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Estimation of Probabilities from  Sparse  Data for the 
Language  Model  Component of a Speech Recognizer 

SLAVA M. KATZ 

Abstract-The  description of a novel  type of rn-gram  language  model 
is  given.  The  model offers, via a nonlinear  recursive procedure,  a com- 
putation and space  efficient  solution to the problem of estimating prob- 
abilities from  sparse  data. This  solution compares favorably  to other 
proposed  methods.  While the method  has  been  developed for  and suc- 
cessfully  implemented in the IBM Real  Time  Speech  Recognizers, its 
generality  makes it applicable  in other  areas where the problem of es- 
timating  probabilities from  sparse  data arises. 

Sparseness  of  data  is  an  inherent  property  of  any  real  text,  and 
it  is  a  problem  that one  always  encounters  while  collecting  fre- 
quency  statistics on words  and  word  sequences (m-grams)  from a 
text  of  finite  size.  This means  that even  for a  very  large  data  col- 
lection,  the  maximum  likelihood  estimation  method  does  not  allow 
us to  adequately  estimate  probabilities  of  rare  but  nevertheless  pos- 
sible  word sequences-many sequences  occur only  once  (“single- 
tons”); many  more do not occur  at  all.  Inadequacy of  the  maximum 
likelihood  estimator  and  the  necessity to  estimate  the  probabilities 
of  m-grams  which  did  not  occur  in the text  constitute  the  essence 
of  the  problem. 

The main  idea  of  the  proposed  solution to  the  problem is  to  re- 
duce  unreliable  probability  estimates  given by the  observed  fre- 
quencies  and  redistribute  the  “freed”  probability  “mass”  among 
m-grams which  never  occurred  in  the  text. The reduction is achieved 
by replacing  maximum  likelihood  estimates for m-grams  having 
low  counts with renormalized  Turing’s  estimates [l], and  the re- 
distribution  is  done via the  recursive  utilization of lower  level  con- 
ditional  distributions. We found  Turing’s  method  attractive  be- 
cause  of  its  simplicity  and  its  characterization  as  the  optimal 
empirical  Bayes’  estimator  of  a  multinomial  probability.  Robbins 
in [2]  introduces  the  empirical  Bayes’  methodology  and  Nadas  in 
[3] gives  various  derivations  of the  Turing’s  formula. 

Let N be  a  sample  text  size  and  let n, be the  number  of  words 
(m-grams) which  occurred  in  the  text  exactly r times, so that 

N = C rn,. (1) 

Turing’s  estimate PT for  a  probability  of  a  word (m-gram) which 
occurred  in  the  sample r times  is 

r 

r* 
PT = 

where 

We  call  a  procedure of replacing  a  count r with  a  modified  count 
r’ “discounting”  and  a  ratio r t / r  a  discount  coefficient dr. When 
r’ = r * ,  we  have  Turing’s  discounting. 

Let us denote  the m-gram w l ,  * . . , w, as wy and the  number 
of times  it  occurred  in  the  sample  text as c ( w T ) .  Then  the  maxi- 
mum likelihood  estimate  is 
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and  the  Turing’s  estimate  is 

where 

.*(x) = ( . (x )  + 1) n r o + l *  

f k x )  

It  follows  from (1)-(3) that  the  total  probability  estimate,  using 
( 5 ) ,  for  the set  of  words (m-gram)  that actually  occurred  in  the 
sample  is 

c P T ( W ; ’ )  = 1 - - nl 
w;“: c ( w f ) >  0 N 

This, in turn,  leads  to  the  estimate  for  the  probability  of  observing 
some  previously  unseen  m-gram as a  fraction nl / N  of “single- 
tons”  in  the  text: 

On the  other  hand, 

where 

Thus, 

Our method is based on  the interpretation  of 6, in (1 1) as a  “con- 
tribution”  of  an m-gram w;’ with a count c ( w y )  to  the probability 
of “unseen”  m-grams.  We  go  further with this  interpretation for 
the  estimating of conditional  probabilities P ( w ,  I w y  - ’ ). Assum- 
ing  that  the (m - 1)-gram w;‘-’ has  been  observed  in  the  sample 
text,  we  introduce  an  entity ijynd) analogous to 6,, given by (10) 

We now define our  estimator P,( w, 1 w;”- ) inductively as  follows. 
Assume  that  the  lower  level  conditional  estimator P,( w, I w;”- ’  ) 
has  been  defined. Then, when c ( w 7 - l )  > 0 ,  

gives  the  conditional  probability  estimate  for  words w, observed 
in the  sample  texl  after w7-I (c (w7 ) > 0 ) .  It  is  convenient  to 
define  a  function /3 by 

This  gives an estimate  of  the  sum of conditional  probabilities of all 
words w, which  never  followed w Y - ’ ( c ( w y )  = 0 ) .  We  distribute 
the  probability “mass” 0 ,  defined by (14),  among w, for which 
c ( w 7 )  = 0 using  a  previously  defined (by induction)  lower  level 
conditional  distribution P, (w,  1 W T  - I ): 

P s ( w J W ~ - I )  = .P,(w,Iwy-’) (15) 
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where 

1 - em P(w,jwy-’) 
w m : C ( w , ) > O  - - 

1 - em P(w,(wy-’) 
w , : c ( w , ) > O  

is  a  normalizing  constant.  When c(w7-I) = 0, then we define 

P,(w,JwT-’) = Ps(w,\wy-’). (17) 

Complementing P and  definitions,  given by (13)  and (14),  for 
the  case  when c(wy-’) = 0, with 

P(wmlwy-l) = 0 

B ( w y - 1 )  = 1 ,  
and 

we finally combine  estimates  (13),  (15),  and  (17)  in  the  following 
recursive  expression  for  the  conditional  probability  distribution: 

Ps(wrn\wy-‘) = P(wrnlwT-’) + B ( ~ ( w , ~ w ~ - ’ ) )  
* a(Wy-1)  Ps(wrn\wT-’) (18) 

where 

We now propose  a  somewhat  modified  version of the  distribu- 
tion  given by (18).  We  shall  leave  intact  the  estimate nl / N for  the 
probability of all  unseen m-grams  and  we  shall  not  discount  high 
values of counts c > k ,  considering  them  as  reliable.  To  achieve 
this, we redefine 

d, = 1, for r > k (20) 

and we shall  correspondingly  adjust  Turing’s  original  discount  coef- 
ficients d, for r 5 k so that  the  equation  expressing  the  balance 
between  the  “contributions”  and  the  probability of unseen m-grams 

is  satisfied.  Equation  (21)  is  analogous  to (9). We  obtain  an  ad- 
justment of the d, looking  for  a  solution of (21)  in  the  form 

where p is  a  constant.  The  unique  solution  is  given by 

- -  r* ( k  + 1)  % + I  

( k  + 1 )  % + I  

r nl 
d, = , for 1 5 r 5 k. (23) 

1 -  
n1 

Equality  (22)  is  equivalent  to  the  requirement  that  newly  defined 
count  “contributions” ( r /  N - r ’ / N )  are  proportional  to  the  Tur- 
ing’s  “contributions” ( r / N  - r * / N ) .  As for  the  value  for  the 
parameter k ,  in practice, k = 5 or so is  a  good  choice.  Other  ways 
of computing  discount  coefficients  could  be  suggested  for, in gen- 
eral,  the mode1,is not very  sensitive  to  the  actual  values  of d,. The 
latter  holds  as  long  as  an  estimate  for  the  probability of observing 
some  previously  unseen m-gram is reasonable.  When  data  are  very 

TABLE 1 
PERPLEXITY RESULTS ON 100  TEST 

SENTENCES 

Model 1 2 3 

2-gram 118  119  117 
3-gram 89  91  88 

sparse,  an  estimate n, / N  is  well  justified-there  is  not  too much 
of a  difference in seeing  an m-gram once  or  not  seeing it at all. 

Numerical  values  for a’s can be precomputed, and  that  pro- 
vides  the  method’s  computational  efficiency. A 3-gram model  con- 
structed  in  accordance  with  formulas  (18),  (16),  and  (23)  was  im- 
plemented  as a  language  model  component of the  Real-Time  Speech 
Recognizer  [4].  On  the  other  hand,  as  our  experiments  show,  set- 
ting dl = 0, which  is  equivalent  to  discarding  all  “singletons,” 
does not affect  the  model  performance,  and  thus  provides  substan- 
tial  saving in space  needed for  the  language  model.  We  took  ad- 
vantage of it in  constructing  a  compact  language  model  for  the PC- 
based  Speech  Recognizer [5] .  

The  approach  described  compares  favorably  to  other  proposed 
methods.  Table I gives  the  perplexity  computation  results  for  three 
models  being  compared.’  The first column  gives  the  results  for  the 
deleted  estimation  method by Jelinek  and  Mercer  [6],  the  second 
column  for  the  parametric  empirical ‘Bayes’  method by  NBdas [7], 
and  the  third one  for  our  “back of f ’  estimation  method. 

Perplexity,  defined  as  2  where 
1 = I .  

WI, * * * , w, is the  test word  sequence  and m = 2,  3  for  a  2-gram 
and 3-gram  model,  respectively,  is used  here  to  characterize  the 
performance of the model-the lower  the  perplexity,  the  better  the 
model.  The  statistics  used  for  constructing  the  models  were  ob- 
tained  from  approximately  750 000 words of an office  correspon- 
dence  database; 100 sentences  were  used  for  testing.  This  and  other 
experiments  showed  that  our  method  consistently  yields  perplexity 
results  which  are  at  least  as  good  as  those  obtained by other  meth- 
ods.  Meanwhile,  our model  is  much  easier  to  construct,  imple- 
ment,  and  use. In closing,  we  wish  to  emphasize  that  the  novelty 
of our  approach  lies  in  the  nonlinear  “back-off’  procedure which 
utilizes  an  explicit  estimation of the  probability of unseen m-grams 
and  not in the  details of computation  such  as  the  use of Turing’s 
formulas. 
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