Large Margin Winnow Methods for Text Categorization

Tong Zhang
Mathematical Sciences Department
IBM T.J. Watson Research Center
Yorktown Heights, NY 10598 USA

tzhang@watson.ibm.com

ABSTRACT

The SNoW (Sparse Network of Winnows) architecture has
recently been successful applied to a number of natural lan-
guage processing (NLP) problems. In this paper, we propose
large margin versions of the Winnow algorithms, which we
argue can potentially enhance the performance of basic Win-
nows (and hence the SNoW architecture). We demonstrate
that the resulting methods achieve performance comparable
with support vector machines for text categorization appli-
cations. We also explain why both large margin Winnows
and SVM can be suitable for NLP tasks.

1. INTRODUCTION

Recently there have been considerable interests in apply-
ing machine learning techniques to problems in natural lan-
guage processing. One method that has great success in
many applications is the SNoW architecture [5, 12]. This
architecture is based on the Winnow algorithm [15], which
in theory is suitable for problems with many irrelevant at-
tributes. The success of SNoW is then attributed to the
argument that typical NLP tasks are of very high dimen-
sion but most features are irrelevant. On the other hand,
recently there have been many developments on large mar-
gin Perceptron algorithms (SVMs), leading to the state of
the art performance on text categorization [11, 6]. In [11],
Joachims argued that the success of SVM is due to many
relevant features rather than irrelevant features for text cat-
egorization problems. Such relevant features can be picked
up by an SVM.

It is therefore helpful to investigate this issue further so as
to gain a better understanding on which approach is more
suitable for NLP problems, especially for text categoriza-
tion. Since SVM is a large margin version of the Percep-
tron, we shall thus compare it with large margin versions of
the Winnow algorithms, which we derive later in the paper.
Our study indicates that both Winnow family and Percep-
tron family of algorithms can achieve the same level of per-
formance on text categorization. However, the Perceptron

family is more sensitive to feature selection. We also provide
a theoretical explanation that is consistent with this finding.

Before we proceed, we formalize the problem considered in
this paper as binary classification: to determine a label
y € {—1,1} associated with an input vector z. Since we
are concerned with linear classifiers, our task is to seek a
weight vector w and a threshold 6 such that w”z < 6 if
its label y = —1 and wTz > 6 if its label y = 1. Further-
more, we shall assume § = 0 in this paper for simplicity.
This restriction does not cause problems in practice since
one can always append a constant feature to the input data
x, which offset the effect of . The formulation with § = 0
can be more amenable to theoretical analysis. For an SVM,
a fixed threshold also allows a simple Perceptron like numer-
ical algorithm as described in chapter 12 of [18], as well as in
[16] and [9]. Note that although more complex, a non-fixed
0 does not introduce any fundamental difficulty.

The paper is organized as follows. In Section 2, we review
the Perceptron and the Winnows. Based on the derivation
of large margin Perceptrons (SVMs), we show how large
margin Winnow methods can be obtained. In Section 3,
we discuss learning aspects of Perceptron and Winnow fam-
ilies of algorithms, and suggest how to use the results to
interpret suitability of different methods for different appli-
cations. Experimental results will be given in Section 4.
Finally, we make some concluding remarks in Section 5.

2. SVM AND LARGE MARGIN WINNOW
2.1 Perceptron

We review the derivation of SVM from Perceptron, which
serves as a reference for our derivation of large margin Win-
nows.

Given a training set of n labeled data (z',3%),..., (z",y"),
the Perceptron algorithm updates the weight vector w by
going through the training data repeatedly. The algorithm
is online in the sense that the update depends only on one
training vector at a time; it is also mistake driven in the
sense that the weight vector is updated only when the al-
gorithm is not able to correctly classify an example. For
Perceptron, the update rule is additive: if the linear dis-
criminant function misclassifies an input training vector z°
with true label 4°, then we update each component j of the
weight vector w as:

i
wj — wj + Ny,

where 1 > 0 is a parameter called learning rate. The initial
weight vector can be taken as w = 0.

For linearly separable problems, let w be a weight that sep-
arates the in-class vectors from the out-of-class vectors in
the training set. It is well known that the Perceptron algo-
rithm computes a weight that correctly classifies all training
data after at most M updates (a proof can be found in [20])
where

M = [[wll3 max [l 3/ (minw” 2")*

The weight vector w. that minimizes the right hand side of
the bound is called the optimal hyperplane in [20] or the
optimal stability hyperplane in [1, 13, 17]. This optimal
hyperplane is the solution to the following quadratic pro-
gramming problem:

. 2
min -w
w 2

st. wizly">1 fori=1,...,n.

In reality, not every problem is linearly separable. For such
problems, as being proposed in [3], one can introduce a slack

variable ¢ for each data point (zf,y") (i = 1,...,n), and
compute a weight vector w.(C) that solves
1 o7 i
mipgwwr)¢
s.t. wTa:iyi >1 —ﬁi, ﬁi >0 fori=1,...,n.

Where C' > 0 is a given parameter [20].

It is known that when C' — oo, then ¢ — 0 and w.(C) con-
verges to the weight vector w. of the optimal hyperplane.
We can write down the KKT condition for the above opti-
mization problem, and let o' be the Lagrangian multiplier
for wTzy’ > 1—¢°. After elimination of w and £, we obtain
the following dual optimization problem of the dual variable
a (see [20], chapter 10 for details):

i 1 i 2
mija—E(.azy)
3

12

st. o' €0,C] fori=1,... n.

The weight w.(C) is given by
w.(C) = Zaiziyi

at the optimal solution. To solve this problem, one can
use the following modification of the Perceptron update al-
gorithm (see [16, 9] and chapter 12 of [18]): at each data
(z',y"), we fix all ay, with k # 4, and update o; to maximize
the dual objective functional, which gives:
o = max(min(C, o’ +n(1 —w’z'y"),0),

where w =), a’z'y’. The learning rate 7 can be set as =
1/z*" 2" which corresponds to the exact maximization of the
dual objective functional. However, in practice, it is useful
to use a smaller learning rate due to some statistical and
numerical reasons, which we do not have space to elaborate.

2.2 Winnow

Similar to Perceptron, the (unnormalized) Winnow algo-
rithm (with positive weight), is also online and mistake
driven. However, the update rule is multiplicative instead of
additive: if the linear discriminant function misclassifies an
input training vector z° with true label 3, then we update
each component j of the weight vector w as:

w; + w; exp(nzfy’),

where n > 0 is the learning rate parameter, and the initial
weight vector can be taken as w; = p; > 0. The Winnow
algorithm belongs to a general family of algorithms called
exponentiated gradient descent with unnormalized weights
(EGU) [14]. There can be a number of variants. One modi-
fication is to normalize the one-norm of the weight w so that
> w; = W, which leads to the normalized Winnow. An-
otﬁer variant is called balanced Winnow, which is equivalent
to an embedding of the input space into a higher dimensional
space as: Z = [z, —z]. This modification allows the positive
weight Winnow algorithm for the augmented input & to have
the effect of both positive and negative weights for the orig-
inal input . Due to this simple construction of balanced
Winnow, we will only focus on positive weight Winnows
(both normalized and unnormalized) in our derivation.

Similar to a Perceptron, for a problem that is linearly sepa-
rable with a positive weight w, the Winnow algorithm com-
putes a solution that correctly classifies all training data
after at most M updates with

wj ||l g2 /52
M =2W (3" w;In ZLEL) max o3, /67,
2w pillwlls ™

where 0 < § < min; wz'y’, W > ||w||; and the learning
rate is 7 = §/(W max; ||2'||%). The technique for deriving
the above bound was developed in [7] (also see [15] for earlier
results). The detailed proof of this specific bound can be
found in [24] which employed techniques in [7]. Note that
unlike the Perceptron mistake bound, the above bound is
learning rate dependent. It also depends on the prior p; > 0
which is the initial value of w.

J

For problems separable with positive weights, to obtain an
optimal stability hyperplane associated with the Winnow
mistake bound, we consider fixing ||w||1 such that ||w|: =
W > 0. It is then natural to define the optimal hyperplane
as the (positive weight) solution to the following convex pro-
gramming problem:

ws
min ¥ wjln —L
s.t. waiyi >1 fori=1,...,n.

Similar to the derivation of SVM, for non-separable prob-
lems, we can introduce a slack variable £* for each data
(z',y"), and compute a weight vector w.(C) that solves

Wi)
min Y w;jln—— +C ‘

st. wialy' >1-¢, ¢€>0 fori=1,...,n.
Where C > 0 is a given parameter. Note that to derive
the above methods, we have assumed that ||w||: is fixed at

|lw|x = l|lplli = W, where W is a given parameter. This

implies that the derived methods are in fact large margin
versions of the normalized Winnow. However in practice,
one can also ignore this normalization constraint so that the
derived method corresponds to large margin versions of the
unnormalized Winnow — note that a small relative entropy
also implies a small 1-norm.

Similar to an SVM, the non-separable formulations of large
margin Winnows approach the separable formulation as C' —
oco. We thus only focus on the non-separable case below.
Also similar to an SVM, we can write down the KKT con-
dition and let o’ be the Lagrangian multiplier for w”z’y’ >
1 — &' After elimination of w and £, we obtain (the alge-
bra resembles that of [20], chapter 10) the following dual
formulation for large margin unnormalized Winnow:

msz o — Z piexp(> a'zhy’)
i j i
st. o' €0,C] fori=1,...,n.

The j-th component of weight w.(C) is given by
w.(C); = pjexp(Y_ a'zjy’)

i

at the optimal solution. For large margin normalized Win-

now with ||w||; = W > 0, we obtain

maxZa — Win(Zu] exp Zalﬂf;yl

st. o' €[0,0] forz:l,...,n.

The weight w.(C) is given by
w.(C); = Wpjexp(d_a'zjy’ /Zm exp(aizﬁ-yi)

at the optimal solution.

Similar to the Perceptron-like update rule for the dual SVM
formulation, it is possible to derive Winnow-like update rules
for the large margin Winnow formulations. At each data
(z%,y"), we fix all ay, with k # i, and update o; to maximize
the dual objective functionals. We use a gradient ascent
method with a learning rate n: a; — «a; + n%LD (i),
where we use Lp to denote the dual objective function to
be maximized. 1 can be either fixed as a small number or
computed by the Newton’s method. It is not hard to verify
that we obtain the following update rule for large margin
unnormalized Winnow:

ot = max(min(C, ot + n(l— wazyl) 0),
where

wj = pjexp(d_ a'zjy’).

3
This gradient ascent on the dual variable gives an EGU rule
as in [14]. Compared with the SVM dual update rule which
is a soft-margin version of the Perceptron update rule, this
method naturally corresponds to a soft-margin version of
unnormalized Winnow update. Similarly, we obtain the fol-
lowing dual update rule for large margin normalized Win-
now:

ot — max(min(C, ot + n(l— U)Tﬂ?lyl) 0),

where

wj = Wpyexp(Y_e'ziy’)/ D pjexp(
; ;

aia:;-yi).

Again, this rule (which is an EG rule in [14]) can be natu-
rally regarded as the soft-margin version of the normalized
Winnow update.

The entropy regularization condition is natural to all expo-
nentiated gradient methods [14], as can be observed from
the theoretical results in [14]. The regularized normalized
Winnow is closely related to the maximum entropy discrim-
ination [10] (the two methods are almost identical for lin-
early separable problems). However, in the framework of
maximum entropy discrimination, the Winnow connection
is non-obvious. Note also that the SNoW architecture for
NLP problems employs a heuristics for a margin version of
unnormalized Winnow as described in [5, 8]. However, the
algorithm was purely mistake driven without dual variables
o' (therefore the algorithm does not automatically com-
pute an optimal stability hyperplane for the Winnow mis-
take bound). In addition, the formulation does not explic-
itly include a regularization parameter C, which in practice
could be very helpful for non-separable problems typically
observed in NLP tasks.

3. PROPERTIESOFSVM AND LARGE MAR-

GIN WINNOW

In order to understand the suitability of an SVM or a large
margin Winnow for a specific application, it is useful to an-
alyze their ability to correctly predict the label of a future
data based on a set of n training data. In machine learn-
ing, a popular framework to measure this prediction ability
is through the generalization error analysis. We make the
standard assumption that the data (z,y) is taken from an
unknown distribution D. Given n random samples from D,
we would like to know what is the probability that the re-
sulting classifier will have a small classification error. This
style of analysis is often called PAC analysis. For an SVM,
many such results can be found in chapter 4 of [4] and ref-
erences therein. We list a variant of Theorem 4.19 in [4]:

THEOREM 3.1. If the data is 2-norm bounded as ||z||2 <
b, then consider the family T of hyperplanes w such that
|lw||2 < a. Denote by err(w) the misclassification error of w
with the true distribution. Then there is a constant C such
that for any v > 0, with probability 1 — n over n random
samples, any w € I' satisfies:

k7+\/ C 2b21n(n’cyzb

n ¥2n

err(w) < 2) +1In %:

where ky = |{i : wTx'y’ < y}| is the number of samples with

margin less than .

One difference of this version compared with Theorem 4.19
of [4] is that we have adopted a covering number estimate
in [24] which is slightly better than what was used in [4] by
a logn factor. Also see [21] for some related results. An-
other difference is that we use a data-independent margin
v rather than a data dependent margin as in [4]. These

differences are relatively small. The bound is for linearly
non-separable problems which are typical in real applica-
tions such as NLP tasks. For linearly separable problems,
a better bound (without the square-root) can be obtained.
The above theorem justifies the 2-norm regularization term
used in an SVM when the data is 2-norm bounded. Sim-
ilarly, we can obtain a theorem that justifies the entropy
regularization (when the data is infinity-norm bounded) for
large margin Winnows:

THEOREM 3.2. If the data is infinity-norm bounded as
[|z||]oo < b, then consider the family T' of hyperplanes w such

that [lwlly < a and 3_; w; ln(%) < c. Denote by err(w)
J

the misclassification error of w with the true distribution.

Then there is a constant C such that for any v > 0, with

probability 1 —n over n random samples, any w € I' satisfies:

err(w) < ’% +\/ ¢ b%(a? +ac)ln(%‘b +2) +ln%,

n

where ky = |{i : wTz'y" < y}| is the number of samples with
margin less than .

This bound is a direct consequence of Theorem 2.2 and The-
orem 2.8 in [24]. v can also be made data-dependent as in
[19] or [4].

Note that from the theoretical results, the main difference of
an SVM and a large margin Winnow is the data assumption:
if the data is 2-norm bounded and there is a small 2-norm
hyperplane that achieves a large margin, then SVM is suit-
able for the problem; if the data is infinity-norm bounded
and there is a hyperplane with a small 1-norm and a small
entropy with respect to the prior p that achieves a large
margin, then Winnow is suitable for the problem.

The usual claim that if there are many irrelevant features,
then the Winnow family of algorithms learn quickly can be
explained by the above bounds. The underlying assumption
for this claim is that the data is infinity-norm bounded;
and there is a small one norm hyperplane that can achieve
a good margin.’

From this analysis, the advantage of the Winnow family of
algorithms (compared with the Perceptron family of algo-
rithms) requires the data to have small infinity-norm but
large 2-norm. This phenomenon has been confirmed in [14]
by numerical simulations. Specifically, they have shown that
if the data are non-sparse and are infinity-norm bounded (in
this case, the 2-norm of a data point is much larger than its
infinity-norm), and the target function is sparse, then the
Winnow family of algorithms learn more quickly. However,
they have also shown that if the data is drawn from a unit
sphere (so that the two-norm of the data is comparable with
the infinity-norm), and the target function is dense (so that

!For example, the data is binary as in [15] and the relevant
experiments in [14].

2As in [15, 14], this assumption is typically assured by the
sparsity of the “target concept”. The prior p is usually cho-
sen to be uniform, which implies an log d (d is the dimension
of x) worst-case entropy factor in their bounds.

the 2-norm of the target function is much smaller than its 1-
norm), then the Perceptron family of algorithms learn more
quickly. This empirical study is consistent with the theoret-
ical results.

To apply the theoretical results to NLP problems, we shall
note that for such problems, typically a data point not only
has a small infinity norm, but also is sparse. This spar-
sity implies that the 2-norm of the data is also small, which
in turn implies that in theory, Perceptron-like algorithms
can perform as well as Winnow-like algorithms. On the
other hand, for NLP problems, most data dimension is likely
to be not very useful. Although the target function might
not be strictly sparse (as argued in [11], non-important fea-
tures might still have small impacts on classification per-
formance), it is likely to be concentrated on a small set of
features, so that the target hyperplane has a relatively small
2-norm and a relatively small 1-norm. In this situation, the
Perceptron does not have any theoretical advantage over
Winnow. Therefore it is not surprising that for NLP prob-
lems, we expect both the Winnow family and the Perceptron
family of algorithms work equally well, as demonstrated by
our experiments on text-categorization.

In summary, although the argument of many irrelevant fea-
tures in [5] is somewhat true, the authors neglected the spar-
sity of the data. The argument in [11] that there are many
relevant features in text-categorization seems to be a little
misled since unless the features are more or less equally im-
portant in the target function, the dominant effect is still
near irrelevance for most features. Such an effect can be
picked up by both Perceptron and Winnow families of algo-
rithms.

4. TEXT CATEGORIZATION EXAMPLES

In this Section, we compare the classification performance of

Perceptron and Winnow families of algorithms on text cate-

gorization, which is central to many NLP tasks. We use the

standard Reuters-21578 data set which is publicly available

from http://www.research.att.com/~lewis/reuters21578.html.
We use the Mod-Apte split which contains 9603 training

data and 3299 test data.

For text categorization especially for Reuters which is mul-
tiply categorized, the performance is usually measured by
precision and recall rather than classification error. Preci-
sion is the percentage of correctly classified data among all
data that are classified to be in-class; recall is the percent-
age of correctly classified data among all data that are truly
in-class. Since we can adjust the threshold of a linear clas-
sifier after training to trade-off its precision and recall, a
popular performance metric is the break-even point (BEP)
where the threshold is chosen so that precision equals recall
[22]. Another widely used single number metric is the F;
metric defined as the harmonic mean of the precision and
the recall [22]. Typically when the precision and recall are
more or less balanced, BEP and the F) metric are rather
close. In this case, either metric is a very indicative perfor-
mance measurement. In our experiments, we shall use the
BEP measurement since it appears to be more frequently
adopted in text categorization. In addition, we will also plot
the precision-versus-recall curve separately for a few meth-
ods we study here. Since the break-even point is a met-

ric for binary-classification, we use the micro-average [22]
(which uses the statistics by summing over each individual
confusion matrix for each binary-categorization problem) to
measure the overall performance.

We use binary word occurrences as the input features, and
append a constant feature of 1. As explained before, the con-
stant feature is used to offset the effect of the linear threshold
f which we intentionally set to zero. Another popular vector
representation for text is the TFIDF weighted word occur-
rence features, which has been adopted in [11] for SVMs.
Although this could give a slight improvement (which we
haven’t tested), the SVM result of [6] with binary features
suggests that such an improvement, if any, will be small.
Another reason we use binary features is that it is infinity-
norm bounded, thus suitable for Winnows. By using the
same set of features for both the Winnow family and the
Perceptron family of algorithms, we can eliminate the ef-
fect of different feature representations on the performance
of different algorithms. We use word-stemming in feature
preparation without stop-word removal. We then use a cri-
terion similar to the information gain (IG) method in [23]
to select 10000 features, where we replace the entropy scor-
ing in the IG criterion by the Gini-index scoring. Note that
both entropy and Gini-index are useful for finding relevant
attributes as described in [2]. We use the Gini-index instead
of entropy mainly because we do not use stop word removal.
Our experience seems to suggest that the Gini-index is more
capable to pick up non stop-words, although the difference
is relatively small.

We shall only report the balanced versions of the Winnows.
For consistency and comparison purposes, we fix the learn-
ing rates as 0.01 and use 200 iterations over the training
data for all algorithms. The initial values for the Winnows
are puj = 0.01. We use UWin and NWin to denote the
basic unnormalized and normalized Winnows respectively.
LM-UWin and LM-NWin are used to denote the respective
large margin versions. The regularization parameter C for
each algorithm is determined by cross-validation, and is set
to a fixed value for all categories. Our results are compara-
ble with a sigmoid enhanced SVM result in [6] (and slightly
better than those of more complicated kernel SVMs in [11]),
where the micro-averaged break-evens was 92.0 over top 10
categories, and 87.0 over all 118 categories.

It is worth mentioning that in Table 1, UWin and NWin
have the same results, which is not a programming error. In
this situation, the training data are linearly separable for all
categories (since the dimension is larger than the number of
data points), and we find that both Winnow methods com-
pute linear separators relatively quickly. Since the learning
rate is rather small, therefore the norm of the weight does
not change significantly. In particular, both Winnows have
the same short sequence of mistakes, therefore they end up
with equivalent weights. Note that this phenomenon is not
generally true for large margin Winnows, due to the more
subtle update rules. Even though normalized Winnows and
unnormalized Winnows are comparable, we find that the
large margin normalized Winnow seems to be more sensitive
to the prior choice u. Therefore in practice, an unnormalized
Winnow could be more robust.

In Figure 1, we have also plotted the precision-recall curves
(over the top 10 categories) for SVM, large margin normal-
ized Winnow and Perceptron for comparison purposes. SVM
and large margin normalized Winnow are almost indistin-
guishable.

0.9

0.8

0.7

precision
o o o o
w kS @ >
T T T T

o
N
T

0.1 |

0 L L L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

recall

Figure 1: Micro-Avg precision-recall curve for 10
Largest Categories (10000 features). SVM = ‘solid’;
LM-NWin = ‘dashed’; Perceptron= ‘dotted’.

In Table 2, we compare the performance of the algorithms
without any feature selection (but keep the same setup for
other parameters). In this case, stop-words will appear in
the features as relatively dense irrelevant attributes. Ac-
cording to our theoretical analysis, these relatively dense ir-
relevant attributes will give the Winnow family of algorithms
a slight advantage over the Perceptron family of algorithms.
This phenomenon can be observed in Table 2. Interestingly,
most degradation of Perceptron algorithms tends to come
from those relatively small categories. Also unregularized
algorithms are much more sensitive to feature selection than
their regularized versions. Since stop-words can always be
removed by using appropriate feature selection techniques,
it is therefore unclear whether the slight advantage of Win-
now algorithms without feature selection has much practical
significance.

If we do not use any feature selection or stop-word removal,
then the small advantage of regularized Winnows may also
be observed on other data. For example, with the seven cate-
gory CMU Web-Kb data available at http://www.cs.cmu.edu
/afs/cs.cmu.edu/project/theo-20 /www/data/, if we perform
a random 3-fold cross-validation experiment, then without
stop-word removal, the regularized Winnows achieve accu-
racies of about 90%, while an SVM achieves an accuracy
of about 88%. Even though it is not clear how statisti-
cally significant this difference is, we have observed that
with stop-word removal, the SVM performance can be en-
hanced. For this example, we treat the problem directly
as a seven-category classification problem. This is achieved
by training linear classifier weights as seven separate binary
classification problems, one for each category. The predicted
label of a data-point z is the label [with the largest value
of wix where w; is the linear weight associated with class

category | Perceptron | SVM | UWin | LM-UWin | NWin | LM-NWin |
earn 98.3 98.3 98.6 98.4 98.6 98.6
acq 94.0 95.4 93.8 95.0 93.8 95.2
money-fx 1.7 73.7 71.3 74.3 71.3 75.4
grain 87.9 90.6 88.6 92.6 88.6 92.6
crude 83.4 83.6 80.7 83.6 80.7 83.6
trade 70.1 73.5 72.6 71.8 72.6 73.5
interest 68.4 77.1 69.5 75.6 69.5 77.1
ship 75.6 85.4 76.4 84.3 76.4 84.3
wheat 82.3 85.9 85.9 87.3 85.9 87.3
corn 81.1 85.7 82.1 83.9 82.1 85.7
[Micro-Avg Top 10 | 89.8 [915 [90.0] 91.5 [90.0] 91.8 |
| Micro-Avg All118 [834 [867 [834 | 868 [834 | 870]

Table 1: Break-even Performance for 10 Largest Categories and Micro-Averages (10000 features)

I. To see that this simple approach to multi-class problems
is quite reasonable, we shall mention as a comparison that
a Naive Bayes classifier (which directly handles multi-class
problems) gives an accuracy of about 66% on the same data.

5. CONCLUDING REMARKS

In this paper, we have compared Perceptron family and Win-
now family of algorithms for text categorization. From our
analysis and experiments, we show that the idea of regular-
ization (or related, margin) is very helpful for text catego-
rization applications. However, due to the sparse structures
of the data and the target function, the specific form of
regularization (2-norm or entropy) is less important, espe-
cially when an appropriate feature selection method is em-
ployed. Since text categorization is the basis for many NLP
tasks, our study implies that both families of algorithms are
equally suitable to these problems.

6. REFERENCES
[1] J. Anlauf and M. Biehl. The AdaTron: an adaptive
perceptron algorithm. Europhys. Lett., 10(7):687—-692,
1989.

[2] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J.
Stone. Classification and regression trees. Wadsworth
Advanced Books and Software, Belmont, CA, 1984.

[3] C. Cortes and V. Vapnik. Support vector networks.
Machine Learning, 20:273-297, 1995.

[4] N. Cristianini and J. Shawe-Taylor. An Introduction to
Support Vector Machines and other Kernel-based
Learning Methods. Cambridge University Press, 2000.

[5

I. Dagan, Y. Karov, and D. Roth. Mistake-driven
learning in text categorization. In Proceedings of the
Second Conference on Empirical Methods in NLP,
1997.

[6] S. Dumais, J. Platt, D. Heckerman, and M. Sahami.
Inductive learning algorithms and representations for
text categorization. In Proceedings of the 1998 ACM
7th international conference on Information and
knowledge management, pages 148-155, 1998.

[7] A. Grove, N. Littlestone, and D. Schuurmans. General
convergence results for linear discriminant updates. In
Proc. 10th Annu. Conf. on Comput. Learning Theory,
pages 171-183, 1997.

[8] A. Grove and D. Roth. Linear concepts and hidden
variables. Machine Learning, 2000. To Appear; early
version appeared in NIPS-10.

[9] T. Jaakkola, M. Diekhans, and D. Haussler. A
discriminative framework for detecting remote protein
homologies. Journal of Computational Biology, to
appear.

[10] T. Jaakkola, M. Meila, and T. Jebara. Maximum
entropy discrimination. In S. Solla, T. Leen, and K.-R.
Miiller, editors, Advances in Neural Information
Processing Systems 12, pages 470-476. MIT Press,
2000.

[11] T. Joachims. Text categorization with support vector
machines: learning with many relevant features. In
European Conference on Machine Learing, ECML-98,
pages 137-142, 1998.

[12] R. Khardon, D. Roth, and L. Valiant. Relational
learning for NLP using linear threshold elements. In
Proceedings IJCAI-99, 1999.

[13] W. Kinzel. Statistical mechanics of the perceptron
with maximal stability. In Lecture Notes in Physics,
volume 368, pages 175-188. Springer-Verlag, 1990.

[14] J. Kivinen and M. Warmuth. Additive versus
exponentiated gradient updates for linear prediction.
Journal of Information and Computation, 132:1-64,
1997.

[15] N. Littlestone. Learning quickly when irrelevant
attributes abound: a new linear-threshold algorithm.
Machine Learning, 2:285-318, 1988.

[16] O. Mangasarian and D. Musicant. Successive
overrelaxation for support vector machines. IEEE
Transactions on Neural Networks, 10(5):1032-1037,
1999.

category | Perceptron | SVM | UWin | LM-UWin | NWin | LM-NWin |

earn 98.3 98.3 | 984 98.3 98.4 98.4
acq 93.4 95.3 | 94.0 95.1 94.0 95.3
money-fx 72.6 73.7 69.3 74.9 69.3 74.3
grain 84.5 87.9 | 854 91.9 85.4 91.9
crude 84.7 85.2 | 825 85.7 82.5 85.7
trade 73.5 76.1 | 726 75.2 72.6 76.1
interest 66.9 71.8 64.4 72.5 64.4 72.5
ship 77.0 82.0 | 69.4 87.6 69.4 87.6
wheat 77.5 85.9 | 83.7 85.9 83.7 85.9
corn 74.3 87.5 | 768 89.3 76.8 89.3
[Micro-Avg Top 10 [895 [91.2 [892 [918 [892 [919]
| Micro-Avg AIl'118 | 785 [8.1] 792 | 870 | 792 | 871 |

Table 2: Break-even Performance for 10 Largest Categories and Micro-Averages (no feature selection)

[17] M. Opper. Learning times of neural networks: Exact
solution for a perceptron algorithm. Phys. Rev. A,
38(7):3824-3826, 1988.

[18] B. Scholkopf, C. J. C. Burges, and A. J. Smola,
editors. Advances in Kernel Methods : Support Vector
Learning. The MIT press, 1999.

[19] J. Shawe-Taylor, P. Bartlett, R. Williamson, and
M. Anthony. Structural risk minimization over
data-dependent hierarchies. IEEE Trans. Inf. Theory,
44(5):1926-1940, 1998.

[20] V. Vapnik. Statistical learning theory. John Wiley &
Sons, New York, 1998.

[21] R. C. Williamson, A. J. Smola, and B. Schélkopf.
Entropy numbers of linear function classes. In
COLT’00, pages 309-319, 2000.

[22] Y. Yang. An evaluation of statistical approaches to
text categorization. Information Retrieval Journal,
1:69-90, 1999.

[23] Y. Yang and J. Pedersen. A comparative study on
feature selection in text categorization. In Proceedings
of the Fourteenth International Conference on
Machine Learning, 1997.

[24] T. Zhang. Analysis of regularized linear functions for
classification problems. Technical Report RC-21572,
IBM, 1999. An early abstract in NIPS’99, pp. 370-376.

