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Abstract
Correctly synchronizing the parallel execution of tasks remains
one of the most difficult aspects of parallel programming. Without
proper synchronization, many kinds of subtle concurrency errors
can arise and cause a program to produce intermittently wrong re-
sults. The long-term goal of this work is to design a system that au-
tomatically synchronizes a set of programmer-specified, partially-
independent parallel tasks. We present here our progress on the
MAMA (Mostly Automatic Management of Atomicity) system,
which can infer much but not all of this synchronization. MAMA
provides a safety guarantee that a program either executes in a cor-
rectly atomic fashion or it deadlocks. Initial experiments indicate
that MAMA can semi-automatically provide atomicity for a set of
Java benchmarks while still allowing parallel execution.

1. Introduction
Despite decades of research, writing multithreaded programs that
execute efficiently and correctly remains a challenging task [12].
Successful parallelization of non-trivial code continues to be an ef-
fort worthy of publication [18], though with increasingly parallel
CPUs and GPUs in everything from cell-phones to servers, more
non-research programmers are called upon to utilize these parallel
hardware resources. New systems that simplify parallel program-
ming are crucial to support these parallel programmers.

Coordinating parallel execution via synchronization is one of
the key challenges of parallel programming [10], though there are
many other important facets such as discovering parallelism, de-
bugging, testing, and performance tuning. We focus in this work
on specifying synchronization: a notoriously error-prone task, rife
with opportunities for subtle errors like data races, atomicity viola-
tions [7], ordering violations [15], and deadlocks.

Our long-term goal is a system that automatically provides syn-
chronization for a set of partially-independent parallel tasks, with
those tasks specified by the programmer. We think this division of
labor leverages well the complementary strengths of both humans
and tools. Human creativity finds the parallelism within a program
that is hard for machines to discover. Machine rigor automatically
applies a generic synchronization protocol without the occasional
lapse humans might introduce.

In this work, we present a partial result towards this larger goal:
the MAMA (Mostly Automatic Management of Atomicity) system,
which can infer much of the synchronization used in parallel pro-
grams. MAMA provides atomicity for parallel thread executions
by ensuring that the actions of a thread appear, to other threads,
to occur instantaneously. We draw a distinction between atomicity
and ordering constructs (Section 2); our current MAMA prototype
can infer the former but not the latter. We also find that atomicity
constructs are far more common in our workloads.

MAMA works by conservatively over-synchronizing a pro-
gram, providing safe parallel execution without any programmer
interaction. This over-synchronization comes with two costs, how-
ever: liveness and performance. MAMA tackles these challenges
with programmer help. When over-synchronization leads to dead-

lock, MAMA uses the information represented by the deadlock to
guide programmers to precise code points where liveness can be re-
stored. When over-synchronization leads to serialization, MAMA
similarly identifies the code points responsible and guides pro-
grammers to reducing serialization.

MAMA is thus a hybrid system that relies on programmers
for several key tasks: expressing the parallelism within a program,
identifying ordering constructs, and identifying when MAMA’s au-
tomatic synchronization is overly conservative. Nevertheless, by
taking much of the burden of specifying atomicity constructs out
of programmer’s hands, we think that MAMA is a useful advance
towards systems that handle synchronization autonomously.

In this paper, we describe the MAMA algorithm and its safety
properties (Section 2), then describe how MAMA and human pro-
grammers collaborate on the task of managing the synchronization
of a program (Section 3) and how our MAMA software prototype
is implemented (Section 4). We evaluate our prototype implemen-
tation (Section 5) by removing the locking from existing multi-
threaded workloads to show that MAMA can run these programs
safely and can recover some performance through parallelism.

2. Mostly Automatic Management of Atomicity
MAMA takes as input a program divided into partially-independent
parallel tasks by a human programmer. These tasks represent the
parallelism within a program (e.g., rays in a ray tracer), but lack
synchronization to coordinate data sharing between tasks (e.g., up-
dating an output buffer). This input program will not, in general,
execute correctly on its own; it needs synchronization to prevent
erroneous execution.

We decompose the task of specifying synchronization into two
parts: specifying ordering constraints and atomicity constraints.
Ordering constraints enforce a particular order between two events,
as with constructs like barriers, thread fork/join and condition vari-
ables. Atomicity constraints specify ordering-agnostic logical mu-
tual exclusion between two events as with constructs like locks or
transactions [9]. Ordering and atomicity are not orthogonal con-
cepts, e.g., ordering constructs are often implemented using atom-
icity constructs inside loops, and atomicity can be enforced in a
cumbersome fashion using ordering constructs as well. Neverthe-
less, existing synchronization constructs can be readily character-
ized as providing either ordering or atomicity. This distinction of
ordering versus atomicity has been noted before in classifying pat-
terns of concurrency bugs [15].

Our current MAMA prototype infers atomicity constraints for a
program, but relies on programmers to specify ordering constraints.
Note that ordering constraints are often implicitly involved when
expressing parallelism, e.g., with thread fork and join. Moreover,
ordering constructs appear an order of magnitude less frequently in
programs than atomicity constructs (Table 1).

2.1 Basic MAMA
Our MAMA prototype is based on a simple algorithm that pro-
vides generic but safe access to shared variables. On each access to
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Figure 1. Code examples illustrating potential deadlocks MAMA can resolve safely (a-d) and only with programmer help (e).

a shared variable v, an atomic section Av begins for that shared
variable. For this prototype of MAMA, atomic sections are en-
forced using locks, though other implementations (e.g., transac-
tional memory) are also possible. In our lock-based implementation
of MAMA, we first associate a mutex lock with every variable in
the program. As a thread t0 is executing, before t0 reads or writes a
shared variable v, t0 first acquires v’s lock lv . If t0 is able to acquire
lv , or if t0 already holds lv from a previous access, then t0 proceeds
to its next access. Otherwise, t0 becomes blocked on lv if lv is held
by another thread t1. In this basic version of the algorithm, locks
are never released.

This basic algorithm provides the following safety property: un-
der MAMA, a program executes in a correctly atomic fashion or
it deadlocks. One can think of MAMA as over-approximating the
atomicity that a program actually requires, as locks are always ac-
quired before a shared variable is accessed and never released. Al-
though MAMA uses fine-grained (per-variable) locking, by never
releasing locks it over-approximates any usage of coarse- or fine-
grained locking. Another way to think of MAMA is that it enforces
atomic execution for each thread, introducing waiting whenever
inter-thread communication threatens to violate atomicity.

Our distinction between ordering and atomicity constructs is
crucial for our safety property to hold. By assuming that order-
ing constraints are provided, we are free to execute the threads of
the program in any order that preserves atomicity, and the MAMA
algorithm accordingly enforces atomicity but not ordering.

With this basic version of MAMA, deadlocks frequently arise.
We discuss below several cases in which we can break deadlocks
without compromising MAMA’s key safety property, and how to
handle the remaining deadlocks that do not fall into these cases.

2.2 Breaking deadlocks
With the basic version of MAMA, deadlocks can easily arise when
threads share data, as shown in Figure 1a. Suppose that t0 first ac-
quires lA; then t1 will never be able to make progress since t0 will
never release lA. However, a thread t needn’t hold onto locks after
it exits – t’s entire execution has occurred atomically and releas-
ing locks at exit cannot jeopardize this atomicity. Thus, we release
locks at thread exit, allowing the program in Figure 1a to execute
without deadlock.

To enable more concurrency without sacrificing safety we can
also generalize the basic algorithm in Section 2.1 to use reader-
writer locks instead of mutex locks. With this extension, the type
of lock being acquired (read/write) depends on the kind of access
a thread is about to perform. Using reader-writer locks allows the
program in Figure 1b to execute without deadlock as both threads
can acquire read locks on locations A and B concurrently.

Reader-writer locks can also, however, introduce deadlocks into
a program that was deadlock-free with mutex locking. Consider
the program in Figure 1c. With reader-writer locks, both threads
can complete their reads and then stall trying to upgrade to a write
lock. With mutex locks, the execution of each thread will be seri-
alized but progress is preserved. Thus, neither locking scheme has

inherently superior progress properties with MAMA. For our pro-
totype, we have adopted reader-writer locks as the default because
they admit more concurrency.

Other deadlocks that involve an ordering constraint can also be
broken safely in an automatic way. Recall that MAMA requires a
programmer to specify the ordering constraints for a program via
barriers, thread fork/join, condition variables, etc.

Consider the program in Figure 1d, in which t1 can get stuck in
a deadlock before its first write to A, if t0 is at the join statement
and thus already holds lA. Since t0 is joining with t1, however,
t0 will never be able to make progress until t1 does. The ordering
constraint expressed by the thread join thus necessitates that atom-
icity be broken to ensure progress. Here we again leverage the cor-
rectness of the ordering constraints provided by the programmer,
specifically relying on the fact that they preserve forward progress.
This fact allows us to break atomicity at principled times without
violating safety. Any ordering constraint, expressed via thread join,
condition variable waits, etc. can be used to break atomicity at prin-
cipled times to preserve progress.

2.3 Remaining deadlocks
Our evaluation shows that few deadlocks arise on our benchmarks
when using the extensions described above (Section 5). Neverthe-
less, the possibility of deadlock is always present with MAMA, as
with the program in Figure 1e. Next, we describe how we leverage
programmer intuition to handle the remaining deadlocks.

3. Bringing the Programmer into the Loop
After applying the MAMA extensions described above, some pro-
grams may still encounter deadlocks (Figure 1e). Moreover, even
programs that continue to make progress may execute in an ex-
tremely serial fashion, negating the performance benefits of paral-
lelism. In these situations, the MAMA system can identify dead-
locks and serialization and provide suggestions to the programmer
about how to improve performance.

3.1 Annotations for liveness
One useful aspect of the deadlocks that MAMA encounters are that
they arise precisely at the point in the execution at which the atom-
icity of a thread’s execution must be broken to maintain forward
progress, i.e., the point at which a thread must release a lock to al-
low the program to continue executing. All threads, program coun-
ters, and shared variables involved in the deadlock are readily iden-
tifiable during the deadlock detection process. While the MAMA
system cannot automatically determine whether this early lock re-
lease is safe or not – such a release certainly violates the thread’s
atomicity, but many programs do not require entire threads to exe-
cute atomically – we can use the precise deadlock state to generate
a specific report for the programmer identifying locations at which
atomicity must be broken to maintain forward progress.

To preserve progress, at least one lock release must be added to
the code manually. We use a special function MAMA_release() to



Atomicity Ordering
Benchmark LoC synchronized volatile wait() notify() run() join() Barrier Total
crypt 314 0 / 0 0 / 0 0 / 0 0 / 0 2 / 14 2 / 14 0 / 0 4 / 28
lufact 461 0 / 0 0 / 0 0 / 0 0 / 0 1 / 7 1 / 7 1 / 23,952 3 / 23,966
lusearch 124,105 440 / 1,327,734 21 / 1,157,045 18 / 64 27 / 64 1 / 7 1 / 7 0 / 0 28 / 1,157,187
matmult 187 0 / 0 0 / 0 0 / 0 0 / 0 1 / 7 1 / 7 0 / 0 2 / 14
moldyn 487 0 / 0 0 / 0 0 / 0 0 / 0 1 / 7 1 / 7 1 / 2,424 3 / 2,438
montecarlo 1,165 0 / 0 0 / 0 0 / 0 0 / 0 1 / 7 1 / 7 0 / 0 2 / 14
pmd 60,062 15 / 322 2 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 3 / 8
series 180 0 / 0 0 / 0 0 / 0 0 / 0 1 / 7 1 / 7 0 / 0 2 / 14
sor 186 0 / 0 0 / 0 0 / 0 0 / 0 1 / 7 1 / 7 1 / 1,600 3 / 1,614
sunflow 21,970 43 / 770 0 / 0 0 / 0 0 / 0 2 / 14 2 / 14 0 / 0 4 / 28
xalan 172,300 107 / 4,448,917 0 / 0 6 / 8 8 / 1,704 1 / 7 1 / 7 0 / 0 16 / 1,726

Table 1. Static and dynamic synchronization in benchmarks. Cells are listed as static / dynamic. PMD does not explicitly launch threads
because it uses Futures (1 static / 8 dynamic).

allow a programmer to tell the runtime system that the lock lA for
a shared variable v should be released at a particular code point.

The deadlock reports generated by MAMA give a programmer
a concrete starting point at which to begin analyzing the code. We
have found anecdotally that this precise starting point is extremely
useful for guiding a programmer to a few key lines within a large
code base. Liveness annotations can be added to the code incre-
mentally, as future deadlock reports will identify remaining issues.

3.2 Annotations for performance
The same annotations used for liveness can also be used to improve
performance. Releasing locks early is the primary way of reduc-
ing the serialization of a program running under MAMA, allowing
more parallelism and faster execution times. Unlike liveness anno-
tations, deadlocks cannot drive the placement of performance an-
notations. Instead, we extend the MAMA system to identify when
the execution is being serialized and suggest the placement of lock
releases to increase parallelism. Serialized execution can be identi-
fied as many threads being blocked waiting for the same lock. Once
MAMA identifies serialized execution, it can suggest where locks
should be released to increase parallelism.

Variable initialization can lead to unnecessary serialization. Un-
der this pattern, one thread writes to a variable once and then the
variable becomes read-only and is read by many threads. This pat-
tern can easily cause deadlock, as the initializing thread maintains
a write-lock on the variable for its entire execution. MAMA can
detect the pattern of a large number of read attempts paired with
a single write and automatically downgrade the writer’s lock to a
read-lock. This downgrade preserves safety but may induce future
deadlocks if some thread attempts to acquire a write-lock.

4. Prototype and Experimental Setup
Using the Roadrunner [8] framework, we developed a runtime sys-
tem to dynamically apply the MAMA algorithm to Java applica-
tions. RoadRunner’s dynamic instrumentation adds overhead but
enables us to gather preliminary indications of the effectiveness of
the MAMA algorithm. Our current prototype instruments applica-
tion code only, not library code. MAMA associates a reader-writer
lock with each program variable. On each variable access, MAMA
requires that the accessing thread either already owns or acquires
the lock for the given variable. As discussed in Section 2, MAMA
detects deadlocks in order to provide liveness hints to the program-
mer. MAMA uses a distributed deadlock detection algorithm [4] to
detect and break deadlocks.

We evaluated MAMA on benchmarks from the Java Grande
[20] and DaCapo [3] benchmark suites. From the DaCapo suite,
only avrora, lusearch, jython, pmd, sunflow, tomcat, and xalan run
under RoadRunner’s baseline instrumentation. We removed jython

from our suite because it did not display significant parallelism. Un-
der MAMA instrumentation, we are currently debugging states in
avrora and tomcat under which all threads wait() with no threads
left to notify(). The number of lines of code in each of these
programs are shown in Table 1. We ran all of the benchmarks on a
32-core/64-thread machine with four Intel Xeon E7-4820 2.0 GHz
sockets and 128 GB RAM. For the parallel experimental results, all
benchmarks were run using 8 threads and pinned to a single socket
to avoid the performance overheads of data-sharing across multi-
ple sockets. Runtime performance overheads were measured us-
ing Java’s currentTimeMillis(), and memory overheads were
measured at the high water mark using the jvisualvm tool pro-
vided by the JDK. We ran RoadRunner using fine-grained field and
array tracking (one shadow variable per field and one shadow vari-
able per array element). For crypt, lufact, sor, montecarlo,
sunflow, and xalan, we used coarse-grained array tracking but
chunked the arrays into 64 buckets to reduce the runtime and mem-
ory overheads of fine-grained tracking on large arrays. We validated
that the benchmarks executed correctly using the built-in validation
mechanisms of the Java Grande and DaCapo benchmarks For the
performance evaluation, we averaged five runs of each benchmark.

To gain confidence that the MAMA algorithm works cor-
rectly on programs without atomicity constructs, we removed the
locking from our benchmarks. All synchronized blocks were
automatically removed by modifying RoadRunner to not insert
MONITOR_ENTER and MONITOR_EXIT bytecodes. We also man-
ually removed uses of Java’s ReentrantReadWriteLock, Java
atomics, and concurrent data structures. For example, we replaced
the PriorityBlockingQueue used by sunflow with a non-
concurrent PriorityQueue. After this synchronization removal
(but prior to applying MAMA), sunflow and xalan produced
incorrect output, though the other benchmarks produced correct
results on multiple trial runs.

We ran each benchmark 40 times with randomly-inserted sleeps
before variable accesses to explore uncommon thread schedules.
This exposed an atomicity violation in lusearch’s library code as
MAMA does not currently instrument library code. We believe that
adding support for library code in a future version of MAMA will
resolve this issue.

5. Preliminary Results
We evaluated both the effectiveness and performance of the MAMA
algorithm on various benchmarks. First, we observed how effective
the MAMA algorithm was at avoiding deadlocks and at break-
ing deadlocks when they occurred. We also recorded the types of
deadlocks that were broken for forward progress. In some cases,
a deadlock may occur inside a former critical section, and we ob-
served how often these events occurred in real programs. Second,



Benchmark Safe Liveness Performance
crypt 5,250,330 0 / 0 0 / 0
lufact 4,240,434 1 / 2,977 4 / 12,583,386
lusearch 250 0 / 0 4 / 43
matmult 700,405 0 / 0 0 / 0
moldyn 2,019,626 3 / 178 0 / 0
montecarlo 647,279 0 / 0 28 / 143,362
pmd 3,442 0 / 0 4 / 1,915,602
series 15 0 / 0 0 / 0
sor 4,508,422 1 / 4,058 0 / 0
sunflow 262,448 1 / 1 3 / 27,948
xalan 19,908 0 / 0 0 / 0

Table 2. Characterization of the deadlocks that occur (and are bro-
ken) in the benchmarks under MAMA. “Safe” deadlocks are dead-
locks in which one of the threads is joined, waiting on a condition
variable, at a barrier, or exited. “Liveness” deadlocks are broken to
allow the program to make progress. “Performance” deadlocks are
prevented by releasing locks early based on common patterns found
in the benchmarks. In the “Liveness” and “Performance” columns,
the static count is on the left, and the dynamic count is on the right.

we measured the performance overheads of the MAMA algorithm
to determine how the performance overheads could be reduced in
future implementations.

5.1 Benchmark Synchronization Characteristics
Table 1 details the static and dynamic synchronization present in
the benchmarks used in our study. For our workloads ordering
constructs typically occur at least an order of magnitude less fre-
quently, both statically and dynamically, than do atomicity con-
structs. Lu et al. [15] also found, in mining the bug tracking
databases of several large open-source parallel code bases, that
atomicity violations were about twice as common as ordering vio-
lations. We believe that relieving programmers from the burden of
specifying atomicity constructs is an important and useful goal.

5.2 Effectiveness
To evaluate the effectiveness of MAMA, we applied the algorithm
to multiple parallel benchmarks and recorded where deadlocks oc-
curred in the target program. Figure 2 details the deadlocks that oc-
curred during the execution of the benchmark suite under MAMA.
The majority of deadlocks occurred while one of the threads was
either joined, waiting on a condition variable, at a barrier, or ex-
ited. Thus, most deadlocks could be broken with confidence that
MAMA was not breaking the atomicity required by the program.

lufact, moldyn, sor, and sunflow required annotations for
liveness. Despite the number of dynamic deadlock breaks that were
required for these benchmarks, the number of static annotations to
perform these deadlock breaks is just six across all benchmarks. In
lufact, sor, and moldyn, deadlocks occur despite these bench-
marks not having any synchronized blocks in the original code
because these benchmarks all use barriers for synchronization. In
each of these benchmarks, it is safe to break the deadlocks that oc-
cur because the overlapping reads and writes are synchronized by
the barrier.

In sunflow, applying MAMA to the benchmark resulted in
a deadlock inside a former critical section because the program
checks a shared variable for null before writing to it. When two
threads read the shared variable before writing to it, an upgrade
deadlock occurs in the critical section. Although this is potentially
a problem with using reader-writer locks in MAMA, we found that
this situation did not frequently occur in these benchmarks. In many
cases, the upgrade deadlock, as shown in Section 2.2, is prevented
by a write to a separate shared variable that serializes the threads
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Figure 3. Percentage runtime for various routines and states in
MAMA.
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Figure 4. Normalized high water mark memory usage parallel
RoadRunner and parallel MAMA, normalized to JVM execution

prior to the read and subsequent write of the shared variable. As
shown below, the write to B prevents the upgrade deadlock that
would otherwise occur due to the read and write to A.

t0
write B
read A
write A

t1
write B
read A
write A

In some cases, we explicitly broke the atomicity guarantees of
MAMA in order to allow increased parallel execution. In lufact,
lusearch, montecarlo, pmd, and sunflow, we identified shared
counter variables that were updated atomically, requiring that the
locks for these variables be released early to allow the threads to ex-
ecute in parallel. In montecarlo and sunflow, we also identified
locks that were acquired for static initialization and could thereafter
be downgraded to read-shared.

5.3 Parallelism
We evaluated MAMA’s parallel execution (MAMA-par) against a
few different baselines: parallel RoadRunner execution (RR-par),
serialized RoadRunner execution (RR-ser), and serialized MAMA
execution (MAMA-ser). We compare MAMA to serialized base-
lines to verify whether MAMA can indeed exploit the parallelism
in each workload, and whether MAMA exploits enough parallelism
to overcome its locking overheads. By comparing the difference be-
tween RR-par and RR-ser with the difference between MAMA-par
and MAMA-ser, we can determine whether or not MAMA pre-
serves the potential parallel speedup in each benchmark.

The results of our evaluation are shown in Figure 2. We note
that, on average, RoadRunner incurs approximately 6x overhead
over the uninstrumented programs. Due to the overheads of locking
on every variable access, MAMA is never faster than the RR-par
baseline. Nevertheless, MAMA-par is capable of exploiting par-
allelism in many benchmarks. Compared to the RR-ser baseline,
MAMA-par is competitive in many cases and performs better than
RR-ser on lusearch, montecarlo, and series. In these cases,
MAMA-par overcomes its locking overheads with parallelism.
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Finally, we compared MAMA-par to MAMA-ser to measure
the amount of parallelism in the execution of the benchmarks un-
der MAMA. In almost all cases, MAMA-par handily outperforms
MAMA-ser. There are two exceptions. lufact does not scale well
with eight threads under RoadRunner’s instrumentation (RR-par
is slower than RR-ser). xalan does not exhibit parallelism under
MAMA, even with early lock breaking, though there is clearly par-
allelism within the workload. More investigation is necessary to
determine how to unlock xalan’s parallelism.

Most of the performance overheads of MAMA stem from two
sources: testing locks for ownership and serialization due to con-
tested locks. Figure 3 shows the summed performance counters for
all threads in each benchmark. In general, the deadlock detector
is run infrequently and only when threads are blocked. Thus, the
overheads of deadlock detection are negligible. On every variable
access, MAMA must check to see if the corresponding lock is al-
ready held. In the case of read-sharing, MAMA must check to en-
sure that the thread is one of the read owners of the lock. Recording
the read owners of a lock is necessary to allow deadlocks to be bro-
ken at runtime. However, this overhead might be reduced by sim-
ply denoting that some thread had read ownership of a lock rather
than explicitly recording which thread held ownership. For some
benchmarks, such as xalan, contended locks cause the program’s
execution to be serialized. For these benchmarks, more investiga-
tion is necessary to find ways to allow multiple threads to execute
under MAMA while still preserving the atomicity of the program
as much as possible.

5.4 Memory Usage
We also evaluated the memory overheads of MAMA on our bench-
mark suite. MAMA requires a reader-writer lock for every shared
variable in the program, which can lead to high memory overheads,
as shown in Figure 4. The memory overheads for MAMA range
from 8x on montecarlo to 113x on matmult, as compared to the
uninstrumented Java baseline (without RoadRunner). Although the
array chunking optimization (Section 4) reduces matmult’s mem-
ory overheads to just 9.8x, it also results in serialized execution for
this workload. More adaptive array chunking could alleviate this
time-space tradeoff. MAMA’s memory overheads could possibly
be further reduced by using a more compact reader-writer lock or
by avoiding the need to record all of the current readers of the lock.

5.5 Memory consistency
The MAMA programming model has many subtle interactions with
memory consistency, as programs written with MAMA in mind
will not have any notion of “critical sections” to constrain com-
piler and hardware reordering of memory operations. Compiler op-
timizations could thus reorder accesses in ways not intended by the
programmer, and MAMA’s safety property would apply only to the
already-broken compiled program.

Memory consistency concerns can be avoided by using a com-
piler that preserves sequential consistency (SC), e.g., by limiting
optimizations to thread-private variables [17]. The locking at every

variable access introduced by the MAMA runtime system enforces
SC dynamically, thus preserving an end-to-end SC guarantee.

6. Related Work
MAMA draws inspiration from work in several areas, including
automatic parallelization, program synthesis, data-centric synchro-
nization and concurrency bug detection.

Automatic parallelization schemes use static analysis [2] or
hardware support [21] to extract coarse-grained parallelism from
sequential code. Automatic parallelization presents a very friendly
sequential programming model, but the burden of sequential se-
mantics has limited the amount of parallelism that can be exploited.
MAMA takes an alternate approach by relying on programmers to
find parallelism, which eases the burden on the runtime system.

Transactional memory also relates to MAMA as another
mechanism for providing atomicity for parallel programs [9]. On
their own, transactions do not accomplish the same task as MAMA
because the programmer must still denote atomic sections. How-
ever, transactions may provide an alternate mechanism for imple-
menting MAMA, rather than using locks.

Program synthesis techniques have been employed to automat-
ically synthesize concurrent programs given the desired program’s
specification by searching a large space of possible programs for
one that satisfies the specification. This work shares MAMA’s goal
of making parallel programming simpler by freeing programmers
from the need to specify synchronization. Prior work has shown
that mutual exclusion algorithms [1] can be automatically discov-
ered in this way. The PSketch project [22] leveraged partial pro-
grams written by a human (“sketches”) to narrow the search space,
allowing several concurrent data structures to be synthesized.

Other projects have synthesized the synchronization for exist-
ing, but under-synchronized, concurrent programs based on a cor-
rectness specification. Recent work in this space has shown how
to synthesize minimal atomicity constraints for concurrent algo-
rithms [25], how to insert memory fences to make concurrent data
structures safe for relaxed consistency models [13], and how to add
ordering constraints to nondeterministic programs to ensure they
execute deterministically [19].

Because synthesis techniques rely on heavyweight verification
techniques like SMT solving to discover where synchronization is
required, they do not scale to larger programs. Most of the work
in this space focuses on concurrent algorithms and data structures
of limited scope, such as work-stealing queues. [19] infers deter-
ministic synchronization for the JavaGrande workloads we use,
though only a “program fragment” from each benchmark is con-
sidered in their analysis. While program synthesis techniques are
more limited in scope than MAMA’s dynamic analysis, synthesis
is ultimately deeply complementary to MAMA: synthesis can find
safe, highly-concurrent implementations for performance-sensitive
pieces of code while MAMA provides a more general approach to
handle the rest of the code base.

Data-centric synchronization (DCS) schemes allow synchro-



nization to be specified for data declarations, instead of with code-
centric annotations like critical sections. Since each piece of data
is declared only once in a program, the number of DCS annota-
tions is generally small. The DCS system then enforces the desired
synchronization constraints at runtime.

In the Atomic Sets work [23, 24], a programmer groups vari-
ables together into atomic sets. Accesses to variables within an
atomic set are guaranteed to happen atomically. A compiler ana-
lyzes the annotated program to conservatively insert lock acquires
that provide the required atomicity. Lock releases are performed
at the end of the function in which the lock acquire was inserted.
[23] shows that Atomic Sets can support the synchronization re-
quired by many classes in the Java Collections Framework. Col-
orama [5] and Data Coloring [6] provide hardware support for an
Atomic Sets-like programming model, and demonstrate that the
performance overhead for such a scheme is modest on several full
benchmark programs.

MAMA’s policy of acquiring a lock for a variable before any
access to the variable is inspired by these DCS schemes. How-
ever, by holding onto locks until deadlock, MAMA 1) provides a
stronger safety guarantee that does not break atomicity at arbitrary
function returns and 2) obviates the need to specify atomic sets
since MAMA’s fine-grained locking over-approximates arbitrarily
coarse-grained locking (modulo deadlocks).

MAMA is also motivated by work on concurrency bug de-
tection. Many schemes have been proposed to infer what sections
of program execution should be atomic without relying on exist-
ing program synchronization, as that existing synchronization may
be buggy. SVD [26] uses data and control dependences to infer
atomic sections and then verifies that these inferred sections ex-
ecute serializably; unserializable execution is often indicative of
a bug. AVIO [16] identifies pairs of accesses to a single variable
that execute in a non-atomic fashion as potential atomicity violation
bugs. MUVI [14] generalizes AVIO to handle multi-variable atom-
icity violations, inferring “atomic sets” of variables and thus sets of
accesses which should be performed atomically. These bug detec-
tion schemes are useful for identifying bugs in existing parallel pro-
grams, but, unlike MAMA, they neither provide safety guarantees
nor function as a replacement for user-specified synchronization.

Finally, other systems have attempted to statically infer atomic
sections, mainly for code that relies on transactional memory for
atomicity [11]. A static approach to inferring atomic sections is
complementary to MAMA’s dynamic approach. In the future, we
hope to combine static methods with our runtime system to improve
the performance and programmability of MAMA.

7. Conclusions
MAMA provides a starting point for future exploration into au-
tomatically providing atomicity for parallel programs. Our re-
sults suggest that a programming model where parallel execution
is safe by default and requires annotations only in liveness and
performance-critical situations may be viable given additional ex-
ploration and optimization.
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