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SOFRITAS: Serializable Ordering-Free Regions
for Increasing Thread Atomicity Scalably

Abstract
Correctly synchronizing multithreaded programs is chal-
lenging and errors can lead to program failures such as
atomicity violations. Existing strong memory consistency
models rule out some possible failures, but are limited by
depending on programmer-defined locking code. We present
the new Ordering-Free Region (OFR) serializability consis-
tency model that ensures atomicity for OFRs, which are
spans of dynamic instructions between consecutive order-
ing constructs (e.g., barriers), without breaking atomicity at
lock operations. Our platform, Serializable Ordering-Free
Regions for Increasing Thread Atomicity Scalably (SOFRI-
TAS), ensures a C/C++ program’s execution is equivalent
to a serialization of OFRs by default. We build two systems
that realize the SOFRITAS idea: a concurrency bug finding
tool for testing called SOFRITEST, and a production runtime
system called SOPRO.

SOFRITEST uses OFRs to find concurrency bugs, in-
cluding a multi-critical-section atomicity violation in mem-
cached that weaker consistency models will miss. If OFRs
are too coarse-grained, SOFRITEST suggests refinement an-
notations automatically. Our software-only SOPRO imple-
mentation has high performance, scales well with increased
parallelism, and prevents failures despite bugs in locking
code. SOPRO has an average overhead of just 1.59x com-
pared to pthreads, despite pthreads’ much weaker memory
model.

1. Introduction
Following a decades-long trend toward pervasive paral-
lelism, shared-memory multi-threaded programs, written in
widespread languages like C, C++, and Java, are the appli-
cations in the cloud, mobile devices, and even embedded
systems [18]. Nearly every programmer today must write
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parallel programs and there is an urgent need to make it
simple to write efficient parallel code.

A system’s memory consistency model crucially affects
a system’s performance and programmability. The memory
models for Java [34], C++ [6], and various hardware archi-
tectures [33, 42, 44] permit aggressive optimization, but are
complex and inaccessible to most programmers. Systems
with a Sequentially Consistent (SC) model [5, 10, 35, 51]
give sequential interleaving semantics to parallel executions,
with interleaving at instruction granularity. Recent research
in “strong consistency models” has followed a trend toward
offering atomicity with ever-coarser region definitions, such
as multi-instruction regions [35], loop-free regions [43],
synchronization-free regions (SFRs) [31], or release-free
regions (RFRs) [4, 56]. In general, offering atomicity at
coarser granularity limits the possible thread interleavings
of a program and thereby simplifies the task of writing cor-
rect code.

These existing systems guarantee that all executions ex-
hibit region serializability, and throw an exception other-
wise. This guarantee simplifies language semantics, but does
not go much further because serializability is provided only
for programmer-demarcated regions, which may be insuf-
ficient for correctness. If the programmer gets the region
boundaries wrong, these prior systems cannot help.

In this work, we develop SOFRITAS, a new, software-
only region-based memory consistency model. One of SO-
FRITAS’s key contributions is to provide atomicity at a gran-
ularity much coarser than existing proposals: extending be-
yond SFRs and RFRs to ordering-free regions (OFRs) of
code that are punctuated only by ordering constructs.1 With
SOFRITAS, a program’s behavior is equivalent to a serial-
ization of atomically-executed OFRs (otherwise a precise
exception is raised). We demonstrate two systems that uti-
lize OFR atomicity: a testing tool SOFRITEST that finds
new concurrency bugs that other strong memory consistency
models cannot, and an always-on pure-software runtime for
production SOPRO that uses OFR atomicity to automatically
prevent concurrency bugs from manifesting as errors.

1 We define ordering constructs as barrier wait, condition variable wait, and
thread fork and join. Note that condition variable notify is not a synchro-
nization operation in the C/C++ standard because of the possibility of spu-
rious wakeups. Accordingly, SOFRITAS does not break atomicity on notify
operations.
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SOFRITEST assumes that ordering constructs are cor-
rectly placed by the programmer, and that every OFR should
execute atomically. Since SOFRITEST’s region atomicity is
coarser than the critical sections defined by lock acquires
and releases, the presence of locking operations in source
code is no longer needed for atomicity. Eliminating any de-
pendence on the correctness of locking code provides a sig-
nificant benefit: code can run correctly despite missing or
incorrectly-placed locks. This allows SOFRITEST to find
high-level atomicity violation bugs (such as the one illus-
trated in Figure 1) that prior strong memory consistency
models cannot.

Assuming that OFRs should execute atomically appears
to be an empirical upper bound on the atomicity that real pro-
grams require – a dynamic analysis run on all inputs to all
PARSEC benchmarks, and multiple runs of Apache, mem-
cached and pbzip2 found no examples of code that required
atomicity coarser than an OFR. However, OFR atomicity
can sometimes be too coarse and programs may require
RFR-, SFR- or even instruction-level atomicity to make
progress. If necessary, a programmer using SOFRITEST can
refine atomicity using annotations to harmonize with the
program’s atomicity requirements. There is of course a risk
that refinement requires extensive programmer effort. Per-
haps surprisingly, we find that this is not the case, for two
reasons. First, when OFRs are unserializable, SOFRITEST
raises a precise exception that exactly identifies the code
and data involved. A user study (Section 5.2.1) shows that
these exceptions are more useful for writing correct code
than the reports from a data race detector. Second, SOFRI-
TEST provides automatic refinement suggestions to pro-
grammers instructing them precisely how to annotate their
code. These suggestions are highly accurate: SOFRITEST
suggested the right refinement annotation at the right code
location 97% of the time in our evaluation (Section 5.2.3).
Ultimately, we find that starting from a safe, overly-atomic
foundation and refining to regain progress is an easier path
towards correct parallel software than today’s approach of
building up atomicity from scratch.

The second system we describe and evaluate is SOPRO,
the first pure-software, strong memory consistency enforce-
ment mechanism for C and C++ programs. OFR atomic-
ity allows SOPRO to automatically prevent real concurrency
bugs from causing a failure, where weaker models permit the
failure (Section 5.2.2).

SOPRO uses a fine-grained memory ownership mech-
anism that ensures a thread has permission to read or
write a location before each access (i.e., per-location read-
er/writer locks). SOPRO monotonically acquires a region’s
reader/writer locks and releases them only when a region
completes (implementing strong, strict 2-phase locking [2]).
Lock ownership checks in the common case comprise just
seven CPU instructions that make cache-friendly accesses
to thread-local data. SOPRO also leverages existing virtual
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Figure 1: An atomicity violation bug drawn from Firefox
[30], where a string’s contents and length are read in
two separate critical sections, allowing inconsistency to
arise. The bug is exposed under the SC, SFR and RFR
consistency models. SOFRITAS offers stronger atomicity
that automatically prevents the bug from manifesting.

memory support to quickly release locks in bulk at region
boundaries. Coupled with a novel high-locality memory lay-
out for locks, SOPRO provides the benefits of OFR serializ-
ability with scalability and performance: SOPRO’s average
slowdown of 1.59x compares favorably with the 1.99x slow-
down of the state-of-the-art Java-based Valor system [4],
though of course the implementations and benchmarks differ
significantly. Moreover, Valor benefits from a lazy conflict
detection optimization that is permissible because deleteri-
ous side-effects from racy code are sandboxed by the JVM.
In addition to delaying exception delivery, which can frus-
trate debugging, lazy conflict detection in our C/C++ context
would require additional runtime instrumentation to provide
sandboxing [13], mitigating the benefits. Ultimately, SOPRO
provides coarser atomicity (OFRs), more precise exception
delivery, and better performance than Valor.

SOPRO is useful on its own for programs that run well
with OFR atomicity, and it can transparently hide the failures
due to some concurrency bugs, even high-level atomicity
violations. SOFRITEST and SOPRO are also useful together
where suggestions from SOFRITEST help general programs
to run exception-free under SOPRO.

This paper makes the following contributions:

• We describe the SOFRITAS memory consistency model,
which provides ordering-free region (OFR) serializability
guarantees that are stronger than previous models

• We show that SOFRITEST detects real bugs, including a
multi-critical-section atomicity violation in memcached,
and that its annotation suggestions are useful for adapting
programs to run with OFR atomicity

• We demonstrate that a pure-software implementation of
SOPRO automatically prevents 5 of the 7 concurrency
bug failures we find with SOFRITEST, while achieving
acceptable (1.59x) performance overhead.

• To the best of our knowledge, SOPRO is the first pure-
software strong memory consistency model for unman-
aged C/C++ code.
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This paper is organized as follows. Section 2 provides
background on strong memory consistency models. Sec-
tion 3 explains the SOFRITAS algorithm and API. Sec-
tion 4 describes the software implementation and optimiza-
tions shared by both SOFRITEST and SOPRO. Section 5
presents an evaluation of SOFRITEST’s usability and bug de-
tection capabilities, and of SOPRO’s performance. Finally,
we discuss related work in Section 6.

2. Background: Strong Consistency Models
There have been several proposals of strong memory con-
sistency models that help catch bugs, simplify reasoning for
programmers, and simplify language specifications. These
proposals can be characterized along two dimensions: the
granularity of the code regions for which serializability is
guaranteed, and the precision with which serializability vio-
lations are detected. SOFRITAS improves upon prior work
along both dimensions. We address these dimensions in turn,
and then discuss empirical measurements of atomicity with
our model and those of previous work.

2.1 Why is OFR atomicity needed?
Figure 1 shows a distilled version of an atomicity violation
bug from Firefox [30]. Two separate critical regions read the
string str and length len, potentially observing them while
they are inconsistent (i.e., during an update). The required
atomicity for this code is indicated by the green marker on
the left, but the provided locking is insufficient to enforce
this atomicity.

The blue markers in the middle indicate the span of
atomic regions under three consistency models: sequential
consistency (SC) [26, 35, 43], synchronization-free regions
(SFRs) [31, 38] and release-free regions (RFRs) [4], which
all have the same region boundaries for this program. With
SC, each individual instruction is atomic. SFRs break atom-
icity at lock acquires and releases, and at ordering constructs.
RFRs break atomicity at lock releases and release ordering
constructs (barrier waits, condition notifies and fork). None
of these models, however, enforce atomicity for long enough
regions to prevent reading inconsistent data in Figure 1’s ex-
ample.

SOFRITAS, which breaks atomicity only at ordering
constructs, provides atomicity across the critical sections
that access the string’s fields because there is no ordering
construct between them. SOFRITAS’s coarse-grained OFR
atomicity, as shown by the red marker on the right, pre-
vents the bug from manifesting by ensuring that str and
len are read atomically. In Section 5.2.2, we examine a real
concurrency bug in memcached [47] which is detected and
prevented by OFR atomicity but not by weaker atomicity
models.

2.1.1 Quantifying Atomicity
While OFRs have intuitive benefits over finer-grained atomic
regions, it is not obvious that these advantages provide any

(a) ferret (b) fluidanimate

Figure 2: CDFs showing the percentage of memory loca-
tions (x-axis) that are atomic over a percentage of regions
(y-axis). In fluidanimate, most SFRs and RFRs protect
<1% of memory locations, whereas OFRs protect roughly
20% of memory locations.

benefit given the structure of real code. With frequent or-
dering synchronization, OFRs, SFRs and RFRs may be
similarly-sized in practice. We analyzed how much atom-
icity various consistency models provide in real code. For
each region r, we record r’s width – how many distinct
memory locations were accessed within r. At the end of the
execution, we compute how many regions have a width of w
as a fraction of all regions, and plot this as a cumulative dis-
tribution function. Our width metric captures the ability of a
consistency model to enforce atomicity across memory lo-
cations, reducing the probability of multi-variable atomicity
violations like the bug in Figure 1.

Figure 2 shows atomicity measurements for some repre-
sentative programs. In these CDFs, a program with a curve
that rises more gently has more atomicity because it has a
large proportion of wide regions and a small proportion of
low-width (narrow) regions. Curves that rise steeply indicate
that most regions are narrow. Figure 2a shows results for fer-
ret, where shared queues lead to periodic ordering synchro-
nization that punctuates atomic regions under all models.
SFRs and RFRs are always narrow, while OFRs are much
wider in general and the widest OFRs are much wider than
the widest SFRs/RFRs. Figure 2b shows results for fluidan-
imate, which has complex fine-grained locking that makes
regions narrow for SFRs and RFRs, while OFRs are consid-
erably wider. Overall, we find that the theoretical benefits of
OFRs manifest more clearly in programs with more com-
plicated parallel structure, which are arguably the programs
likeliest to suffer from concurrency bugs. We also find no
significant difference in atomicity between SFRs and RFRs,
suggesting that the benefits of moving from SFRs to RFRs
are limited.

2.2 Conflict Serializability
Work on strong memory consistency models, like SOFRI-
TAS, provides a guarantee that completed executions are
equivalent to ones in which all regions execute serializ-
ably. When an execution is not serializable, an exception is
thrown. Some previous work [4, 31, 43] has used a highly
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conflictload%x;
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Figure 3: A simple program that raises an exception with
the “fail-on-conflict” approach, but is exception-free under
conflict serializability.

conservative “fail-on-conflict” policy to detect unserializ-
able executions. These systems raise an exception whenever
a memory conflict occurs between concurrently-executing
regions, where a conflict is defined as a pair of memory op-
erations to the same location, from different threads, with at
least one operation being a write.

The “fail-on-conflict” strategy offers an asymmetric guar-
antee: an exception-free execution is serializable at region
granularity, while any exception raised is due to a data race.
However, some executions with exceptions are also serial-
izable. To reduce the number of exceptions, the FastRCD-A
system [56] adopts the more precise notion of conflict se-
rializability, which SOFRITAS also implements via strong,
strict two-phase locking [2].

Figure 3 illustrates the distinction between the “fail-on-
conflict” approach and conflict serializability via a simple
program. Conflict serializability waits when it encounters
a conflict, which allows it to execute this program serial-
izably every time. [56] demonstrates that conflict serializ-
ability reduces region conflicts for some programs by orders
of magnitude compared to the “fail-on-conflict” approach.
Conflict serializability is thus especially necessary in con-
junction with OFRs, as large regions increase the probability
of region conflicts.

3. OFR Atomicity with SOFRITAS
In this section we describe SOFRITAS’s algorithm for en-
forcing OFR conflict serializability, how SOFRITAS pro-
vides precise exceptions, and how exceptions can be re-
solved via user annotations. These elements are used by both
SOFRITEST and SOPRO.

3.1 Core Algorithm
Each memory location x is associated with a reader-writer
lock lx. Before each memory access to x by a thread t, t ac-
quires lx if t does not already hold lx. t acquires lx in read-
mode for a read and in write-mode for a write. At the end of
a region, when t encounters an ordering construct – a fork,
join, signal, wait, or barrier – t releases all the locks it holds.
If t is ever unable to acquire a lock lx, then some other thread
u must have accessed x in u’s current OFR and at least one
of t’s or u’s accesses is a write (i.e., t’s and u’s accesses con-
flict). t’s inability to acquire lx indicates a memory conflict
between t and u. Some existing consistency models raise

current program point

dependences

T0 T1
load	x;

store	y;

store	x;

load	x;

store	y;

Figure 4: A program that can throw an exception with
reader-writer locking but not with mutex locking. Arrows
indicate dependencies between threads; the dashed arrow
can arise only with reader-writer locking.

an exception on t’s access to x due to the memory conflict,
but SOFRITAS instead tracks a dependence from t to u and
waits until u releases lx, avoiding unnecessary exceptions on
conflicts that do not compromise serializability.

SOFRITAS’s use of reader-writer locks (instead of mu-
tex locks) increases parallelism by allowing read-sharing of
data, which is crucial for good performance and scalability.
However, neither reader-writer locking nor mutex locking
result in strictly fewer exceptions on all programs. Reader-
writer locks introduce a notion of a lock upgrade, where a
thread t holds a lock lx in read-mode and then tries to write
to x, requiring that lx be upgraded to write-mode. This up-
grade requires waiting for all existing readers of x to re-
lease their locks. Figure 4 shows a sample program that can
raise an exception under reader-writer locking, but not with
mutex locking. Thread t0 is blocked due to a lock upgrade
(dashed arrow), while thread t1 waits on t0 for its write to
y. With mutex locks, t0’s lock upgrade cannot arise. Instead,
the threads get serialized at their initial reads of x, and once
they acquire lx they can run to completion.

3.2 SOFRITAS API
SOFRITAS has a small API consisting of four annotations
that allow programmers to refine a program’s region spec-
ification and optimize performance. These annotations are
used for both SOFRITEST and SOPRO.

A SofritasRelease() annotation refines a program’s re-
gion specification, sub-dividing a region into smaller re-
gions, e.g., to eliminate an exception. The basic SofritasRe-
lease() annotation explicitly releases a specified location’s
lock and we include “syntactic sugar” API calls that batch
release locks on objects and arrays.

A SofritasRequireMutex() annotation associates a mutex
lock with a memory location, rather than a reader-writer lock
to avoid upgrade cycles (Figure 4). The SOFRITAS com-
piler automatically places SofritasRequireMutex() annota-
tions in most cases (Section 4.2) and the runtime system au-
tomatically suggests the placement of a mutex annotation if
an upgrade cycle occurs.

A SofritasEndOFR() annotation ends a region before ex-
ecution reaches an ordering operation. SofritasEndOFR() is
useful when only short regions of code need to be atomic,
but ordering operations only rarely end regions. For exam-
ple, SofritasEndOFR() is helpful in a pipeline parallel ap-
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plication that requires atomicity of pairs of dequeue and en-
queue operations only, but rarely executes ordering opera-
tions, enforcing much coarser atomicity. Note that a single
SofritasEndOFR() annotation may eliminate the need for
several SofritasRelease() annotations.

A SofritasContinueOFR() annotation specifies that its
containing region should not end at the next ordering op-
eration executed. SofritasContinueOFR() would be useful
when a program requires atomicity coarser than an OFR
(although we never encountered such a situation). Sofritas-
ContinueOFR() can also be useful to improve performance
by avoiding frequent lock releases at region boundaries. For
example, in canneal, we find that not releasing locks at a
barrier does not affect correctness because SofritasRelease()
annotations release all locks that cause OFRExceptions.

3.3 Precise OFR Exceptions
SOFRITAS associates a lock with each memory location.
The mapping from memory locations to locks is determined
by the granularity at which an application accesses memory.
For many applications, SOFRITAS can associate one lock
with each 4-byte word of memory. However, in some cases,
applications share data at byte granularity. In those cases,
SOFRITAS must associate a lock with each byte of memory
in order to avoid false positives. SOFRITAS’s locking gran-
ularity is configurable by the programmer but remains fixed
for an execution. To reduce the costs of lock overhead, SO-
FRITAS assumes that programs always access a given mem-
ory location with loads/stores of a consistent width, i.e., a
4-byte integer is never accessed with single-byte loads and
stores. This permits locking only the first byte in a multi-byte
access. A future version of SOFRITAS could be extended
to lock every byte within each access, using modern pro-
cessors’ 128-bit CAS instructions, or hardware transactional
memory support like Intel’s TSX instructions, to reduce the
overheads of these additional lock acquires.

To reduce the space costs of byte-granularity locking,
SOFRITAS adopts a cache-friendly lock representation to
maximize locality within each thread (Section 4). SOFRI-
TAS’s fine-grained locking allows it to detect precisely when
a thread’s next operation threatens conflict serializability, be-
fore the violation has occurred. When an access to memory
location x by thread t0 conflicts with an earlier access to x
by another thread t1, t0 enters a waiting state until t1 releases
its lock on x. If the threads execute multiple conflicting ac-
cesses that forces them to wait for one another, SOFRITAS
raises an exception. Through the exception, the programmer
can examine an uncorrupted view of t0’s memory in which
OFR atomicity has not been violated, and can see the spe-
cific operations in t0 involved in the conflict cycle.

The SOFRITAS runtime uses a distributed deadlock de-
tection algorithm [8] to detect conflict cycles. Only waiting
threads run cycle detection, putting the work of deadlock de-
tection off of the execution’s critical path.

3.4 Resolving Exceptions with Annotations
SOFRITAS triggers an OFRException when executing OFRs
have at least two conflicts and the conflicts form a cycle in
the conflict graph [2]. An OFRException indicates that the
program permitted an unserializable execution of its regions
and shows where and how the program must be modified
to avoid this exception in the future. Returning to the code
from Figure 4, SOFRITAS will suggest to either 1) release
the lock on y in t0 with a SofritasRelease() annotation, 2)
release the lock on x in t1, 3) release both locks, or 4) ensure
that x and y are updated together by changing x to use mu-
tex locking or altering the order of stores in t0. By default,
SOFRITAS suggests option 3) on an exception. While SO-
FRITAS trusts the programmer to choose correctly based on
application semantics, SOFRITAS automatically suggests
the right annotation 97% of the time (Section 5.2.3).

3.5 Working with Library Code
Using a library with an application running on SOFRITAS
involves a few extra steps for the library writer. Library writ-
ers should identify library objects, so that SOFRITAS can
associate a reader-writer lock with each one. Library API
calls should be annotated as logical reads or writes of a li-
brary object, e.g., inserting into a set counts as a write, while
checking for a given set element is a read. This allows read-
only operations to run in parallel. We have found that this ap-
proach to library integration allows legacy code to be reused
safely with minimal effort. As a proof of concept, we have
created the necessary annotations for C++ STL containers
as many of our benchmarks use these. Crucially, SOFRITAS
still provides coarse-grained atomicity for accesses to library
objects: the SOFRITAS lock on a set will be held until the
end of the OFR. This provides natural atomicity across li-
brary API calls, making it straightforward to, e.g., atomically
insert multiple elements into a set via individual insert calls.

Internally, a library can use arbitrary synchronization id-
ioms for correctness, including locks, atomic operations, etc.
This internal synchronization lives outside SOFRITAS. In
future work, we plan to extend SOFRITAS’s library support
to provide synchronization at finer granularity than entire
objects, and to explore how a library’s internal synchroniza-
tion can be simplified in the presence of SOFRITAS.

4. Implementing OFR Atomicity
SOFRITAS requires efficient support for checking and ac-
quiring locks before each load and store instruction, which
we implemented in a compiler and a runtime library. The
following sections motivate and describe SOFRITAS’s lock
implementation, which is shared by both SOFRITEST and
SOPRO.

4.1 Lock Implementation
SOFRITAS’s locks are designed to support efficient lock
ownership checks, as these checks vastly outnumber lock
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Figure 5: SOFRITAS locks consist of global metadata and
per-thread local permissions.

acquires on most programs (see Column 2 of Table 1). Fig-
ure 5 shows the structure of the locks used by SOFRITAS
to enforce OFR atomicity. Each lock is split into disjoint
structures: 16 bits of global metadata and 2 bits (per-thread)
of thread-local permissions. Local permissions are only ever
updated by their corresponding thread, though they may be
read by remote threads. A thread t’s lock ownership checks
need consult only t’s local permissions. The locks for ad-
jacent memory locations map to adjacent global metadata,
and to adjacent local permissions for a given thread, ensuring
that spatial locality among a thread’s data accesses translates
to good locality for its lock accesses as well.

The mutex bit is set by SofritasRequireMutex() and en-
sures that a lock is always acquired with write permissions.
The updating bit acts as an internal lock over the lock’s state,
and is held while updating any lock state, including thread-
local permissions. The updating bit avoids writer starvation
as once a writer is able to set the updating bit, no new readers
can arrive.

To motivate the rest of the SOFRITAS lock design, we
first discuss how to enable efficient lock releases. Reset-
ting global metadata on each lock release would require
maintaining a prohibitively expensive list of every lock ac-
quired during an OFR. Instead, only local permissions are
updated on a release. This admits an efficient implemen-
tation of bulk releases via the madvise system call, using
the MADV DONTNEED flag to zero a thread’s entire local
permissions space via page remapping. We found that mad-
vise is noticeably faster than using memset/bzero to zero
memory directly, as it avoids repeatedly zeroing memory on
pages that are never used by a thread.

Since only local permissions are updated on a release,
global metadata can become stale in that it may reflect state
before or after the most recent release operation. The defini-
tive state of a lock is recorded in local permissions, and
global metadata serves as a conservative summary of local
permissions. The held bit is set when a thread acquires the
lock and remains set thereafter, allowing first-acquires to

Unheld
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writer = False

tid = 0

Read Exclusive
held = True

writer = False
tid = Tx

Local Perms = R

read acquire

Read Shared
held = True
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tid = 0

Local Perms = R
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Write Exclusive
held = True
writer = True

tid = Tx
Local Perms = RW

write acquire

read 
acquire

write acquire

write acquire

read acquire

write 
acquire

Figure 6: SOFRITAS lock state transition diagram.

avoid checking any local permissions. The writer bit indi-
cates that a lock is held with write permissions (otherwise
it is in a read state), and the tid field identifies the exclu-
sive writer, or reader, or identifies the lock as read-shared.
Together, the writer and tid fields identify when a lock is
(or was just) in an exclusive state, so an acquiring thread
examines just one thread’s local permissions during a state
transition. Upon examining local permissions, an acquiring
thread t can determine whether global metadata is stale, i.e.,
whether the lock is actually still held by its supposed owner.
The only case where all local permissions must be consulted
is for a read-shared to write-exclusive transition (heavy ar-
row in Figure 6), where the writer waits for all readers to
release their locks.

SOFRITAS uses a modified version of the tcmalloc allo-
cator. Calls to sbrk and mmap for large memory allocations
are redirected to the SOFRITAS runtime so that the global
metadata and thread-local shadow spaces are placed directly
after the heap. Lock lookups are thus a simple offset from a
given heap address.

4.2 Compiler Support
Immediately before each load or store instruction, the SO-
FRITAS compiler inserts calls to perform a read or write ac-
quire, respectively. A small portion of the acquire function
is inlined, as ownership checks outnumber acquires for most
programs. For non-aligned locations, checking lock owner-
ship requires 9 assembly instructions; 4-byte aligned loca-
tions can be checked in 7 instructions because the needed
thread-local permissions are always the low-order 2 bits and
so masking is simple.

The SOFRITAS compiler elides instrumentation for lo-
cations that do not escape the stack. If a load or store has
already been instrumented within a function, the compiler
attempts to remove instrumentation on subsequent accesses
to the same location. This optimization is conservative in a
few ways. Alias analysis must determine that the two loca-
tions must alias. Further, subsequent accesses must be in-

6



1 2 3 4 5 6 7 8 9 10 11
Batch pthreads SOFRITEST

App Checks Acquires (Read, Write) Releases Releases Ord Atom Mutex Release OFR Easy Hard
blackscholes 7.13 B 2.8% (65.0%, 35.0%) - 16 2 - - - - - -
bodytrack 95.67 B 3.4% (38.9%, 61.1%) 370 M 180 K 17 34 3 20 - 20 -
canneal 21.61 B 23.5% (58.3%, 41.7%) 2.1 B 48 K 3 13 1 7 1 7 -
dedup 3.11 B 28.8% (98.8%, 1.21%) 7.8 M 91 K 9 13 5 18 1 18 -
ferret 187.90 B 5.9% (88.1%, 11.9%) 70 K 33 K 8 7 2 7 1 4 3
fluidanimate 228.67 B 20.2% (8.6%, 91.4%) 228 B 40 K 16 10 5 20 - 20 -
streamcluster 428.34 B 51.5% (99.2%, 0.8%) 4.4 B 638 K 30 6 - 11 - 11 -
swaptions 196.01 B 0.1% (2.8%, 97.2%) - 16 2 - - - - - -
gups 500.03 M 80.0% (50.0%, 50.0%) 100 M 16 2 2 - 1 - 1 -
pagerank 1.23 B 25.3% (79.4%, 20.6%) 247 M 17 2 10 - 7 - 7 -
histogram 3.75 B 0.1% (54.7%, 45.3%) - 16 2 - - - - - -
kmeans 14.78 B 1.1% (99.6%, 0.4%) - 3 K 2 - - - - - -
linear regression 4.87 K 50.0% (53.3%, 46.7%) - 16 2 - - - - - -
matrix multiply 2.01 B 0.1% (0.1%, 99.9%) - 16 2 - - - - - -
pca 16.10 B 0.4% (52.9%, 47.1%) 8 M 32 2 4 - 3 - 3 -
reverse index 2.14 B 49.3% (99.5%, 0.5%) 157 K 30 2 4 1 2 - 2 -
string match 1.42 B 0.1% (5.3%, 94.7%) - 16 2 - - - - - -
word count 740.51 M 0.5% (66.8%, 33.2%) - 156 2 - - - - - -
pbzip2 121.9 K 69.2% (40.1%, 59.9%) 60.2 K 245 34 103 7 10 - 10 -

Table 1: Frequency of SofriTest operations and annotations. Acquires (Column 2) are listed as a percentage of checks
(Column 1), and subdivided into the fraction of read, and write, acquires as a percentage of all acquires.

strumented if the associated lock may be released between
the two accesses (e.g., by a call to pthread condition wait).

Many of the programs that we studied required atomic
updates on counters. A counter update is most straightfor-
wardly instrumented as both a load and a store. This naive
instrumentation is likely to lead to an upgrade dependency
cycle between multiple threads that successfully acquire a
read lock on the counter load and then attempt to acquire a
write lock for the store. To prevent this common scenario,
any load that is post-dominated by a store is instrumented as
a store instead. This optimization often reduces the need for
SofritasRequireMutex() annotations.

5. Evaluation
5.1 Experimental Setup
We evaluated SOFRITEST and SOPRO by running and anno-
tating selected benchmarks from PARSEC [3], Phoenix [41],
approximate computing benchmarks [1], and the real-world
pbzip2 v1.1.13. We use the native inputs for all PARSEC
benchmarks and the largest available input for Phoenix. We
extend the execution of linear regression by 100 times to
yield a reasonable baseline runtime of more than a second
with 16 threads. We use custom inputs for the approximate
computing benchmarks that yield a baseline runtime of a few
seconds and scale with additional threads. For pbzip2 we
compress a 200MB .iso file. Our experiments ran on dual
8-core Intel Xeon E5-2630v3 2.4 GHz CPUs with 128 GB
RAM. We compiled all benchmarks using LLVM 3.5.1 with
-O3 optimizations.

5.2 SOFRITEST Usability
In this section, we evaluate how well SOFRITEST can find
and fix concurrency bugs. We conduct this evaluation along
three dimensions: a user study assessing the debugging util-
ity of SOFRITAS, describing the concurrency bugs that SO-
FRITEST finds in our workloads, and characterizing the ac-
curacy and utility of the atomicity refinement annotations
that SOFRITEST suggests.

5.2.1 User Study
Previous work conducted a user study comparing the util-
ity of an OFR atomicity system like SOFRITAS with that
of a conventional data race detector, for debugging a sim-
ple parallel program [14]. We summarize the results of that
study here. The study asked 45 graduate students in com-
puter science to add missing synchronization to a short pro-
gram. They were given the output of a data race detector
and the output from an OFR system (presented in a random-
ized order) to assist them. Of participants that incorrectly
added synchronization with one tool’s output, but did so
correctly with the other tool’s, participants given the OFR
tool’s output were statistically significantly more likely to
correctly add the synchronization. The result suggests that
using an OFR tool like SOFRITAS for adding synchroniza-
tion is easier than using outputs from a data race detector,
which are analogous to the exceptions generated by previous
memory consistency models [17, 31] – though some consis-
tency models [4, 56] raise delayed exceptions only at region
boundaries which are even less useful.

The survey asked students to rate their own knowledge of
parallel programming and also to define mutexes, data races,
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and deadlocks to assess their prior knowledge. On average,
students rated their own parallelism expertise at 3.18 out of 7
and scored 3.84 points out of 7 total points in defining paral-
lel programming terms. We found no correlation between the
student’s parallelism expertise and their ability to correctly
synchronize either variant of the test code.

5.2.2 Detecting and Preventing Concurrency Bugs
SOFRITEST identified 6 concurrency bugs in PARSEC
benchmarks, and one in memcached. Specifically, we found
concurrency bugs in the pthreads versions of bodytrack (2
bugs), ferret (1 bug), fluidanimate (1 bug), and streamclus-
ter (2 bugs). We verified each of these bugs manually. The
bugs in ferret and streamcluster have been reported by prior
work [31]. To our knowledge, the bugs in bodytrack and
fluidanimate have not been previously identified. SOPRO
prevents 5 of the 6 bugs automatically, requiring no annota-
tions to do so. For the final bug in fluidanimate, SOFRITEST
raised an OFRException and precisely identified the nec-
essary annotation to fix the bug with no need for manual
reasoning. We give three illustrative examples below of SO-
FRITEST’s ability to detect concurrency bugs.

bodytrack In bodytrack, the WorkPoolPthread class in-
herits from the WorkerGroup class, which in turn inher-
its from ThreadGroup and Runnable. In its constructor,
the WorkerGroup class passes its this pointer to Thread-
Group::CreateThreads, which spawns threads and calls the
virtual Run() method on the WorkerGroup object. In order to
call the virtual method, each thread must read the vptr (vir-
tual table pointer). The main thread simultaneously writes
to the vptr as WorkPoolPthread finishes construction. Al-
though this is well-defined in C++ [23] for single-threaded
code, with parallelism this behavior constitutes an atomicity
violation on vptr. SOPRO automatically prevents this failure
by ensuring the main thread holds a lock on vptr until the
main thread completes its work and joins with the workers.

fluidanimate In fluidanimate, an atomicity violation arises
due to a faulty manual optimization. The border array tracks
shared matrix entries, and the code locks only those shared
entries. On the native input, border is computed incorrectly,
causing some shared entries to be accessed without synchro-
nization. SOFRITEST automatically acquires a lock on the
cnumPars array that serializes accesses to indices of the ar-
ray that are shared by multiple threads. SOFRITEST sug-
gests a SofritasRelease() annotation on the accessed index
of the cnumPars array to prevent SOFRITAS from throwing
an OFRException when threads (non-concurrently) access
the same index of the array. If the programmer attempts to
perform the same faulty optimization with SOFRITAS an-
notations, SOFRITEST detects the concurrency bug and pin-
points the array accesses that violate the required atomicity
of the application.

memcached To evaluate SOFRITEST’s performance on a
larger code base, we examined a known concurrency bug

found in memcached [47, 55]. In the memcached-127 bug,
a cached item is read and updated in separate critical sec-
tions. Both the read and update are protected by the same
lock, which prevents existing strong memory consistency
models from detecting the bug. We ran SOFRITEST on the
memcached-127 bug. With no additional annotations, SO-
FRITEST detects the concurrency bug via an OFRException
and pinpoints the cache item update as the correct location
for an annotation.

5.2.3 Annotation Characterization
Atomicity refinement annotations are used to enable ap-
plication progress and prevent SOFRITEST from detecting
previously-found concurrency bugs. Columns 5-11 of Ta-
ble 1 compare pthreads synchronization calls with the SO-
FRITEST annotations needed to allow our programs to run
exception-free. Column 5 gives the number of ordering con-
structs used in each application. bodytrack, canneal, flu-
idanimate, and streamcluster use barriers, and bodytrack,
dedup, and ferret condition variable waits. Column 6 re-
ports the number of atomicity constructs (lock and unlock
calls) present in the pthreads version of each application.
Systems that provide SFR and RFR consistency require the
same atomicity and ordering constructs as pthreads.

The next three columns in Table 1 report the number
of annotations used to refine the coarse atomicity provided
by OFRs. Column 7 shows the number of SofritasRequire-
Mutex() annotations required. In all cases, SOFRITEST cor-
rectly suggested that a SofritasRequireMutex() annotation is
required by examining the lock state when an OFRException
occurs. If a lock has multiple shared readers and at least one
thread is attempting to acquire write privileges, a Sofritas-
RequireMutex() annotation is almost certainly required. The
SOFRITAS compiler analysis (Section 4.2) avoids the need
for 13 additional mutex annotations.

Column 8 reports the number of SofritasRelease() anno-
tations required for each application. In most cases, the num-
ber of SofritasRelease() annotations closely corresponds to
the number of atomicity constructs required for the pthreads
version of the application. The disparity between the number
of necessary release annotations and pthreads locks can be
explained by two major factors. First, the pthreads applica-
tions often use coarse-grained locking to protect data struc-
tures, whereas SOFRITAS automatically uses fine-grained
locking for all memory locations. For example, dedup uses
hash-table and memory-buffer structures that are protected
by coarse-grained locking in the pthreads version. Second,
atomicity violations exist in some of the PARSEC bench-
marks that are not prevented by the existing pthreads syn-
chronization. We discuss these atomicity violations more in
Section 5.2.2.

Column 9 reports the number of SofritasEndOFR() or
SofritasContinueOFR() annotations that were added. dedup
and ferret both exhibit pipeline parallelism such that each
stage of the pipeline performs some actions and then en-
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queues data for the next stage of the pipeline. Each enqueue
operation represents the end of the thread’s atomic actions on
the enqueued data, so we use a single SofritasEndOFR() an-
notation in each benchmark to represent this. canneal repre-
sents a different case in which SofritasRelease() annotations
handle all of the necessary releases for the benchmark, mak-
ing the batch lock release operations at each barrier wait su-
perfluous. To improve the performance of canneal, we add a
single SofritasContinueOFR() annotation to the barrier wait
to prevent the batch lock release. This optimization yields a
4x speedup.

The final two columns of Table 1 report the ease of adding
annotations using SOFRITEST. When an OFRException oc-
curs, SOFRITEST suggests the location and type of annota-
tion that it thinks is required to refine atomicity and avoid the
exception. Column 10 reports the number of annotations that
we found to be easy to place using the suggestions provided
by SOFRITEST. These annotations were either located at the
exact line suggested by SOFRITEST or close to the suggested
line. In the close cases, SOFRITEST suggested placing an an-
notation inside of control-flow, and we determined that the
annotation should be placed after the control-flow structure
to cover multiple paths. Column 11 reports the number of
annotations that were difficult to place. These annotations
were localized to the queue used by ferret. These difficult-to-
place annotations arise due to interleavings caused by exist-
ing annotations. Internally, the queue relies on head and tail
pointers that are protected by mutexes. Initially, SOFRITEST
correctly suggests a release annotation on the tail pointer.
Once this annotation has been added, one of the two sugges-
tions provided by SOFRITEST on the next OFRException
may be incorrect due to interleavings caused by the exist-
ing annotation. For ferret, the programmer must understand
that checking whether the queue is empty must be atomic
with removing an item from the queue. Despite the fact that
not all of the suggestions provided by SOFRITEST are ex-
actly correct, any incorrect suggestions still point to the cor-
rect source-code files and data-structures, providing the pro-
grammer with a reasonable starting point for resolving the
OFRException. Further, one of the two suggestions is cor-
rect, leaving the programmer with a multiple-choice ques-
tion of how to resolve the OFRException.

Beyond a comparable annotation burden, SOFRITEST
provides fail-stop exceptions and precisely suggests fixes for
missing annotations. In contrast, missing locks in pthreads
and other models [4, 56] are not fail-stop and are not accom-
panied by code suggestions.

5.3 SOPRO Evaluation
We evaluate the runtime performance, scalability, and mem-
ory overheads of SOPRO as compared to pthreads execution.
We report average performance over 10 runs. We use a 4-
byte-per-lock mapping for all programs except bodytrack,
dedup, ferret, reverse index, and pbzip2 which share byte-
sized data and therefore required a 1-byte-per-lock mapping.

5.3.1 Runtime Overheads
Figure 7 presents the runtime slowdown of SOPRO over
pthreads. For each thread count, we normalize to the pthreads
execution for the same thread count. Across all thread
counts, SOPRO’s average runtime slowdown is only 1.59x,
substantially lower than even the 1.99x overhead of Valor [4],
the most closely related prior work. Moreover, SOPRO pro-
vides potentially more useful consistency exceptions imme-
diately when a conflict occurs, rather than lazily reporting
exceptions at a region’s end like Valor. To our knowledge,
SOPRO is the lowest-overhead, coarse-grained memory con-
sistency enforcement mechanism implemented for C and
C++ programs. With its low average overhead, including
many benchmarks with overheads below 2x, SOPRO is a
viable candidate for providing strong atomicity guarantees
even in deployed systems.

Some benchmarks had larger slowdowns that can be at-
tributed to frequent ordering operations (e.g., barriers) – Col-
umn 4 of Table 1 shows that fluidanimate and streamclus-
ter all perform many batch releases at the end of OFRs. Al-
though SOPRO has highly-optimized batch releases, clearing
the thread-local shadow spaces too frequently can be detri-
mental to performance because locks must be reacquired af-
ter each batch release. As listed in column 2 of Table 1, lin-
ear regression requires few lock checks because the major-
ity of memory accesses in the benchmark target a read-only
memory mapped file. SOPRO can safely elide checks to this
read-only memory mapped file.

Figure 8 compares the scalability of SOPRO with pthreads.
We show the scalability of each application using both
pthreads and SOPRO. Each pthreads bar is normalized to
the single-threaded execution using pthreads, and each SO-
PRO bar is normalized to the single-threaded execution using
SOPRO. SOPRO scales similarly to pthreads, as can be seen
in the matching bar clusters.

For all of the 19 benchmarks, SOPRO provides both in-
creased atomicity and a parallel speedup over the single-
threaded pthreads baseline. Although the absolute speedup
using SOPRO is not as large as with an expert-synchronized
pthreads implementation, SOPRO yields noticeable perfor-
mance benefits from parallel execution for all benchmarks.

5.3.2 Memory Usage
Figure 9 reports the memory overhead for SOPRO compared
to pthreads execution with both using 16 threads. Memory
usage is recorded using the getrusage system call which re-
ports the maximum resident set size during the application’s
execution. The 1B bars report the overhead for using a 1-
byte-per-lock mapping, which is necessary for benchmarks
that share byte-sized data. In many cases, SOPRO can use a
wider-granularity mapping of 4-bytes per lock, as shown in
the 4B bars. The benchmarks without 4B bars (bodytrack,
dedup, ferret, reverse index) did not run correctly with a 4-
byte mapping.
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Figure 7: Runtime overheads for SoPro with 1, 2, 4, 8 and 16 threads (light to dark bars) normalized to the pthreads
baseline for the same thread count.
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Figure 8: Scalability of SoPro as compared to the pthreads baseline. Each set of bars is normalized to single-threaded
execution in the given model.
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Figure 9: Memory overheads for SoPro compared to
pthreads at 16 threads. 1B maps each byte to a lock and
4B maps 4 bytes to a lock.

SOPRO generally consumes less space with the 4B map-
ping (2.70x on average) than with the 1B mapping (4.19x on
average). The exceptions fall into two cases. In benchmarks
with heaps under 50MB, like kmeans, there is not much SO-
PRO metadata to begin with, and the fixed costs of SOPRO’s
other internal data structures magnify the memory overhead.
A similar situation arises in benchmarks with large memory
regions mapped for I/O, such as histogram, linear regression
and string match, as there is comparatively little heap on
which the 4B mapping can save space. Moreover, the SO-
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Figure 10: Overheads for using memset instead of madvise

PRO runtime system uses simple bump-pointer allocation to
provide pages to the tcmalloc memory allocator. In future
work, this allocation scheme can be improved to maintain
a free page list instead, which should reduce memory over-
heads further.

5.3.3 Optimizations
As discussed in prior sections, SOPRO uses multiple low-
level optimizations to reduce performance overheads. To ef-
ficiently release locks at OFR boundaries, SOPRO calls mad-
vise instead of using memset. Figure 10 shows the overhead
of using memset instead of madvise as normalized to the
SOPRO baseline. On average, using memset incurs an over-
head of 3.88x over the baseline SOPRO system.
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Figure 11: Overheads from not inlining lock checks

SOPRO also relies on efficient lock checks, which are
much more common than lock acquires. SOPRO inlines lock
checks for increased efficiency because frequent function
calls can be expensive, especially when they involve saving
and restoring registers on the stack. Figure 11 details the
overheads incurred by SOPRO when no lock checks are
inlined. On average, SOPRO incurs a 1.73x overhead over
the baseline system when no lock checks are inlined.

6. Related Work
SOFRITAS is motivated by several areas of prior work on
multithreaded programmability. Section 2 provides an in-
depth comparison of SOFRITAS with other strong memory
consistency models, and we describe SOFRITAS’s relation-
ship with other relevant work here.

Several schemes have been proposed for detecting se-
quential-consistency violations with custom hardware sup-
port [16, 37, 40]. These schemes detect a cycle of data races,
which indicates that SC has been compromised, and use
speculation to rollback execution to before the SC violation
occurred. SOFRITAS’s dependence cycle detection works
similarly, but is a pure-software approach and enforces seri-
alizability at OFR (instead of single-instruction) granularity.

Data-centric synchronization schemes explicitly asso-
ciate locks with data and then assure that this locking disci-
pline is automatically enforced. In some systems [9, 48, 49] a
programmer specifies the variable-to-lock association. This
association can also be inferred [25] at the risk of miss-
ing synchronization. Data-centric synchronization provides
atomicity at the granularity of function calls, which is suffi-
cient for many critical sections but not all. The queue imple-
mentation in dedup requires that a lock acquired in a callee
is held across a function return and released by the caller.
Releasing the lock at the return introduces an atomicity vi-
olation bug. In contrast, SOFRITAS’s OFR atomicity guar-
antees do not rely on any specific code structure and provide
the required atomicity for dedup.

SOFRITAS shares a similar goal with techniques for de-
tecting atomicity violations [11, 12, 19, 20, 27–29, 32, 39,
52], which use heuristics to decide where atomic regions
should start and end, striking a balance between missing real
atomicity violations and reporting spurious ones. In contrast,

SOFRITAS is an execution model that provides strong atom-
icity guarantees that can prevent many atomicity failures,
even on the very first execution.

Transactional memory (TM) systems leverage pro-
grammer-specified atomic blocks [22, 45] that can be imple-
mented via optimistic or pessimistic concurrency [15, 36].
Like conventional locking, programming with TM involves
incrementally strengthening a program’s atomicity instead
of SOFRITAS’s top-down atomicity refinement approach.
TM thus remains vulnerable to the atomicity violations and
data races that plague lock-based programming because a
TM system trusts the programmer to place transactions cor-
rectly. Nevertheless, TM is a potentially valuable implemen-
tation technique for future versions of SOFRITAS. In partic-
ular, TM-inspired rollback techniques could allow automatic
recovery from SOFRITAS exceptions, reducing the burden
on SOFRITAS programmers still further.

The TCC [21] and Automatic Mutual Exclusion (AME)
[24] systems place all code inside coarse-grained transac-
tions. Instead of providing a stronger execution model for
existing code, TCC and AME target new programming mod-
els: parallelization of sequential code and task parallelism,
respectively. Both schemes employ less precise notions of
serializability than SOFRITAS, and incur additional com-
plexity due to the use of optimistic concurrency which com-
plicates I/O and other irrevocable operations. Furthermore,
neither scheme provides automated guidance on atomicity
refinement as SOFRITAS does. Transaction boundaries also
break atomicity for all variables, unlike SOFRITAS which
can relax atomicity on individual variables at a time to min-
imize the risk of atomicity violations.

Cooperative concurrency [53, 54] systems add yield an-
notations to a program to document where thread interfer-
ence can arise. Cooperability provides a sound summary of
the side effects of a program’s existing synchronization but
does not automatically enforce atomicity guarantees as SO-
FRITAS does.

Program synthesis of parallel programs [7, 46, 50] often
works by refining overly-coarse atomicity under program-
mer guidance, similar to the SOFRITAS approach. SOFRI-
TAS’s dynamic techniques scale to much larger programs,
however, than synthesis currently supports.

7. Conclusion
We introduced the SOFRITAS system, which provides an
OFR serializability memory model that is stronger and more
precise than previous work. The SOFRITEST system detects
new and known concurrency bugs in PARSEC and mem-
cached. We show that the SOPRO runtime system requires
just a 1.59x average runtime overhead and scales similarly to
pthreads up to 16 threads. SOFRITEST and SOPRO require
a similar number of annotations compared to pthreads syn-
chronization, but SOFRITEST provides automatic, targeted
assistance in refining OFR atomicity when necessary.
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