in

g 
fo

r E
ffi

ci
en

t G
P

U
 C

on
tro

l F
lo

w
”, 

W
ils

on
 W

. L
. F

un
g,

 Iv
an

 S
ha

m
, 

G
eo

rg
e 

Y
ua

n,
 T

or
 M

. A
am

od
t



Hardware Implementation
Thread Scheduler

PC-Warp LUT Warp Pool Issue Logic

Warp Allocator

TID x N PC A

TID x N PC B

H

H

TID x NPC Prio
TID x NPC Prio

OCCPC IDX
OCCPC IDX

Warp Update Register T

Warp Update Register NT
REQ

REQ
TID x NPC Prio

A: BEQ R2, B
C: …

4

3

2

1

X

8

7

6

5

Y

4

32

1

B

C

0110

1001

44A
ni

m
at

io
n 

an
d 

Im
ag

es
 fr

om
 fr

om
 “D

yn
am

ic
 W

ar
p 

Fo
rm

at
io

n 
an

d 
S

ch
ed

ul
in

g 
fo

r E
ffi

ci
en

t G
P

U
 C

on
tro

l F
lo

w
”, 

W
ils

on
 W

. L
. F

un
g,

 Iv
an

 S
ha

m
, 

G
eo

rg
e 

Y
ua

n,
 T

or
 M

. A
am

od
t



Hardware Implementation
Thread Scheduler

PC-Warp LUT Warp Pool Issue Logic

Warp Allocator

TID x N PC A

TID x N PC B

H

H

TID x NPC Prio
TID x NPC Prio

OCCPC IDX
OCCPC IDX

Warp Update Register T

Warp Update Register NT
REQ

REQ
TID x NPC Prio

A: BEQ R2, B
C: …

4

3

2

1

X

8

7

6

5

Y

4

32

1

B

C

0110

1001

B 0110 0 B 32

45A
ni

m
at

io
n 

an
d 

Im
ag

es
 fr

om
 fr

om
 “D

yn
am

ic
 W

ar
p 

Fo
rm

at
io

n 
an

d 
S

ch
ed

ul
in

g 
fo

r E
ffi

ci
en

t G
P

U
 C

on
tro

l F
lo

w
”, 

W
ils

on
 W

. L
. F

un
g,

 Iv
an

 S
ha

m
, 

G
eo

rg
e 

Y
ua

n,
 T

or
 M

. A
am

od
t



Hardware Implementation
Thread Scheduler

PC-Warp LUT Warp Pool Issue Logic

Warp Allocator

TID x N PC A

TID x N PC B

H

H

TID x NPC Prio
TID x NPC Prio

OCCPC IDX
OCCPC IDX

Warp Update Register T

Warp Update Register NT
REQ

REQ
TID x NPC Prio

A: BEQ R2, B
C: …

4

3

2

1

X

8

7

6

5

Y

4

32

1

B

C

0110

1001

B 0110 0 B 32
C 1001 1 C 41

46A
ni

m
at

io
n 

an
d 

Im
ag

es
 fr

om
 fr

om
 “D

yn
am

ic
 W

ar
p 

Fo
rm

at
io

n 
an

d 
S

ch
ed

ul
in

g 
fo

r E
ffi

ci
en

t G
P

U
 C

on
tro

l F
lo

w
”, 

W
ils

on
 W

. L
. F

un
g,

 Iv
an

 S
ha

m
, 

G
eo

rg
e 

Y
ua

n,
 T

or
 M

. A
am

od
t



Hardware Implementation
Thread Scheduler

PC-Warp LUT Warp Pool Issue Logic

Warp Allocator

TID x N PC A

TID x N PC B

H

H

TID x NPC Prio
TID x NPC Prio

OCCPC IDX
OCCPC IDX

Warp Update Register T

Warp Update Register NT
REQ

REQ
TID x NPC Prio

A: BEQ R2, B
C: …

87

6

5 B

C

1011

0100

B 0110 0 B 32
C 1001 1 C 41

47A
ni

m
at

io
n 

an
d 

Im
ag

es
 fr

om
 fr

om
 “D

yn
am

ic
 W

ar
p 

Fo
rm

at
io

n 
an

d 
S

ch
ed

ul
in

g 
fo

r E
ffi

ci
en

t G
P

U
 C

on
tro

l F
lo

w
”, 

W
ils

on
 W

. L
. F

un
g,

 Iv
an

 S
ha

m
, 

G
eo

rg
e 

Y
ua

n,
 T

or
 M

. A
am

od
t



Hardware Implementation
Thread Scheduler

PC-Warp LUT Warp Pool Issue Logic

Warp Allocator

TID x N PC A

TID x N PC B

H

H

TID x NPC Prio
TID x NPC Prio

OCCPC IDX
OCCPC IDX

Warp Update Register T

Warp Update Register NT
REQ

REQ
TID x NPC Prio

A: BEQ R2, B
C: …

87

6

5 B

C

1011

0100

B 0010 2 8B 32
C 1001 1 C 41

5

7B

48A
ni

m
at

io
n 

an
d 

Im
ag

es
 fr

om
 fr

om
 “D

yn
am

ic
 W

ar
p 

Fo
rm

at
io

n 
an

d 
S

ch
ed

ul
in

g 
fo

r E
ffi

ci
en

t G
P

U
 C

on
tro

l F
lo

w
”, 

W
ils

on
 W

. L
. F

un
g,

 Iv
an

 S
ha

m
, 

G
eo

rg
e 

Y
ua

n,
 T

or
 M

. A
am

od
t



Thread Scheduler
PC-Warp LUT Warp Pool Issue Logic

Warp Allocator

TID x N PC A

TID x N PC B

H

H

TID x NPC Prio
TID x NPC Prio

OCCPC IDX
OCCPC IDX

Warp Update Register T

Warp Update Register NT
REQ

REQ
TID x NPC Prio

Hardware Implementation A: BEQ R2, B
C: …

6

B

C

1011

0100

B 0010 2 B

B

4C 1C 10017 1

7

49A
ni

m
at

io
n 

an
d 

Im
ag

es
 fr

om
 fr

om
 “D

yn
am

ic
 W

ar
p 

Fo
rm

at
io

n 
an

d 
S

ch
ed

ul
in

g 
fo

r E
ffi

ci
en

t G
P

U
 C

on
tro

l F
lo

w
”, 

W
ils

on
 W

. L
. F

un
g,

 Iv
an

 S
ha

m
, 

G
eo

rg
e 

Y
ua

n,
 T

or
 M

. A
am

od
t

8325
85

Notice that threads stay in their home lanes. 
If we were to swap the position of any two 

threads, we’d need a crossbar.



Hardware Implementation
Thread Scheduler

PC-Warp LUT Warp Pool Issue Logic

Warp Allocator

TID x N PC A

TID x N PC B

H

H

TID x NPC Prio
TID x NPC Prio

OCCPC IDX
OCCPC IDX

Warp Update Register T

Warp Update Register NT
REQ

REQ
TID x NPC Prio

A: BEQ R2, B
C: …

87

6

5 B

C

1011

0100

B 0010 2 8B 25

B

4C 1C 1001 1

7

50A
ni

m
at

io
n 

an
d 

Im
ag

es
 fr

om
 fr

om
 “D

yn
am

ic
 W

ar
p 

Fo
rm

at
io

n 
an

d 
S

ch
ed

ul
in

g 
fo

r E
ffi

ci
en

t G
P

U
 C

on
tro

l F
lo

w
”, 

W
ils

on
 W

. L
. F

un
g,

 Iv
an

 S
ha

m
, 

G
eo

rg
e 

Y
ua

n,
 T

or
 M

. A
am

od
t

3

Notice that we can’t add Thread 
7 to warp index 0 because we’d 

have a bank conflict!



Hardware Implementation
Thread Scheduler

PC-Warp LUT Warp Pool Issue Logic

Warp Allocator

TID x N PC A

TID x N PC B

H

H

TID x NPC Prio
TID x NPC Prio

OCCPC IDX
OCCPC IDX

Warp Update Register T

Warp Update Register NT
REQ

REQ
TID x NPC Prio

A: BEQ R2, B
C: …

87

6

5 B

C

1011

0100

B 0010 2 8B 32
C 1001 1 C 41

5

7B

51A
ni

m
at

io
n 

an
d 

Im
ag

es
 fr

om
 fr

om
 “D

yn
am

ic
 W

ar
p 

Fo
rm

at
io

n 
an

d 
S

ch
ed

ul
in

g 
fo

r E
ffi

ci
en

t G
P

U
 C

on
tro

l F
lo

w
”, 

W
ils

on
 W

. L
. F

un
g,

 Iv
an

 S
ha

m
, 

G
eo

rg
e 

Y
ua

n,
 T

or
 M

. A
am

od
t



Hardware Implementation
Thread Scheduler

PC-Warp LUT Warp Pool Issue Logic

Warp Allocator

TID x N PC A

TID x N PC B

H

H

TID x NPC Prio
TID x NPC Prio

OCCPC IDX
OCCPC IDX

Warp Update Register T

Warp Update Register NT
REQ

REQ
TID x NPC Prio

A: BEQ R2, B
C: …

87

6

5 B

C

1011

0100

B 0010 2 8B 32
C 1101 1 C 461

5

7B

52A
ni

m
at

io
n 

an
d 

Im
ag

es
 fr

om
 fr

om
 “D

yn
am

ic
 W

ar
p 

Fo
rm

at
io

n 
an

d 
S

ch
ed

ul
in

g 
fo

r E
ffi

ci
en

t G
P

U
 C

on
tro

l F
lo

w
”, 

W
ils

on
 W

. L
. F

un
g,

 Iv
an

 S
ha

m
, 

G
eo

rg
e 

Y
ua

n,
 T

or
 M

. A
am

od
t



Hardware Implementation
Thread Scheduler

PC-Warp LUT Warp Pool Issue Logic

Warp Allocator

TID x N PC A

TID x N PC B

H

H

TID x NPC Prio
TID x NPC Prio

OCCPC IDX
OCCPC IDX

Warp Update Register T

Warp Update Register NT
REQ

REQ
TID x NPC Prio

A: BEQ R2, B
C: …

87

6

5 B

C

1011

0100

B 0010 2
C 1101 1 C 461

7B

8

3

2

5

Z

53A
ni

m
at

io
n 

an
d 

Im
ag

es
 fr

om
 fr

om
 “D

yn
am

ic
 W

ar
p 

Fo
rm

at
io

n 
an

d 
S

ch
ed

ul
in

g 
fo

r E
ffi

ci
en

t G
P

U
 C

on
tro

l F
lo

w
”, 

W
ils

on
 W

. L
. F

un
g,

 Iv
an

 S
ha

m
, 

G
eo

rg
e 

Y
ua

n,
 T

or
 M

. A
am

od
t



Hardware Implementation
Thread Scheduler

PC-Warp LUT Warp Pool Issue Logic

Warp Allocator

TID x N PC A

TID x N PC B

H

H

TID x NPC Prio
TID x NPC Prio

OCCPC IDX
OCCPC IDX

Warp Update Register T

Warp Update Register NT
REQ

REQ
TID x NPC Prio

A: BEQ R2, B
C: …

87

6

5 B

C

1011

0100

B 0010 2
C 1101 1 C 461

7B

8

3

2

5

Z

54A
ni

m
at

io
n 

an
d 

Im
ag

es
 fr

om
 fr

om
 “D

yn
am

ic
 W

ar
p 

Fo
rm

at
io

n 
an

d 
S

ch
ed

ul
in

g 
fo

r E
ffi

ci
en

t G
P

U
 C

on
tro

l F
lo

w
”, 

W
ils

on
 W

. L
. F

un
g,

 Iv
an

 S
ha

m
, 

G
eo

rg
e 

Y
ua

n,
 T

or
 M

. A
am

od
t



Hardware Implementation
Thread Scheduler

PC-Warp LUT Warp Pool Issue Logic

Warp Allocator

TID x N PC A

TID x N PC B

H

H

TID x NPC Prio
TID x NPC Prio

OCCPC IDX
OCCPC IDX

Warp Update Register T

Warp Update Register NT
REQ

REQ
TID x NPC Prio

A: BEQ R2, B
C: …

87

6

5 B

C

1011

0100

B 0010 2
C 1101 1 C 461

7B

8

3

2

5

Z

No Lane Conflict

55A
ni

m
at

io
n 

an
d 

Im
ag

es
 fr

om
 fr

om
 “D

yn
am

ic
 W

ar
p 

Fo
rm

at
io

n 
an

d 
S

ch
ed

ul
in

g 
fo

r E
ffi

ci
en

t G
P

U
 C

on
tro

l F
lo

w
”, 

W
ils

on
 W

. L
. F

un
g,

 Iv
an

 S
ha

m
, 

G
eo

rg
e 

Y
ua

n,
 T

or
 M

. A
am

od
t



Q: Section 4.2 "The warp with the older PC still 
resides in the warp pool, but will no longer be 
updated..." Does this mean that older warps just sit 
around indefinitely and accumulate in the warp 
pool?

56



Q: Section 4.2 "The warp with the older PC still resides in the warp pool, but will no longer be updated..." Does this mean that older warps just sit around indefinitely and accumulate in the warp pool?

57

A: No, when an old (full) warp is eventually issued, 
the data in the warp pool at that index must be 
invalidated. Once issued, the index (IDX value) is 
returned to the list of availables indices for the 
Warp Allocator to use. 



Issue Heuristics
● The issue priority is determined 

by the issue heuristic
● Majority Heuristic

○ Chooses the most common PC among 
all the existing warps and issues all 
before choosing a new PC

● More on these in the Performance 
section!

58



Q: Section 4.3: "Each cycle, the issue logic searches 
for or allocates an entry for the PC of each warp 
entering the scheduler and increments the 
associated counter with the number of scalar 
threads joining the warp pool". What is this 
counter here and what is its purpose?

59



Q: Section 4.3: "Each cycle, the issue logic searches for or allocates an entry for the PC of each warp entering the scheduler and increments the associated counter with the number of scalar threads joining 
the warp pool". What is this counter here and what is its purpose?

60

A: This is a description of the Issue Logic for the 
Majority Issue Heuristic (the authors use a 32 entry 
fully-associative LUT). Counters for each in-flight 
PC are used within this structure to keep track of 
which PC is the most common (i.e. which PC has 
“the Majority”) among all existing warps. 



Area Estimation
● Overall area consumption is 

2.799mm2 per core
● With 8 cores, this is roughly 4.7% 

of the total area of the GeForce 
8800GTX

● CACTI tool for estimation
○ http://www.hpl.hp.com/research/cacti/

61



Methodology
● GPGPU-Sim

○ Cycle-accurate simulator developed 
by the authors

○ Benchmarks included SPEC CPU2006, 
SPLASH2, and CUDA SDK Code 
Samples

● Hardware configuration under 
test shown in Table 2

62



Experimental Results
● MIMD, being Multiple Insn Multiple 

Data, obviously has better 
performance than all the SIMD 
designs because it can execute 
different insns (with different PCs) in 
parallel.

● Naive - Normal SIMD with no 
reconvergence - lowest performance

● PDOM - reconvergence at post 
dominator- 93.4% speedup over naive

● DYNB (Majority)- 22.5% speedup over 
PDOM 63



Effects of Issue Heuristics

64

● Figure 15 shows SIMD performance 
across some benchmarks for different 
warp issue heuristics.

● In general, DPdPri, DPC and DMaj 
perform well



Effects of Issue Heuristics

65

● Figure 16 shows distribution of warps 
issued according to size. 

● Say a warp has a capacity of 16 threads.
● W0- 0 threads in warp

W1- 1 thread in warp
W16- 16 threads in warp- Full Warp !

More high occupancy warps issued- Good !
Eg. DPC, DPdPri, DMaj
More low occupancy warps issued- Bad !
Eg. DTime, DMin

STALL- No 2 threads can write to same register 
file in the same cycle, so writes are delayed



Q. What is the difference between stall and W0 cycles in Figure 16?

W0 means a warp with 0 threads >> No operations executed by the warp, more 
like a nop. 

My guess is a scenario with __syncthreads(). Threads that have already reached 
this point must keep executing nops till the other threads come to this point.

Stall happens because of memory dependency. Multiple threads can’t write 
back to the same register bank in same cycle >> contention for same memory 
location. Hence, writes stall.

>> th1 can write 1st >> th2 can write >> 1 cycle of stall

66



Q. Could you explain in detail about Figure 16? I don't understand why 
certain warp, like W4 occupies a large portion?

W4 implies the warp has an occupancy of 4 threads. Occupying a large portion 
implies warps with occupancy 4 are more frequently issued. Means 
incomplete warps are being issued more often thereby >> under utilizing the 
SIMD pipeline.

67



Effect of Lane Aware Scheduling

68

● This figure compares PDOM vs DYNB 
with/without lane aware scheduling vs 
DYNB without lane conflict.

● As expected, DYNB with lane aware 
scheduling gives higher IPC than DYNB 
w/o lane aware (because of possible 
register bank conflict !)

● Ignoring lane conflicts gives even higher 
performance than the two.

● In case of Black, FFT and Matrix 
benchmarks however, PDOM gives better 
performance than DYNB.



Related Work
● Predication

-Execution of “predicated” insns is controlled by conditional mask set by another insn
-Convert control dependency into data dependency

● Lorie and Strong
-Introduce reconvergence point at the beginning of branch, rather than at the post-dominator
-Eg. JOIN and ELSE instruction at the beginning of divergence

● Cervini
-Dynamic regrouping of threads in a SPMD model on a SMT processor
-after divergence, each thread has a single SIMD task

● Liquid SIMD (Clark et al.)
-Form SIMD instructions by translating scalar instructions at runtime
-improves SIMD binary compatibility

● Conditional Routing (Kapasi)
-Creates multiple kernels from single kernel to eliminate branches
-kernels connect via interconnect to increase SIMD pipeline utilization

69



Conclusion
● Branch divergence can significantly degrade a GPU’s performance.

-50.5% performance loss with SIMD width = 16

● Dynamic Warp Formation & Scheduling

-20.7% on average better than reconvergence

-4.7% area cost

● Future Work

-Warp scheduling – Area and Performance Tradeoff 

70



Thank You !

71



Questions
~1.) According to Wikipedia, SPMD is supposedly a subcategory of MIMD, so I’m confused by the line on pg 409 which states, “SIMD hardware can efficiently support SPMD program execution provided that individual threads follow similar control 
flow.” Isn’t the whole idea of SPMD that various tasks are being run that are very different (i.e. very little similarity in control flow)?

E2.) What exactly is the Needleman-Wunsch algorithm doing, as mentioned on page 411?
NW is used for sequence alignment: it finds a way to align two traces so that there are minimal gaps in the traces. Gaps would be necessary, for example, if trace A executes an insn that never occurs in trace B.

~3.) Could you explain the tasks that are used for evaluation? Especially why for the Black and LU tasks, DYNB and PDOM have huge performance gap?

G4.) Section 4.2 "The warp with the older PC still resides in the warp pool, but will no longer be updated..." Does this mean that older warps just sit around indefinitely and accumulate in the warp pool?

R5.) What is the difference between stall and W0 cycles in Figure 16?

R6.) Could you explain in detail about Figure 16? I don't understand why certain warp, like W4 occupies a large portion?

G7.) Section 4.3: "Each cycle, the issue logic searches for or allocates an entry for the PC of each warp entering the scheduler and increments the associated counter with the number of scalar threads joining the warp pool". What 
is this counter here and what is its purpose?

~8.) If one of the branches takes significantly longer time than the other branch, would this grouping technique still be able to reduce branching latency?

~9.) In 4.3, could you please explain "In the minority heuristic, warps with the least frequent PCs are given priority with the hope that, by doing so, these warps may eventually catch up and converge with other threads." How do we know the least 
frequent PC's beforehand?

~10.) Could you explain what the need is for swizzling. I don't understand why in their benchmark for bitonic cannot form larger warps?

11.) If there are too many branches, will the warp pool get full and no warp is ready to issue?

E12.) What is a parallel iterative matching allocator? (section 2)

G13.) In 4.1, register file crossbars are mentioned. Could you explain what the purpose of the crossbar is and how the authors fix the 'drawbacks' of this with the "lane aware dynamic warp formation"?

~14.) Does thread swizzling solve all home lane issues or are there edge cases where it would not help?

72


