The Dual-Path Execution Model for
Efficient GPU Control Flow

Minsoo Rhu, Mattan Erez
HPCA 2013

Presented by DJ Park, Romita Mullick, Hans Giesen



Outline

e Background
o Stack-based reconvergence
o Dynamic warp subdivision

e Dual-path execution model

e Evaluation

e Conclusion



Stack-Based Reconvergence

e \When the control flow of different threads within a single warp diverges,
execution of concurrent control paths is serialized with every divergence.

e Threads reconverge at the immediate post-dominator(PDOM) instruction of
that branch |
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Stack-Based Reconvergence

e The way to implement reconvergence: treat control flow execution as a
serial stack

e Each time control diverges, both the taken and not taken paths are pushed
onto a stack (in arbitrary order) and the path at the new top of stack is
executed

e \When the control path reaches its reconvergence point, the entry is popped
off of the stack and execution now follows the alternate direction of the
diverging branch.



Reconvergence stack and its operation

A 1111 Single-path stack
| PC Active Mask | RPC
TOS=$= A g B s | -

(a) Initial status of the stack. The
current TOS designates the fact that
l basic block A is being executed.
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Reconvergence stack and its operation

Al1111 Single-path stack
PC | Active Mask | RPC
G 13111 =
C 0111
TOS=—» B 1000 G

(b) Two entries of block B and C are
pushed into the stack when BRg. ¢ is
l executed. RPC is updated to block G.

> G| 1111 | -




Reconvergence stack and its operation

A 1111 Single-path stack
PC |Active Mask | RPC

G il i i ) - |
TOS=$ C gL1l G

(c) The stack entry, corresponding
to block B at TOS, is popped out when
l PC matches RPC wvalue of G.

> G| 1111 | -




Reconvergence stack and its operation

A 1111
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Single-path stack

TOS—r'

PC |Active Mask | RPC
G 1111 -
F 0111 G
E 0011 F
D 0100 F

(d) Two more entries for block D

and

E are pushed into the stack when the
warp executes BRpg.



Reconvergence stack and its operation

A 1111 Single-path stack
PC |Active Mask | RPC

G o 411 | -

TOS=# F 0111 G

(e) Threads are reconverged back at
block F when both entries for block
l D and E are popped out.

> G| 1111 | -




Reconvergence stack and its operation

Al 1111 Single-path stack
PC |Active Mask | RPC
TOS=—$# G 1111 =

(£) All four threads become active
again when the stack entry for block
l F is popped out.

> G| 1111 | -




Reconvergence stack and its operation

A 1111
I ‘ | Deficiencies:
B- - SIMD utilization decreases every time control flow diverges

| o -
E- - Execution is serialized
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(g) Execution flow using baseline stack architecture. Time



Yes, cache-miss, long memory latency, etc



C

'ynamic Warp Subdivision

Allow warps to interleave the scheduling of instructions from concurrently
executable paths(left and right paths)

A divergent branch may either utilize the baseline single-path stack, or
instead, ignore the stack and utilize an additional hardware structure, the
warp-split table (WST), which is used to track the
independently-schedulable warp-splits

Warp-split: independent scheduling entities and are treated equally as
warps by the scheduler (the left and right paths of a divergent)
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DWS operation

Single-path stack

PC |Active Mask | RPC

G 1111 2

C 0111 G
TOS=== B 1000 G

When BRs. is executed, the warp is not subdivided
because the number of instructions in block
G(PDOM, and it has 3 insns) is larger than the
subdivision threshold(which is 2 for this case).

Warp-split table

PC | Active Mask | RPC
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WS operation
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Single-path stack

TOS=$=

PC | Active Mask | RPC
G 1111 -
&4 0111 G

BRo: has a PDOM(F has 1 insn) smaller than the

threshold(2) which allows the warp to be subdivided.

Warp-split table

PC |Active Mask | RPC
D 0100 G
E 0011 G
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DWS operation

Single-path stack

PC

Active Mask

REC

TOS w=pn-

G

L 3 0

Note that RPC for two entries in warp-split table is G, not F

Warp-split table

PC | Active Mask | RPC
F 0100 G
F 0011 G




DWS operation

Compared with baseline architecture: increases parallelism and potential latency hiding
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Deficiency: reduced SIMD utilization (the stack could have reconverged nested branches whereas
the WST cannot)



Warp-splits continue executing asynchronously and keep being
subdivided upon future divergent branches until they reach the PDOM
associated with the top of the reconvergence stack



Motivation

Single Path Execution maximizes SIMD utilization with structured control
flow, but always serializes execution with only a single path schedulable
at any given time

Dynamic Warp Subdivision can interleave the scheduling of multiple
paths and increase TLP, but this sacrifices SIMD lane utilization

Goal: matches the utilization and SIMD efficiency of the baseline SPE
while still enhancing TLP in some cases



Dual-Path execution model

e Dual-Path stack structure

o Idea: instead of pushing the taken and fall-through paths onto the
stack one after the other, in effect serializing their execution, the

two paths are maintained in parallel.

o Stack entry:
m PC and active mask value of the left path (Path L)

m PC and active mask value of the right path (Path R)
m The RPC (reconvergence PC) of the two paths



Dual-Path execution




Dual-Path execution




Dual-Path execution




Dual-Path execution




Dual-Path execution




Dual-Path execution




Dual-Path execution

Compared with baseline architecture
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(g) Execution flow using the dual-path stack model.



Scoreboard

Per-warp scoreboard to track data
dependencies.

Content-addressable-memory (CAM) structure:
indexed with a register number and a warp ID
which returns whether that register is pending
write-back for that warp

Once an instruction is scheduled for execution,
the scoreboard is updated to show the
instruction’s destination register as pending.
The pending P bit set for a register indicates that
register has a pending write and all other
registers dependent on that register must stall
When the register is written back, the
scoreboard is updated and the pending bit is
cleared.

A cleared P bit indicates the registers dependent

on thi< register can nroceed

(Warp ID, Reg)
(Wy, O}

Scorehna;d

Search [

- P: Pending writes
- 5: Shadow bit

(a) Input register number
compared in parallel with :
the =coreboard entrie
(Reg:P) field for a match.



Scoreboard

In DPE, 2 divergent sub-warps can execute
concurrently. To support concurrent paths per
warp, the scoreboard scope is doubled to keep
track of registers in both left and right paths
separately.

There exists a Shadow bit, S, in addition to the
Pending P bit.

P set indicates the register has a pending write
P is copied to S when that register reaches a
path divergence/ reconvergence

While querying scoreboard, a register in a path
checks the P in its own scoreboard or the S in
the other path’s scoreboard.

If either is set, means the current path must
stall

(Warp ID, Path, Reqg)
{Wu,. L.r D}

Scoreboard; Scoreboardy

AT

(b) Dependency is determined
by OR-ing own path's (Reg:F)
match and the other path's
(Reg:5) match.



Scoreboard

Hit vs Miss ?

e Or-ring the scoreboards’ outcomes for each path

e Hitif Pinits own path or Sin other's path is set

e Hitindicates path has data dependency and must stall to ensure correct
execution when diverging and reconverging.

e Miss means path has no dependencies and can execute



Scoreboard

Scoreboard inserts stalls under the following scenarios:

1. Before/After Divergence
Path C reads r0, but must stall till rO is written to by
path A (true RAW dependency)

2. Before/After Reconvergence
Reading r7 on path G must stall till r7 is written on
path F before reconvergence (true RAW dependency)

3. Registers with same register number but on different
concurrent paths are unrelated but will be treated as
false RAW dependency and insert stall

4. If the register number on two different paths is a
destination in both paths concurrently, then writes to
this register number from the two paths are actually
unrelated but will be treated as a false WAW
dependency. The score board will make the writes stall

Left Path

Right Path

// Path A

load r0, MEM[~];

if( ){ // Path B
load rl, MEM[~];

if( ){ // Path D
add ri, rl, =3;

Reconwvy

Reconvy
// Path G
add »8, rl, r7;

else{ // Path C
ada. ¥5., £, ¥2;

prgence

// Path F
load r7, MEM[~];

prgence




Scoreboard example

To illustrate how the scoreboard uses the P
and S bits to check these dependencies across
the 2 paths we have the following examples.

Initially, path A on the left path loads r0. Path A
has a pending write and sets P.

Later, when A reaches the BR(B-C) divergence,
Pis copiedto S

(Warp ID, Path, Reg)
{- r T -)
Scoreboard, Scoreboardy




Scoreboard example

When path C on the right path executes, it S o I“':r Pat;h Reg)
checks the S bit of the left path for r0. It finds S (Wo, R,.0)
set which tells path C that path A has a Sﬂr‘?—bﬂardr. Scoreboardy

pending write to rO from pre-divergence.

Hence, C must wait/stall till A writes to rO.




Scoreboard example

(Warp ID, Path, Req)
Once A is done loading rO0, it clears its P and S bits. (Wo, L, 1)

C can now proceed with its read of r0. Scoreboard; Scoreboards

Next, path B on the left path is loading r1 and sets
P on the left path to indicate a pending write to r1.

When B encounters BR(D-E) divergence, its P gets
copied to S and S gets set.

Path D on the left path checks P on the same left
path for r1 and stalls.

Path E on the right path checks S on the left path
for r1 and stalls.



Scoreboard example

(Warp ID, Path, Req)

Path F on the right path is loading r7 and sets (Wo, L, 7)
P. Scoreboard; Scoreboard;

When F reaches reconvergence, P is copied to
S and S gets set.

Path G on left path checks S on the right path
for r7 and finds it set, indicating a pending
write. Hence, G stalls till S gets cleared.

This introduces a true RAW dependency.




Q. In Figure 7b the Pending bit is set for the register R1. Is it only
cleared when all instructions (B, D and E who are changing R1)
complete?

A. Pending bit is cleared when path B is done writing to r1. When B
completes its write to r1, it clears both Pending and Shadow bits,
indicating to other paths that its no longer having a pending write



Q. 1 don't think | fully understand what the scoreboard does. What does it
mean to allow threads within the same warp to be issued Back-to-back?

A.

The scoreboard is meant to keep track of true or false data dependencies
between registers used in the left and right paths. The scoreboard is

responsible for stalling dependent paths to ensure they get the correct
values.

1 scoreboard structure for each warp. “Back to back” >> consecutive issue
of threads in the warp. Because the left and right paths can actually
execute simultaneously for the diverging sub-group of warps within a
warp. Earlier, each sub-group executed in serial.



Warp Scheduler

e Schedules which ready warp to issue next
e Can have single scheduler or multiple parallel schedulers
e Nvidia's Fermi GPU has 2 schedulers
SO- Schedules even numbered warps
S1- Schedules odd numbered warps
e DPE added to this further increases parallelism
e For areadywarp, there is a further right path and left path warp
e This doubles the number of ready warp entries competing to be issued



DPE and Scoreboard Benefits

Scoreboard
+ Conservative
- Introduces false dependencies
+ But is much simpler in design and operation
+ Much less hardware overhead and cost

- Non-conservative scoreboards are high cost, more hardware overhead
- Introduce only ~1% performance improvement over conservative ones

DPE

+ Increases parallelism

Permits atmost 2 divergent control flow paths to execute concurrently

+ requires only small changes to SPE model in terms of doubling the stack and
scoreboard

+ Low cost

+ SIMD efficiency intact

+



27 benchmarks

14 benchmarks shown here.
Other 13 show identical results
for DPE, DWS and SPE.

Of the 14 benchmarks, only half
of them benefit because of
distinct left and right paths

The other half do not result in
distinct left and right paths that
can be interleaved because
many branches have only an if
clause with no else.

Interleavable

Name Description #Instr.
LUD LU Decomposition 39M
QSort Quick Sort 6OM
Stencil 3D Stencil Operation 11oM
RAY Ray Tracing 250M
LPS Laplace Solver 72M
MUMpp MUMmerGPU++ 143M
MCML Monte Carlo for ML Media | 303B
Non-interleavable
Name Description #Instr.
DXTC DXT Compression 18B
BES Breadth-First Search 16M
PathFind Path Finder 639M
NW Needleman-Wunsch 51M
HOTSPOT || Hot-Spot 110M
BEFS2 Breadth-First Search 2 26M
BACKP Back Propagation 190M




6.1 Interleavable branches

< Code snippet from the kernel of LUD benchmark > < Corresponding control flow graph >

// Block A
if(threadIdx.x < BLOCK SIZE) { // BRg_¢

// Block B l

idx = threadIdx.x;

array offset = offset*matrix dimtoffset; A

for (i=0; i < BLOCK SIZE/2; i++){ * } ¥ v
} B 2
else(

idx = threadIdx.x-BLOCK SIZE;

array offset =(offset+BLOCK SIZE/Z)*matrix dimtoffset; 1

for (i=BLOCK SIZE/2; i < BLOCK SIZE; i++){ * }
}
// Block D




6.1 Non-interleavable branches

< Code snippet from the kernel of BFS benchmark > < Corresponding control flow graph >
int tid = blockIdx.x*MAX THREADS PER BLOCK + threadIdx.x; 1
// Block A A
if( tid<no of nodes && g graph mask([tid] ) // BRg-g 1
{
// Block B B
T k 4
// End of Path B C
if(!g graph visited[id]) // BRec-p v
{
-
// Bloeck C D
A J
} E | < e
// Bloeck D
} }
// Block E




6.1 Interleavable vs non-interleavable

(Interleavable)
Descrip

Name #Instr. | Ref.
LUD LU Decomposition 39M [7]
QSort Quick Sort 60M [25]
Stencil 3D Stencil Operation 115M [16]
RAY Ray Tracing 250M [5]
LPS Laplace Solver 72M [5]
MUMpp MUMmerGPU++ 148M [13]
MCML Mon 0 Ior Media 303B [15]
( Non-interleavable )
Name Descriptt #Instr. | Ref.
DXTC DXT Compression 18B [23]
BFS Breadth-First Search 16M [5]
PathFind Path Finder 639M [7]
NW Needleman-Wunsch 51M [7]
HOTSPOT Hot-Spot 110M [7]
BFS2 Breadth-First Search 2 26M [7]
BACKP Back Propagation 190M [7]




6.1 Potential for interleaving

Left Path Right Path
N . // Path A
. 21-:1 NumPath; load r0, MEM[~]; 1
Al-’gpmh - N R 1.5 - ..
4 if( ){ // Path B else{ // Path C
load rl, MEM[~]; add r5, r0, r2; 2
} A .
) - if( ){ // Path D else{ // Path E
i SPE'AVgPath =1 add r4, ri, r3; sub rd, rl, r3; 2
. > }
° DWS.Angath_’l Sy vy
Reconvergence
e DPE // Path F
o Interleavable: 1 < 4vg, <2
. Path load r7, MEM[~]; 1
o Non-interleavable: Avg, =1 }
// Path G econvergence
add r8, rl, r7; 1

7/5=14



6.1 Potential for interleaving

2 6.8/8.5/8.5
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(b) Non-interleavable benchmarks.



6.1 SIMD lane utilization

SIMD Lane

SIMD Lane

Utilization

Utilization
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N SPE
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(b) Non-interleavable benchmarks.

H-Mean

DWS50/DWS100
reduce utilization by
48.1%/48.5% for
interleavable and
18.6% and 27.1% for
non-interleavable
benchmarks

Due to overdivision.



6.1 SIMD lane utilization example
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6.2 Idle cycles

Normalized Idle

Cycles

o o o o
o N B o @
| T 1 t T

DPE reduces idle cycles 19% on average for interleavable benchmarks.
DWS can reduce idle cycles, but utilization decreases also.

H N e
: :

Interleavable

4.6/T1/4.7
| [msEE mOPE |\ jy -
mDWS (10) mDWS(50) +59/
r1 oDWS (100) BREEEs s S = e = o _J """"""""
i -
LUD QSort Stencil RAY LPS MUMpp MCML DXTC BFS PathFind NW HOTSPOT BFS2 BACKP

Non-interleavable



6.2 Cache misses

- 1.4/1.97.9
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2 0.2
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LUD QSort Stencil RAY LPS MUMpp MCML DXTC BFS PathFind NW HOTSPOT BFs2 BACKP
Interleavable Non-interleavable
(b) Number of L1 misses.
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Interleavable Non-interleavable

(c) Number of L2 misses.

Interleaving
disrupts L1
cache access
pattern.



6.3 Speedup

Speedup

Speedup
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(a) Speedup over SPE among interleavable benchmarks.

DXTC BFS PathFind NW HOTSPOT BFS2 BACKP H-Mean

(b) Speedup over SPE among non-interleavable benchmarks.

m SPE
EDPE

/| mDWS (10)
1| oDWS (50)
1| oDWS (100)

H SPE
EDPE

|| mDWS (10)
1| mDws (50)
1| oDWS (100)

DPE: 14.9%
improvement for
interleavable
workloads.

DWS
performance
varies.

Decrease of
utilization
outweighs TLP
increase.



6.4 Sensitivity to cache size

(S

Speedup

cooo
ONBOOHENBO®
! | 1

LUD

QSort Stencil RAY LPS MUMpp

H-Mean

B SPE (4KB)
EDPE (4KB)
B SPE (16KB)
I DPE (16KB)
0 SPE (64KB)
ODPE (64KB)

(a) Performance sensitivity to different L1 cache size (normalized to SPE(16KB)).

1
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Speedup
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LUD

QSort Stencil RAY LPS MUMpp

H-Mean

B SPE (192K)
EDPE (192K)
B SPE (768K)
mDPE (768K)
O SPE (3M)
O DPE (3M)

(b) Performance sensitivity to different L2 cache size (normalized to SPE(768K)).

Relative IPC

improvement
stable within

+4%/+2% for
L1/L2.

Stencil: Absolute
idle cycles
improvement
same, but relative
differs.



6.4 Sensitivity to warp scheduler

e More aggressive scoreboard increased speedup by 1% (not shown).

e Constrained DPE: Path is only alternated on long-latency instruction.
o Reduces speedup from 14.9% to 11.7% on average.

H SPE
EDPE (Default)

ODPE (Constrained) [™7°

ONEBNORENK
| Y TR AN O I |

LUD QSort Stencil RAY LPS MUMpp MCML H-Mean

(c) Performance sensitivity when warp scheduler has limited context resources (normal-
ized to SPE).



6.5 Implementation overhead

e Dual-path stack has negligible overhead w.r.t. single-path stack.
o DPE needs longer entries (160-bit vs 96-bit).
o Fewer entries needed for DPE (maximum observed 11 for SPE vs 7 for DPE).

e Addition of shadow bits to scoreboard adds 7-14% to scoreboard storage.

e Doubling number of scoreboards doubles scoreboard power and area.

e \Warp scheduler doubles in size because instructions from both branches are
stored.



/ Discussion

e Path forwarding: Shift branch up in stack to fill up entry of branch that
finished.

o < 2% Performance improvement for interleavable benchmarks.

PCp Mask; PCy Maskp RPC
G 1111 - - -
B 1000 F 0111 G
TOS - - E 0011 F

e DPE for memory divergence
o Limited benefit expected w.r.t. DWS.
e DPE with a software-managed reconvergence stack

o Maintain PC and mask in hardware, and RPC in software.
o A pop instruction informs hardware that a path has ended.



So just like the DWS paper, the two branches are not actually
running in parallel, we are simply interleaving the threads?

Yes

Does this mean the only advantage comes from stalls when
there is no active warps to run?

The SIMD utilization during non-idle cycles is also higher.



"Most immediate branch divergence path" is a bit vague. You
probably mean "most recent". In the example, B and F could

run in parallel. B diverged a lot earlier than F, so this is not
the case.



Assuming this is about DWS, DWS reduces idle cycles, but
lane utilization is reduced too. That is because idle cycles are
filled with warp subdivision.

DWS splits more warps than necessary. Split warps take
multiple cycles as opposed to one cycle.



When you access data using a regular access pattern, a
cache can take advantage of it by prefetching some data.
Interleaved instructions may ruin the access pattern.



They briefly touch upon DPE for memory divergence. Does it
actually seem like a feasible scheme to handle memory
divergence at all? Considering that the parallelism is
restricted to the right and left paths, if one path is hits and the
other is misses how can they even be executed in parallel?

As before, we would not literally be executing paths in
parallel, but we would interleave them.



Because if-statements have only 2 branches... :-) Anyway, it
Is a tradeoff between area and performance. You could also
use the area for more streaming multiprocessors for example.



