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Abstract

In theory, the Winnow multiplicative update has certain advantages over
the Perceptron additive update when there are many irrelevant attributes.
Recently, there has been much effort on enhancing the Perceptron algo-
rithm by using regularization, leading to a class of linear classification
methods called support vector machines. Similarly, it is also possible to
apply the regularization idea to the Winnow algorithm, which gives meth-
ods we call regularized Winnows. We show that the resulting methods
compare with the basic Winnows in a similar way that a support vector
machine compares with the Perceptron. We investigate algorithmic is-
sues and learning properties of the derived methods. Some experimental
results will also be provided to illustrate different methods.

1 Introduction

In this paper, we consider the binary classification problem that is to determine a label
y � f��� �g associated with an input vector x. A useful method for solving this problem is
through linear discriminant functions, which consist of linear combinations of the compo-
nents of the input variable. Specifically, we seek a weight vector w and a threshold � such
that wTx � � if its label y � �� and wTx � � if its label y � �. Given a training set of
labeled data �x�� y��� � � � � �xn� yn�, a number of approaches to finding linear discriminant
functions have been advanced over the years. In this paper, we are especially interested in
the following two families of online algorithms: Perceptron [14] and Winnow [11]. These
algorithms typically fix the threshold � and update the weight vector w by going through
the training data repeatedly. They are mistake driven in the sense that the weight vector is
updated only when the algorithm is not able to correctly classify an example.

For the Perceptron algorithm, the update rule is additive: if the linear discriminant function
misclassifies an input training vector xi with true label yi, then we update each component
j of the weight vector w as: wj � wj � �xijy

i, where � � � is a parameter called learning
rate. The initial weight vector can be taken as w � �.

For the Winnow algorithm (with positive weight), the update rule is multiplicative: if the
linear discriminant function misclassifies an input training vector xi with true label yi, then
we update each component j of the weight vectorw as: wj � wj exp��x

i
jy

i�, where � � �
is the learning rate parameter, and the initial weight vector can be taken as wj � �j � �.
The Winnow algorithm belongs to a general family of algorithms called exponentiated



gradient descent with unnormalized weights (EGU) [10]. There can be several variants.
One is called balanced Winnow, which is equivalent to an embedding of the input space
into a higher dimensional space as: �x � �x��x�. This modification allows the positive
weight Winnow algorithm for the augmented input �x to have the effect of both positive
and negative weights for the original input x. Another modification is to normalize the
one-norm of the weight w so that

P
j wj � W , leading to the normalized Winnow.

Theoretical properties of multiplicative update algorithms have been extensively studied
since the introduction of Winnow. For linearly separable binary-classification problems,
both Perceptron and Winnow are able to find a weight that separate the in-class vectors
from the out-of-class vectors in the training set within a finite number of steps. However,
the number of mistakes (updates) before finding a weight can be very different [11, 10].
This difference suggests that the two algorithms serve for different purposes.

For linearly separable problems, Vapnik proposed a method that optimizes the Perceptron
mistake bound called “optimal hyperplane” method (see [17]). The same method has also
appeared in the statistical mechanical learning literature (see [1, 9, 13]), and is referred
to as achieving optimal stability. For non-separable problems, a generalization of optimal
hyperplane was proposed in [2] by introducing a “soft-margin” loss term. In this paper, we
derive regularized Winnow methods by constructing “optimal hyperplanes” that minimize
the Winnow mistake bound (rather than the Perceptron mistake bound as in an SVM). We
then derive a “soft-margin” version of the algorithm for non-separable problems.

For simplicity, we shall assume � � � in this paper. The restriction does not cause problems
in practice since one can always append a constant feature to the input data x, which offset
the effect of �. The formulation with � � � can be more amenable to theoretical analysis.
For an SVM, a fixed threshold also allows a simple Perceptron like numerical algorithm
as described in chapter 12 of [15], as well as in [12] and [7]. However, although more
complex, a non-fixed � does not introduce any fundamental difficulty.

The paper is organized as follows. In Section 2, we review mistake bounds for Perceptron
and Winnow. Based on the bounds, we show how regularized Winnow methods can be
derived by mimicking the optimal stability method (and SVM) for Perceptron. We also
discuss the relationship of the newly derived methods with related methods. In Section 3,
we investigate learning aspects of the newly proposed methods in a context similar to some
known SVM results. Finally an example will be given in Section 4 to illustrate these
methods.

2 SVM and regularized Winnow

2.1 From Perceptron to SVM

We review the derivation of SVM from Perceptron, which serves as a reference for our
derivation of regularized Winnow. Consider linearly separable problems and let w be
a weight that separates the in-class vectors from the out-of-class vectors in the training
set. It is well known that the Perceptron algorithm computes a weight that correctly
classifies all training data after at most M updates (a proof can be found in [17]) where
M � kwk��maxi kxik����miniw

Txi��. The weight vector w� that minimizes the right
hand side of the bound is called the optimal hyperplane in [17] or the optimal stability hy-
perplane in [1, 9, 13]. This optimal hyperplane is the solution to the following quadratic
programming problem:

min
w

�

	
w� s.t. wTxiyi � � for i � �� � � � � n�



For non-separable problems, we can introduce a slack variable �i for each data �xi� yi�
(i � �� � � � � n), and compute a weight vector w��C� that solves

min
w��

�

	
wTw �C

X
i

�i s.t. wTxiyi � �� �i� �i � � for i � �� � � � � n�

Where C � � is a given parameter [17]. It is known that when C � �, then �i � �
and w��C� converges to the weight vector w� of the optimal hyperplane. We can write
down the KKT condition for the above optimization problem, and let 	i be the Lagrangian
multiplier for wTxiyi � �� �i. After elimination of w and �, we obtain the following dual
optimization problem of the dual variable 	 (see [17], chapter 10 for details):

max
�

X
i

	i � �

	
�
X
i

	ixiyi�� s.t. 	i � ��� C� for i � �� � � � � n�

The weight w��C� is given by w��C� �
P

i 	
ixiyi at the optimal solution. To solve this

problem, one can use the following modification of the Perceptron update algorithm (see
[12, 7] and chapter 12 of [15]): at each data �xi� yi�, we fix all 	k with k �� i, and update
	i to maximize the dual objective functional, which gives:

	i � max�min�C�	i � ��� �wTxiyi�� ���

where w �
P

i 	
ixiyi. The learning rate � can be set as � � ��xiTxi which corresponds

to the exact maximization of the dual objective functional.

2.2 From Winnow to regularized Winnow

Similar to Perceptron, if a problem is linearly separable with a positive weight w, then
Winnow computes a solution that correctly classifies all training data after at most M up-
dates with M � 	W �

P
j wj ln

wjk�k�
�jkwk�

�maxi kxik���
�, where � � 
 � miniw
Txiyi,

W � kwk� and the learning rate is � � 
��W maxi kxik���. The technique for deriving
the above bound was developed in [5] (also see [11] for earlier results). The detailed proof
of this specific bound can be found in [18] which employed techniques in [5]. Note that
unlike the Perceptron mistake bound, the above bound is learning rate dependent. It also
depends on the prior �j � � which is the initial value of w.

For problems separable with positive weights, to obtain an optimal stability hyperplane
associated with the Winnow mistake bound, we consider fixing kwk� such that kwk� �
W � �. It is then natural to define the optimal hyperplane as the (positive weight) solution
to the following convex programming problem:

min
w

X
j

wj ln
wj

e�j
s.t. wTxiyi � � for i � �� � � � � n�

Similar to the derivation of SVM, for non-separable problems, we can introduce a slack
variable �i for each data �xi� yi�, and compute a weight vector w��C� that solves

min
w��

X
j

wj ln
wj

e�j
� C
X
i

�i s.t. wTxiyi � �� �i� �i � � for i � �� � � � � n�

Where C � � is a given parameter. Note that to derive the above methods, we have
assumed that kwk� is fixed at kwk� � k�k� � W , where W is a given parameter. This
implies that the derived methods are in fact regularized versions of the normalized Winnow.
However in practice, one can also ignore this normalization constraint so that the derived
methods correspond to regularized versions of the unnormalized Winnow. It is also worth
mentioning that the appearance of the entropy regularization condition is natural to all ex-
ponentiated gradient methods investigated in [10], which can be readily observed from the



theoretical results in [10]. The regularized normalized Winnow is closely related to the
maximum entropy discrimination studied in [6] (the two methods are almost identical for
linearly separable problems). However, in the framework of maximum entropy discrimina-
tion, the Winnow connection is quite non-obvious. Their derivation was also not motivated
from minimizing the Winnow mistake bound — as we shall show later, it is possible to
derive some interesting learning bounds for our formulations that are connected with the
Winnow mistake bound.

Similar to the SVM formulation, the non-separable formulation of regularized Winnow
approaches the separable formulation as C � �. We shall thus only focus on the non-
separable case below. Also similar to an SVM, we can write down the KKT condition and
let 	i be the Lagrangian multiplier for wTxiyi � � � �i. After elimination of w and �,
we obtain (the algebra resembles that of [17], chapter 10, which we shall skip due to the
limitation of space) the following dual formulation for regularized unnormalized Winnow:

max
�

X
i

	i �
X
j

�j exp�
X
i

	ixijy
i� s.t. 	i � ��� C� for i � �� � � � � n�

The j-th component of weight w��C� is given by w��C�j � �j exp�
P

i	
ixijy

i� at the
optimal solution. For regularized normalized Winnow with kwk� �W � �, we obtain

max
�

X
i

	i �W ln�
X
j

�j exp�
X
i

	ixijy
i�� s.t. 	i � ��� C� for i � �� � � � � n�

The weight w��C� is given by w��C�j � W�j exp�
P

i	
ixijy

i��
P

j �j exp�
P

i	
ixijy

i�
at the optimal solution.

Similar to the Perceptron-like update rule for the dual SVM formulation, it is possible to
derive Winnow-like update rules for the regularized Winnow formulations. At each data
�xi� yi�, we fix all 	k with k �� i, and update 	i to maximize the dual objective functionals.
We shall not try to derive an analytical solution, but rather use a gradient ascent method
with a learning rate �: 	i � 	i � � �

��i
LD�	i�, where we use LD to denote the dual

objective function to be maximized. � can be either fixed as a small number or computed
by the Newton’s method. It is not hard to verify that we obtain the following update rule
for regularized unnormalized Winnow:

	i � max�min�C�	i � ��� �wTxiyi�� ���

where wj � �j exp�
P

i 	
ixijy

i�. This gradient ascent on the dual variable gives an EGU
rule as in [10]. Compared with the SVM dual update rule which is a soft-margin version
of the Perceptron update rule, this method naturally corresponds to a soft-margin version
of unnormalized Winnow update. Similarly, we obtain the following dual update rule for
regularized normalized Winnow:

	i � max�min�C�	i � ��� �wTxiyi�� ���

where wj � W�j exp�
P

i	
ixijy

i��
P

j �j exp�
P

i	
ixijy

i�. Again, this rule (which is an
EG rule in [10]) can be naturally regarded as the soft-margin version of the normalized Win-
now update. Note that for regularized normalized Winnow, the normalization constant W
needs to be carefully chosen based on data. For example, if data is infinity-norm bounded
by 1, then it does not seem to be appropriate if we choose W � � since jwTxj � �: a hy-
perplane with kwk� � � does not achieve reasonable margin. This problem is less crucial
for unnormalized Winnow, but the norm of the initial weight �j still affects the solution.

Besides maximum entropy discrimination which is closely related to regularized normal-
ized Winnow, there has been an earlier attempt to derive a large margin version of unnor-
malized Winnow in [3] based on some heuristics. However, their algorithm was purely
mistake driven without dual variables 	i (the algorithm does not compute an optimal sta-
bility hyperplane for the Winnow mistake bound). In addition, they did not include a regu-
larization parameter C which in practice can be important for non-separable problems.



3 Some statistical properties of regularized Winnows

In this section, we show that similar to the case of SVM, we are able to derive learning
bounds based on our formulations that minimize the Winnow mistake bound. There are
many possible bounds which can be of interests. The following result is an analogy of a
leave-one-out cross-validation bound for separable SVMs — Theorem 10.7 in [17].

Theorem 3.1 The expected misclassification error errn with the true distribution by
using hyperplane w obtained from the linearly separable (C � �) unnormal-
ized regularized Winnow algorithm with n training samples is bounded by errn �
�

n��
Emin�K� ��
W �

P
j wj ln

wj

�j
�maxi kxik���, where the right-hand side expectation

is taken with n� � random samples �x�� y��� � � � � �xn��� yn���. K is the number of sup-
port vectors of the solution. Let w be the optimal solution using all the samples with
dual 	i for i � �� � � � � n � �. Let wk be the weight obtained from setting 	k � �, then
W � max�kwk�� kw�k�� � � � � kwn��k��.

Proof Sketch. We only describe the major steps due to the limitation of space. Denote by
�wk the weight obtained from the optimal solution by removing �xk� yk� from the training
sample. Similar to the proof of Theorem 10.7 in [17], we need to bound the leave-one-
out cross-validation error, which is at most K. Also note that the leave-one-out cross-
validation error is at most jfk � k �wk � wk�kxkk� � �gj. We then use the following
two inequalities: k �wk � wk�� � 	W �

P
j �wk

j � wj � wj ln� �wk
j �wj��; and

P
j �wk

j � wj �
wj ln� �wk

j �wj� �
P

j w
k
j �wj �wj ln�wk

j �wj� — the latter inequality can be obtained by
comparing the dual objective functionals and by using the corresponding KKT condition
of the dual problem. The remaining problem is now reduced to proving that jfk �

P
j w

k
j �

wj �wj ln�wk
j �wj� � ���	Wkxkk���gj � p	W

P
j wj ln

wj

�j
. For the dual formulation,

by summing over index k of the KKT first order condition with respective to the dual 	k,
multiplied by 	k, one obtains

P
k 	

k �
P

j wj ln
wj

�j
. We thus only need to show that ifP

j w
k
j �wj � wj ln�w

k
j �wj� � ���	Wkxkk���, then 	k � 	���Wkxkk���. This can be

checked directly through Taylor expansion. �

By using the same technique, we can also obtain a bound for regularized normalized Win-
now, which we shall skip to save space. One disadvantage of the above bound is that it is the
expectation of a random estimator that is no better than the leave-one-out cross-validation
error based on observed data (it is also difficult to generalize this specific technique to non-
separable problems since

P
k 	

k can be unbounded). However, the bound does convey
some useful information: for example, we can observe that the expected misclassifica-
tion error (learning curve) converges at a rate of O���n� as long as W �

P
j wj ln

wj

�j
� and

sup kxk� are reasonably bounded.

It is also not difficult to obtain interesting PAC style bounds by using the covering number
result for entropy regularization in [18] and ideas in [16]. Although the PAC analysis
would imply a slightly suboptimal learning curve of O�logn�n� for linearly separable
problems, the bound itself provides a probability confidence and can be generalized to
non-separable problems. We state below an example for non-separable problems, which
justifies the entropy regularization. The bound itself is a direct consequence of Theorem
2.2 and Theorem 2.8 in [18]. Note that as in [16], the square root can be removed if k� � �
and � can be made data-dependent.

Theorem 3.2 If the data is infinity-norm bounded as kxk� � b, then consider the family
 of hyperplanes w such that kwk� � a and

P
j wj ln�

wjk�k�
�jkwk�

� � c. Denote by err�w�
the misclassification error of w with the true distribution. Then there is a constant C such



that for any � � �, with probability �� � over n random samples, any w �  satisfies:

err�w� � k�
n

�

s
C

��n
b��a� � ac� ln�

nab

�
� 	� � ln

�

�
�

where k� � jfi � wTxiyi � �gj is the number of samples with margin less than �.

4 Text categorization example

We use a text-categorization application to show that a regularized Winnow can enhance
a Winnow just like an SVM can enhance a Perceptron. The text-categorization example
is quite interesting for this comparison since SVM is regarded as a state of the art method
[4, 8], and unnormalized Winnow has also been applied to the same problem with good
results [3]. There has also been some arguments concerning whether there are many irrel-
evant features (used to support Winnow [3]) or there are many relevant features (used to
support SVM) [8]. Our comparison implies that this argument seems less relevant: it is the
regularization that truly helps — no matter the underlying algorithm is Perceptron or Win-
now. Although in theory, there are differences between the two approaches (for example,
see [10]), the practical differences remain to be more carefully investigated.

The standard test set for text-categorization is the Mod-Apte split of the Reuters-21578
data set available from http://www.research.att.com/�lewis/reuters21578.html. There are
9603 training data and 3299 test data. We only report results of the largest 10 categories
(each is a binary-classification problem) which can be compared with those of [4]. The
performance is usually measured by precision and recall rather than classification error.
Precision is the percentage of correctly classified data among all data that are classified to
be in-class; recall is the percentage of correctly classified data among all data that are truly
in-class. Since we can adjust the threshold of a linear classifier after training to trade-off
its precision and recall, a popular performance metric is the break-even point where the
threshold is chosen so that precision equals recall (also see [4]).

We use binary word occurrences in the documents as features, and append a constant fea-
ture of � to offset the effect of �. We shall only report the balanced versions of the un-
normalized Winnows to save space (the performances of normalized versions are similar
with appropriate normalization conditions). For consistency and comparison purposes, we
fix the learning rates as 0.001 and use 200 iterations over the training data for all algo-
rithms. The initial values for the Winnows are �j � ����. The “average” in Table 1 is
micro-average as in [4]. Our results are comparable with an enhanced SVM result in [4],
where the micro-averaged break-even over top 10 categories was �	��. Note that both SVM
and regularized Winnow consistently outperform Perceptron and Winnow, with compatible
results among themselves. This implies that although regularization helps, there does not
seem to be any practical difference between Perceptron and Winnow in this application.
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