CUDA

Synchronization

ALOMICS

B.12. Atomic Functions

An atomic function performs a read-modify-write atomic
operation on one 32-bit or 64-bit word residing in global or shared
memory. For example, atomicAdd() reads a word at some

address in global or shared memory, adds a number to it, and
writes the result back to the same address. The operation is
atomic in the sense that it is guaranteed to be performed without
interference from other threads. In other words, no other thread
can access this address until the operation is complete.

Atomic functions do not act as memory fences and do not imply
synchronization or ordering constraints for memory operations

without fences

B.5. Memory Fence Functions

The CUDA programming model assumes a device with a weakly-
ordered memory model, that is:

« The order in which a CUDA thread writes data to shared
memory, global memory, page-locked host memory, or the
memory of a peer device is not necessarily the order in

which the data is observed being written by another CUDA
or host thread;

same (lack of) guarantees for reads

ORLY?

For example, if thread 1 executes writeXY() and thread 2
executes readXY() as defined in the following code sample

__device volatile int X =1, Y = 2;
__device void writeXY()

{
X = 10;
Y = 20;
}
__device void readXY()
{
int A = X;
int B = Y;
}

it is possible that B ends up equal to 2 and A equal to 10 for
thread 2:

Z7e)

threadtence block

void _ threadfence_block();

ensures that:

« All writes to shared and global memory made by the calling
thread before the call to threadfence block() are

observed by all threads in the block of the calling thread as
occurring before all writes to shared memory and global
memory made by the calling thread after the call to
__threadfence block();

« All reads from shared memory and global memory made by
the calling thread before the call to
__threadfence block() are performed before all reads

from shared memory and global memory made by the
calling thread after the call to threadfence block().

| ——

6

PTX membar.cta

membar.cta
Waits until all prior memory writes are visible to other threads in the same

CTA. Waits until prior memory reads have been performed with respect to
~other threads in the CTA.

=

_threadfence

void _ threadfence();

actsas threadfence block() for all threads in the block of

the calling thread and also ensures that no writes to global
memory made by the calling thread after the call to
~_threadfence() are observed by any thread in the device as

occurring before any write to global memory made by the calling
thread before the call to threadfence() . Note that for this

ordering guarantee to be true, the observing threads must truly
observe global memory and not cached versions of it; this is
ensured by using the volatile keyword as detailed in Volatile

Qualifier.

PTX membar.gl

membar.gl

Waits until all prior memory requests have been performed with respect to all
other threads in the GPU.

For communication between threads in different CTAs or even different SMs,
this is the appropriate level of membar.

membar.gl will typically have a longer latency than membar.cta.

T —

_threadience_system

void _ threadfence system();

acts as threadfence block() for all threads in the block of
the calling thread and also ensures that:

« All writes to global memory, page-locked host memory, and
the memory of a peer device made by the calling thread
before the call to threadfence system() are observed

by all threads in the device, host threads, and all threads in
peer devices as occurring before all writes to global
memory, page-locked host memory, and the memory of a
peer device made by the calling thread after the call to
__threadfence system().

« All reads from shared memory, global memory, page-locked
host memory, and the memory of a peer device made by
the calling thread before the call to
__threadfence _system() are performed before all reads

from shared memory, global memory, page-locked host
memory, and the memory of a peer device made by the

calling thread after the call%) to threadfence system().

volatile

E.2.3.3. Volatile Qualifier

The compiler is free to optimize reads and writes to
global or shared memory (for example, by caching global
reads into registers or L1 cache) as long as it respects
the memory ordering semantics of memory fence
functions (Memory Fence Functions) and memory
visibility semantics of synchronization functions
(Synchronization Functions).

These optimizations can be disabled using the
volatile keyword: If a variable located in global or

shared memory is declared as volatile, the compiler
assumes that its value can be changed or used at any
time by another thread and therefore any reference to

this variable compiles to an actual memory read or write
instruction.

Tores T

CUDA spinlock?

1 __device__ void lock(void) {

2 while(atomicCAS(mutex, 0, 1) != 0);
3(+) __threadfence();}

4 __device__ void unlock(void) {

5(+) __threadfence();

6 atomicExch(mutex, 0);}

Figure 2: CUDA spin lock of [38, p. 253] with added fences

12

.

Any flow control instruction (if, switch, do, for, while) can significantly
impact the effective instruction throughput by causing threads of the same warp
to diverge (i.e., to follow different execution paths). If this happens, the
different executions paths have to be serialized, increasing the total number of

instructions executed for this warp. When all the different execution paths have
completed, the threads converge back to the same execution path.

L ————————

“Two threads diverged in a CUDA warp,
And sorry I had become untwined
from my PC by a branch so sharp,

[had to ask Nvidia Corp:
the order of paths was undefined.”

— “Robert Frost”, The Thread Not Taken

1k

__syncthreads()

B.6. Synchronization Functions

void _ syncthreads();

waits until all threads in the thread block have reached this point
and all global and shared memory accesses made by these threads
prior to syncthreads() are visible to all threads in the block.

__syncthreads() is allowed in conditional code but only if the

conditional evaluates identically across the entire thread block,
otherwise the code execution is likely to hang or produce
unintended side effects.

14

Intra-warp synchronization

If a non-atomic instruction executed by a warp writes to the same
location in global or shared memory for more than one of the
threads of the warp, the number of serialized writes that occur to
that location varies depending on the compute capability of the
device (see Compute Capability 2.x, Compute Capability 3.x, and
Compute Capability 5.x), and which thread performs the final
write is undefined.

If an atomic instruction executed by a warp reads, modifies, and
writes to the same location in global memory for more than one
of the threads of the warp, each read/modify/write to that
location occurs and they are all serialized, but the order in which

they occur is undefined.

13

<spinlock PTX demo>

PTX

+ virtual ISA for Nvidia GPUs
« RISC-like ISA, load-store, 3-operand

* destination register is on the left

PTX load/store caching

qualifier meaning

cache at all
levels

write back
caching

EachicalE? Z =
(global cache) Y Y

streaming = -
(mark as LRU) Y Y

default

last use (read &
invalidate)

yes

18

PT'X udbits

1d.volatile may be used with .global and .shared spaces to inhibit optimization
of references to volatile memory. This may be used, for example, to enforce sequential
consistency between threads accessing shared memory. Generic addressing may be used
with 1d.volatile. Cache operations are not permitted with 1d.volatile.

Atomic operations on shared memory locations do not guarantee atomicity with respect
to normal store instructions to the same address. It is the programmer’s responsibility to

- guarantee correctness of programs that use shared memory atomic instructions, e.g., by
inserting barriers between normal stores and atomic operations to a common address, or

by using atom.exch to store to locations accessed by other atomic operations.

1E2,

Homework 2

CUDA Kernel Timeout == good

AVINDIA® Rleicnbi -3_‘
& NVIDIA Nsight Options
General
Analysis .
4 Connection
CUDA Monitor port 8000 Set
Upciates 4 Launch .
Synchronization Directory thlS (0
4 Microsoft Display Driver “f =1 ge "
WDDM TDR Delay 2
False]
4 NVIDIA Display Driver
Driver instrumentation enabled False
4 Security
put . -
e Enable per machine permissions False
[du Enable secure connection False
id Trusted machines
WDDM TDR enabled

The Microsoft Windows Display Driver Model (WDDM) will reset the NVIDIA
display driver if the GPU is unresponsive for over 2 seconds by default. Unfortun...

CK

21

_managed__

device Maniageds =it d colinkecre—ttE

VogEs madne |
g colinter:—10:

nyiiSelEnel c<<8 6= > ()=

cudaStatus = cudaDeviceSynchronize();
checkCudaErrors(cudaStatus) ;

Sigglaemlcivo e BLacoliEE a)le

22

C++ virtual functions

£.2.10.3. Virtual Functions

When a function in a derived class overrides a virtual
function in a base class, the execution space qualifiers
(i.e., host , device) on the overridden and

overriding functions must match.

It is not allowed to pass as an argument to a
~_global function an object of a class with virtual

functions.

The virtual function table is placed in global or constant
memory by the compiler.

E.2.10.4. Virtual Base Classes

It is not allowed to pass as an argument to a
__global function an object of a class derived from

virtual base classes.
s s EE T 23

