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Abstract

Hidden Markov Models �HMMs� are statistical models of sequential data that have been used
successfully in many machine learning applications� especially for speech recognition� Further�
more� in the last few years� many new and promising probabilistic models related to HMMs
have been proposed� We �rst summarize the basics of HMMs� and then review several recent
related learning algorithms and extensions of HMMs� including in particular hybrids of HMMs
with arti�cial neural networks� Input�Output HMMs �which are conditional HMMs using neu�
ral networks to compute probabilities�� weighted transducers� variable�length Markov models
and Markov switching state�space models� Finally� we discuss some of the challenges of future
research in this very active area�

� Introduction

Hidden Markov Models �HMMs� are statistical models of sequential data that have been used successfully in
many applications in arti�cial intelligence� pattern recognition� speech recognition� and modeling of biological
sequences� The focus of this paper is on learning algorithms which have been developed for HMMs and
many related models� such as hybrids of HMMs with arti�cial neural networks ��� �� 	
� Input�Output
HMMs ��� �� � �
� weighted transducers ��� �� ��� ��
� variable�length Markov models ���� �	
� Markov
switching models ���
 and switching state�space models ���� �
� Of course� there is a lot more litterature on
HMMs and their applications than can be covered here� but this survey wants to be representative of the
issues addressed here� mainly concerning learning algorithms and extensions of HMMs and related models�
Note that what we call learning here is also called parameter estimation in statistics and system iden�

ti�cation in control and engineering� The models and the probability distributions that we talk about in
this paper are not assumed to represent necessarily the true relations between the variables of interest� In�
stead� they are viewed as tools for taking decisions about the data� in particular about new data� It is also
important to distinguish between the model classes� which correspond to assumptions about a good set of
solutions� and the training algorithms� such as the EM �Expectation�Maximization� algorithm� which are
used to pick one solution in such as set to optimize a data�dependent criterion�
The models discussed here� which we callMarkovian models� can be applied to sequential data which

have a certain property described here� First let us remind the reader that the joint probability distribution�

of a sequence of observations yT� � fy�� y�� � � � � yT g can always be factored as

P �yT� � � P �y��

TY

t��

P �ytjy
t��
� ��
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It would be intractable in general to model sequential data in which the conditional distribution P �ytjy
t��
� �

of an observed variable yt at time t depends on all the details of the previous values y
t��
� � However� the

models discussed in this paper share the property that they assume that the past sequence can be summa�
rized concisely� often using an unobserved random variable called a state variable� which carries all the
information from yt��� that is useful to describe the distribution of the next observation yt�
The most common of these models are the HMMs� which are best known for their contribution to advances

in automatic speech recognition in the last two decades� A good tutorial on HMMs in the context of speech
recognition is ���
� See also this book �	
� which focusses on the applications to bioinformatics� Algorithms
for estimating the parameters of HMMs have been developed in the ��s and ���s ���� ��� ��
� The application
of HMMs to speech was independently proposed by ���
 and ���
� and popularized by ��	
� ���
� and ���
� An
early review of alternative methods based on HMMs or related to HMMs� also for speech recognition� can
be found in the collection of papers ���
� Recently� HMMs have been applied to a variety of applications
outside of speech recognition� such as handwriting recognition ��� ��� ��� ��� 	�� 	�� 	�
� pattern recognition
in molecular biology �		� 	�� 	�� 	� 	
� and fault�detection �	�
� The variants and extensions of HMMs
discussed here also include language models �	�� 	�� �	
� econometrics ���� ��� ��
� time series ���
� and signal
processing� An analysis of the sample and computational complexity of approximating a distribution using an
HMM or a probabilistic automaton has been done ���
 using tools from the PAC�learning paradygm ��	
� See
also ���
 for an analysis of the case of hidden Markov chains with deterministic emissions� which shows that
some classes of Markovian learning problems are hard while others are polynomial in the number of samples
required� In the case of probabilistic �nite state automata� ���
 show an algorithm that has polynomial time
complexity in the sample size for learning a subclass of acyclic probabilistic �nite state automata�
The learning problem for the type of algorithms discussed here can be framed as follows� Given a

training set D � fd�� � � � � dNg of N sequences of data and a criterion C for the quality of a model on a set
of data �mapping D and a model to a real�valued scalar�� choose a model from a certain set of models� in
such a way as to maximize �or minimize� the expected value of this criterion on new data �assumed to be
sampled from the same unknown distribution from which the training data was sampled�� For a general
mathematical analysis of the learning theory behind learning algorithms such as those discussed here� see
for example ��
� In some applications there is only one sequence of observations d � yT� � fy�� y�� � � � � yTg�
and the new data is simply a continuation of the training data �e�g�� time�series prediction� econometry�� In
other applications there is a very large number of training sequences of di�erent lengths� �e�g�� thousands
or tens of thousands of sequences� as in speech recognition databases�� In some applications� the objective
is to model the distribution of a sequence variables� e�g�� P �yT� �� In other applications� the data consists of
sequences of �output� variables yT� given �input� variables x

L
� � and the objective is to model the conditional

distribution P �yT� jx
L
� �� In some of these applications the input and output sequences do not have the same

length� For example� in speech recognition� we are interested in the distribution of word sequences given an
acoustic sequence�
The next two sections of this paper review the basic elements of traditional HMMs �section �� and their

application to speech recognition �section 	�� The remaining sections describe extensions of HMMs and
Markovian models related to HMMs� i�e�� hybrids with Arti�cial Neural Networks in section �� Input�Output
HMMs in section � �including Markov switching models in section ���� asynchronous Input�Output HMMs
in section ��	�� generalizations of HMMs called weighted transducers in section  �useful to combine many
Markovian models�� and �nally� state space models �Markovian models with continuous state� in section ��

� Hidden Markov Models

In this section we remind the reader of the basic de�nition of an HMM in a tutorial�like way� We formalize
the assumptions that are made� and describe the basic elements of algorithms for HMMs� The algorithms to
estimate the parameters for HMMs will be discussed in more details in section ��� after we have generalized
HMMs to Input�Output or conditional HMMs�
AMarkovmodel ���
 of order k is a probability distribution over a sequence of variables qt� � fq�� q�� � � � � qtg
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qq q q qt t+1 t+2t-1t-2

......

Figure �� Bayesian network representing the independence assumptions of a Markov model of order ��
P �qtjq

t��
� � � P �qtjqt��� qt���� where q

t��
� � fq�� q�� � � � � qt��g

�

with the following conditional independence property�

P �qtjq
t��
� � � P �qtjq

t��
t�k��

Since qt��t�k summarizes all the relevant past information� qt is generally called a state variable� Because of
the above conditional independence property� the joint distribution of a whole sequence can be decomposed
into the product

P �qT� � � P �qk� �

TY

t�k��

P �qtjq
t��
t�k��

The special case of a Markov model of order � is the one found in most of the models described in this
paper� In this case� the distribution is even simpler�

P �qT� � � P �q��
TY

t��

P �qtjqt����

and it is completely speci�ed by the so�called initial state probabilities P �q�� and transition probabil�

ities P �qtjqt����
To illustrate the concept of a Markov model of order k� let us consider the following simple example�

A robot can be at each discrete time step in one of n discrete positions on a grid� these are the di�erent
states� or values of the state variable at time t� At each time step� it jumps from one position to another
position or stays at the same position� with probabilities that depend on the k last positions in which it
was� For example� if k � �� the probability distribution for the next position only depends on its current
position� A plausible dependency is that it may have a high probability of jumping to a nearby position
�in the grid� or to stay where it is� and a low probability of jumping to a remote position� The model is
completely characterized by these conditional probabilities� and it can be estimated by simply observing a
long trajectory of the robot and counting how many times it jumps from one position to another�
A Bayesian network ���
 is a graphical representation of conditional independencies between random

variables� A Bayesian network for a Markov model of order � is shown in Figure �� The �gure shows a directed
acyclic graph �DAG�� in which each node corresponds to a random variable� An edge from variable A to
variable B implies a causal and direct in�uence of A on B� The absence of an edge between A and B implies
a conditional independence between variables A and B� even though there may exist a path between A and
B� Conditioning on intermediate variables on paths between A and B can make A and B independent� More
speci�cally� the joint probability distribution of the set of random variables V � fA�� � � � � Ang represented
in the graph �with arbitrary connectivity� is given by the product

P �A�� � � � � An� �

nY

i��

P �Aijparents�Ai��

where parents�A� � fB � V j there is an edge from B to Ag� See ���� ��� ��� ��
 for more formal de�nitions�
and pointers to related literature on graphical probabilistic models and inference algorithms for them� See ����
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�	
 for relations between HMMs and other graphical models such as Markov random �elds and Kalman �lters�
and see ���
 for an application of these ideas to Turbo�decoding� Other formulations of HMMs as graphical
models have been proposed and applied successfully to speech recognition ���� �
� As also exploited in the
review presented here� the graphical model formulation of ���� �
 lends itself naturally to extensions such as
the introduction of context variables or factoring of the state variable� Note that almost all the probabilistic
models described in this paper can be cast in the framework of these Bayesian networks�
In many Markovian models� the transition probabilities are assumed to be homogeneous� i�e�� the same

for all time steps� For example� for Markov models of order �� P �qtjqt��� � P �q�jq��� �t� With homogeneous
models� the number of parameters is much reduced� and the model can be trained on sequences of certain
lengths and generalize to sequences of di�erent lengths� It makes sense to use such models on sequential data
which shows temporal translation invariance� Other models� such as Input�Output �or conditional� HMMs
�section ��� are inhomogeneous� di�erent transition probabilities are used at di�erent time steps� However�
since the transition probabilities are not directly the parameters of the model but are instead obtained as a
parameterized function of the previous state and other conditioning variables� the same advantages stated
above apply� with more ability to deal with some of the changes in dynamics observed in di�erent parts of
the sequences�
In most applications� the state variable is discrete and the conditional distribution of the state variable at

time t is given by a multinomial distribution� An exception to this approach is brie�y discussed in section ��
with �continuous�state HMMs� �more generally called state�space models��

��� Hidden State

One problem with Markov models of order k is that they quickly become intractable for large k� For example�
for a multinomial state variable qt � f�� � � � � ng� the number of required parameters for representing the
transition probabilities is O�nk���� This necessarily restricts one to using a small value of k� However� most
observed sequential data of interest do not satisfy the Markov assumption for k small� As stated above� it
may however be that the sequential data to be modeled warrants the hypothesis that at time t� past data in
the sequence can be summarized concisely by a state variable� This is precisely what Hidden Markov Models
embed� we do not assume that the observed data sequence has a Markov property �of low order�� however�
another� unobserved but related variable �the state variable� is assumed to exist and to have the Markov
property �with low order� typically k � ��� HMMs are generally taken to be of order � because an HMM of
order � can emulate an HMM of any higher order by increasing the number of values that the state variable
can take�
To return to our robot example� suppose that when the robot is in a particular position it can do di�erent

actions� with di�erent probabilities� The problem now is that we do not observe the trajectory of the robot�
only the actions that it performs at each time step� From this we will try to infer both transition probabilities
from position to position� and emission probabilities� which characterize the distribution over actions at each
position�
The relation between the observed sequence yt� � fy�� � � � � ytg and the hidden state sequence q

t
� is shown

graphically in the Bayesian network of Figure � and by these conditional independence assumptions �for the
case of order ���

P �ytjq
t
�� y

t��
� � � P �ytjqt� ���

P �qt��jq
t
�� y

t
�� � P �qt��jqt� ���

In simple terms� the state variable qt summarizes all the relevant past values of the observed and hidden
variables when one tries to predict the value of the observed variable yt� or of the next state qt���
Because of the above independence assumptions� the joint distribution of the hidden and observed vari�
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qq q q qt t+1 t+2t-1t-2

t t+1 t+2t-1t-2 y y y yy

Figure �� Bayesian network representing graphically the independence assumptions of a Hidden Markov
Model �order ��� The state sequence is q�� � � � � qt� � � �� and the output �or observation� sequence is
y�� � � � � yt� � � ��

ables can be much simpli�ed� as follows�

P �yT� � q
T
� � � P �q��

T��Y

t��

P �qt��jqt�

TY

t��

P �ytjqt� �	�

The joint distribution is therefore completely speci�ed in terms of

�� the initial state probabilities P �q���

�� the transition probabilities P �qtjqt��� and�

	� the emission probabilities P �ytjqt��

In many applications in which the state variable is a discrete variable� all the state sequences are forced
to start from a common initial state �i�e�� P �q�� is � for this value of the state and � for the other values� and
end in a common �nal state� and many transition probabilities are forced to have the value �� using prior
knowledge to structure the model� In the speech recognition literature� one often talks of states to mean the
di�erent values of the state random variable� and of a transition between two states �for which the transition
probability is non�zero�� To represent the structure imposed by the choice of zero on non�zero transition
probabilities �i�e�� the existence of transitions�� one talks of the topology of an HMM� Such a topology is
represented in a graph such as the one of Figure 	� in which nodes represent values of the state variable �i�e��
states�� and arcs represent transitions �i�e�� with non�zero probability�� Such a graph should not be confused
with the graph of Bayesian networks introduced earlier� in which each node represents a random variable�
In a common variant of the above model� the emissions are not dependent only on the current state but

also on the previous state �i�e�� on the transitions��

P �yT� � q
T
� � � P �q��P �y�jq��

TY

t��

P �qtjqt���P �ytjqt� qt����

The computation of P �yT� � q
T
� � is therefore straightforward �done in time O�T ��� However� q

T
� is not ob�

served� and we are really interested in representing the distribution P �yT� �� Simply marginalizing the joint
distribution yields an exponential number of terms �here when q is discrete��

P �yT� � �
X

qT
�

P �yT� � q
T
� �

In the case of discrete states� there is fortunately an e�cient recursive way to compute the above sum� based
on a factorization of the probabilities that takes advantage of the Markov property of order �� The recursion
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Figure 	� Example of a left�to�right topology for an HMM which may be used in a speech recognition
system to represent the distribution of acoustic sequences associated with of a unit of speech �e�g�� phoneme�
word�� A node represents a value of the state variable qt� An arc represents a transition with non�zero
probability between two values of the state variable� The oval in this picture corresponds to a symbolic
meaning �e�g�� a word� associated to the group of states within the oval�

is not on P �yt�� itself but on P �y
t
�� qt�� i�e�� the probability of observing a certain subsequence while the state

takes a particular value at the end of that subsequence�

P �yt�� qt� � P �ytjy
t��
� � qt�P �y

t��
� � qt� ���

� P �ytjqt�
X

qt��

P �yt��� � qt� qt���

� P �ytjqt�
X

qt��

P �qtjqt��� y
t��
� �P �yt��� � qt���

P �yt�� qt� � P �ytjqt�
X

qt��

P �qtjqt���P �y
t��
� � qt��� ���

where we used the two Markov assumptions �on the observed variable and on the state� respectively to obtain
the second and last equation above� The recursion can be initialized with P �y�� q�� � P �y�jq��P �q��� using
the initial state probabilities P �q��� This recursion is true whether the model is homogeneous or not �and
the probabilities can be conditioned on other variables�� This recursion is central to many algorithms for

HMMs� and is often called the forward phase� Let us note y
Tp
� �p� for the p�th sequence of a training data

set� of length Tp� The above recursion allows to compute the likelihood function l��� �
Q

p P �y
Tp
� �p�j���

where � are parameters of the model which can be tuned in order to maximize the likelihood over the training

sequences y
Tp
� �p�� The computational cost of this recursion is O�Tm� when T is the length of a sequence

and m is the number of non�zero transition probabilities at each time step� i�e�� m � n� �where n is the
number of values that the state variable qt can take�� Note that in many applications m� n� because prior
knowledge imposes a structure on the HMM� in the form of zero probability for most transitions�
Once P �yT� � qT j�� is obtained� one can readily compute the likelihood P �y

T
� j�� for each sequence as follows�

P �yT� j�� �
X

qT

P �yT� � qT j���

Note that we sometimes drop the conditioning of probabilities on the parameters � unless the context
would make that notation ambiguous�
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��� Choice of Distributions

����� Transition Probabilities

HMMs are conventionally taken to have a discrete�valued hidden state� with a multinomial distribution for
qt �given the previous values of the state�� In this paper� we sometimes use the shortcut often found in
papers on HMMs for speech recognition and talk about di�erent states instead of di�erent values of the state
random variable�
In the discrete state case� if the model is homogeneous� the transition parameters �for Markov models

of order �� can be represented by a matrix of transition probabilities Ai�j � P �qt � ijqt�� � j�� In section �
we discuss continuous state models� also called state�space models� in which the next�state probability
distribution is usually a Gaussian whose mean is a linear function of the previous state�

����� Discrete Emissions

There are two types of emission probabilities� discrete� for discrete HMMs� and continuous� for continuous
HMMs� In the �rst case� yt is a discrete variable� and P �ytjqt� is generally taken to be multinomial� If
the model is homogeneous in the output distributions� its parameters are given by a matrix with elements
Bi�j � P �yt � ijqt � j�� However� in many applications of interest� yt is multivariate and continuous� To
obtain a discrete distribution� two approaches are common�

�� Perform a vector quantization ���
 in order to map each vector�valued yt to a discrete value quantize�yt��
and use P �quantize�yt�jqt� as emission probability� or more generally�

�� Use multiple codebooks ���
� i�e�� split the vector variable yt in sub�vectors yti which are assumed to be
approximately independent� quantize them separately �with maps quantizei�yti��� and useQ

i P �quantize i�yti�jqt� as emission probability� For example� in many speech recognition systems�
yt� represents spectral information at time t� yt� represents changes in spectrum� yt� represents the
local average of the signal energy at time t� and yt� its time derivative�

����� Continuous Emissions

For continuous HMMs� the two most commonly used emission distributions are the Gaussian distribution�
and the Gaussian mixture�

P �ytjqt � i� �
X

j

wjiN�yt��ij ��ij�

where wji � ��
P

j wji � �� and N�x����� is the probability of observing the vector x under the Gaussian
distribution with mean vector � and covariance matrix �� A variant of the continuous HMM with Gaussian
mixtures is the so�called semi�continuous HMM ���� �
� in which the Gaussians are shared and the parameters
speci�c to each state are only the mixture weights�

P �ytjqt � i� �
X

j

wjiN�yt��j ��j��

where the mixture weights play a role that is similar to the multinomial coe�cients of the discrete emission
HMMs described above�
As in many modeling approaches� there are many discrete features of an HMM which have to be selected

by the modeler� based on prior knowledge and�or the data� e�g�� the number of values of the state variable�
the topology of the HMM �forcing some transition probabilities to zero�� the type of distribution for the
emissions� which includes such choices as the number of Gaussians in a mixture� etc��� In this paper we will
basically not address this model selection question and restrict the discussion to the general use of prior
knowledge in the topology of speech recognition HMMs� and to the numerical free parameters� i�e�� those
that are chosen numerically with a learning or parameter estimation algorithm�
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����� Parameter Estimation

Up to this point we have only discussed the HMM as a model� Here we brie�y discuss the issue of learning
the parameters of the model� More details on learning algorithms will be given in sections ��� and 	���
For all the above distributions� the EM �Expectation�Maximization� algorithm ��� ��� ��� ��
 can be

used to estimate the parameters of the HMM in order to maximize the likelihood function l��� � P �Dj�� �Q
p P �y

Tp
� �p�j�� over the set D of training sequences y

Tp
� �p� of length Tp �indiced by the letter p�� The EM

algorithm itself is introduced below and discussed more formally in section ���� The EM algorithm can also
used for some graphical models �Bayesian networks� ��
�
When training with the EM algorithm� in addition to the emission distributions described in the previous

subsection� other emission distributions of the exponential family �or mixtures thereof� could also be used�
In speech and other sequence recognition applications� this algorithm can also be used when the HMM is
conditioned by the sequence of correct labels wL

� � fw�� � � � � wLg� i�e�� one chooses � which maximizes the
product of the class conditional likelihoods P �yT� jw

L
� � �� over the training sequences�

It should be noted that other criteria than the maximum likelihood criterion can be used to train HMMs�
for example to incorporate a prior on parameters� or to make the training more discriminant �focus more on
doing the classi�cation correctly�� For more complex distributions than those described above or for several
learning criteria other than maximizing the likelihood of the data� numerical optimization methods other
than the EM algorithm are often used� usually based on the derivative of the learning criterion with respect
to the parameters� When possible� the EM algorithm is generally preferred because of its faster convergence
properties�
In section ��� we will discuss EM more formally and in a general framework that includes both HMMs

and Input�Output HMMs� The basic principle of the EM algorithm is the following� Let us return to our
robot example� which jumps from position to position at each time step and takes an observed action each
time� If we knew the trajectory of the robot �in addition to the sequence of its actions�� it would be easy to
estimate the transition probabilities �by counting the relative frequencies of jumps� how many times it goes
from position i to position j� divided by how many times it is in position i� and the emissition probabilities
�similarly� by counting the frequencies of the di�erent actions in each position�� The estimated parameters
would therefore be normalized frequencies� However� we do not know the robot�s trajectory� One way to
understand the EM algorithm is that we will consider all the possible trajectories� but with a weight for
each trajectory that is the posterior probability of following that trajectory� given the observed actions and
the current values of the parameters� For each time step� these weights give a di�erent posterior probability
for being in one of the positions �one of the states�� Instead of obtaining normalized frequency counts for
the re�estimated parameters� we will obtain weighted frequency counts� with the weights being the posterior
probability of being in a particular state �or going from a particular state to the next state�� Because these
re�estimation formulae used the incorrect parameter values in the posterior weights� the new parameters may
not be exactly those that maximize the likelihood� but it can be shown that they will bring the likelihood
closer to a maximum� By iterating this procedure� we rapidly converge to a maximum of the likelihood�

��� The Viterbi Algorithm

Once a model class has been de�ned and the parameters of the model have been learned� there are many
things can be done with the model� In this subsection� we discuss how we can infer the state sequence given
the observation sequence �i�e�� in the robot example� infer the most likely trajectory of the robot given the
sequence of its actions��
In several applications of HMMs �as in speech recognition ���
 and molecular biology �	
 applications� for

example�� the hidden state variable is associated with a particular meaning �e�g�� phonemes and words� for
speech recognition�� To each state corresponds a classi�cation label �and several states are grouped together
with the same label� as in Figure ��� To each state sequence corresponds a sequence of classi�cation labels
�e�g�� words� characters� phonemes�� It is therefore useful� given an observed sequence yT� � to infer the most
likely state sequence qT� corresponding to it� This is achieved with algorithms that perform the following
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/dog/

/cat/
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Figure �� This �gure shows part of the topology of an HMM which may be used for recognizing connected
words� with groups of state values �represented by nodes here� associated with a meaning� e�g�� a word label�
A word HMM is represented by an oval that groups the corresponding set of states� A state sequence also
corresponds to a sequence of words� Transition probabilities between word models are given by the language
model�

maximization�

qT�� � argmaxqT
�
P �qT� jy

T
� � � argmaxqT

�
P �qT� � y

T
� �

The Viterbi algorithm �	
 �nds the above maximum with a relatively e�cient recursive solution �of com�
putational cost proportional to the number of non�zero transitions probabilities times the sequence length��
This is in fact an application of Bellman�s dynamic programming algorithm ��
� First let us de�ne

V �i� t� � max
q
t��

�

P �yt�� q
t��
� � qt � i�

which can be computed as follows� using the Markov conditional independence assumptions �equations �
and ���

V �i� t� � P �ytjqt � i�max
j

P �qt � ijqt�� � j�V �j� t���

j��i� t� � P �ytjqt � i�argmaxjP �qt � ijqt�� � j�V �j� t��� ��

with the initialization V �i� �� � maxq� P �y�jq��P �q��� and j��i� t� recording the �best previous state� from
state i at time t� We therefore obtain at the end of the sequence maxqT

�
P �yT� � q

T
� � � maxi V �i� T �� The

optimal qT�� can be obtained using j� in a backward recursion� starting from q�T � argmaxiV �i� T �� with
q�t�� � j��q�t � t�� Like the forward phase� the computation cost of the Viterbi algorithm is O�Tm� �where m
is the number of non�zero transition probabilities at each time step��
When the number of non�zero transition probabilities m is large� other graph search algorithms may

be used in order to look for the optimal state sequence� Some are optimal �e�g�� the A� search ��
� and
others are approximate but faster �e�g�� the beam search �
�� For very large HMMs �e�g�� for speech
recognition with several tens of thousands of words�� even these methods are not e�cient enough� The
methods that are employed for such large HMMs are based on progressive search� performing multiple
passes� See ��� �� �� ��
 for more details�
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� Speech Recognition with HMMs

Because speech recognition has been the most common application of HMMs� we will discuss here some of
the issues this involves� although this discussion is relevant to many other applications� See ���
 for a recent
survey of statistical methods for speech recognition� The basic speech recognition problem can be stated as
follows� given a sequence of acoustic descriptors �obtained by pre�processing the speech signal� e�g�� spectral
information represented by a vector of between approximately �� and �� numbers� obtained at a rate of
around �� millisecond per time step�� �nd the sequence of words intended by the speaker who pronounced
those words�

��� Isolated Speech Recognition

Let us �rst consider the case of isolated word recognition� which is simpler than connected speech recognition�
For isolated word recognition� a single HMM can be built for each word w within a preset vocabulary� With
these models one can compute P �yT� jw� for each word w within the vocabulary� when an acoustic sequence
yT� is given� When an a priori distribution P �w� on the words is also given� the most likely word w� given
the acoustic sequence can be obtained by picking the model which maximizes both the acoustic probability
and the prior�

w� � argmaxwP �wjy
T
� � � argmaxwP �y

T
� jw�P �w� ���

The computational cost for recognition is simply the number of words times the computation of the acoustic
probability for a word �forward computation� equation ��� The recognition time can however be signi�cantly
reduced by using search techniques mentioned in the previous section�
This application of HMMs exampli�es a typical situation in several applications� many observation

sequences are given� each with a single class label �here the correct word�� and we would like to use the
model to classify new sequences� This is a simple extension of the usual machine learning classi�cation
framework to the case of sequential inputs �rather than �xed�size vectors�� In the next section we look at a
case in which the class labels also have a sequential structure and we which to take advantage of it in the
model�

��� Connected Speech Recognition

A more interesting task is that of recognizing connected speech� since users do not like to pause between
words� In that case� we can generalize the isolated speech recognition system by considering the mapping
from an acoustic sequence to a sequence of words�

wl�
� � argmaxwL

�
P �wL

� jy
T
� � � argmaxwL

�
P �yT� jw

L
� �P �w

L
� � ���

The high�level task �which can occur in applications than speech recognition� is therefore to learn to map
sequences of symbols or vectors �acoustic observations� into shorter sequences of symbols �phonemes��
In the above equation we introduced a language model P �wL

� �� which characterizes the structural
dependencies in sequences of symbols �e�g�� phonemes� words�� See ���
 for a collection of review papers on
this subject� The language model is a crucial element of modern speech recognition systems �and speech
understanding systems� which translate speech into actions�� because most word sequences are very unlikely
in a particular language� and in a particular semantic context� The quality of the language model of humans
may be one of the most important factors in the superiority of speech recognition by humans over machines�
It is clearly not computationally practical to directly enumerate the word sequences wL

� above� The
solutions generally adopted are based on representing the language model in a graphical form and using
search techniques to combine the constraints from the acoustic model �P �yT� jw

L
� �� with those from the

language model �P �wL
� ��� A very common type of language model is based on restricting the context to

word bigrams �P �wijwi���� or trigrams �P �wijwi��� wi����� Such language models have a simple Markovian
interpretation and can be combined with the acoustic HMMs to build a large HMM in which transition
probabilities between HMMs representing a word �possibly in the context of other words� are obtained from
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Figure �� Example of hierarchical organization of speech knowledge in the topology of an HMM� Each level
can be represented by a di�erent weighted transducer or acceptor� Arcs represent transitions between HMM
states at a certain level �or groups of states at a lower level�� Low�level models �e�g� phoneme models� are
shared in many places in the overall HMM�
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/d/ /o/ /g/ time

Figure � The Viterbi or other search algorithms give a segmentation of the observation sequence in consec�
utive temporal segments associated with a classi�cation label� Here for example� the temporal segments are
associated with speech units for phonemes �d�� �o�� and �g� �part of a word �dog�� as in Figure ���

the language model� For example� P �wijwi��� may be used as a transition probability between the �nal state
of a HMM for word wi�� and the initial state of a HMM for word wi� as illustrated in Figure �� When more
context is used� di�erent instantiations of each word may exist corresponding to di�erent contexts� making
the overall HMM �representing the joint probability P �yT� � w

L
� �� very large� Such large HMMs are often not

represented explicitly in a computer but instead particular instances of a word HMM are �created� when
needed by a search algorithm that traverses the large �virtual� HMM� Transducers �see section � are an
elegant way to represent such complicated data structures in a uniform and mathematically well�grounded
framework� The Viterbi or other search algorithms may be used to look for the optimal state sequence� In
turn this state sequence corresponds to a sequence of words� Note that the most likely sequence of words
may be di�erent from the one obtained from the most likely state sequence� but it would be computationally
much more expensive to compute� In practice very good results are obtained with this approximation�
The most likely state sequence also gives a segmentation of the speech� i�e�� a partition of the observed

sequence in consecutive temporal segments� as illustrated in Figure �
For a given sequence of speech units �e�g�� words� phonemes�� this segmentation therefore gives an

alignment between the observed sequence and the �template� that the sequence of speech units represents�

��� HMM Topology from A Priori Knowledge

A priori knowledge about an application �such as speech and language� may be used to impose a structure
on an HMM and a meaning for the values of the state variable� We have already seen that each state may
be associated with a certain label� Furthermore� the topology of the HMM can be strongly constrained�
most transition probabilities are forced to be zero� Since the number of free parameters and the amount
of computation are directly dependent on the number of non�zero transition probabilities� imposing such
structure is very useful� Furthermore� imposing such structure can almost completely answer one of the
most di�cult questions in constructing an HMM �including not only its parameters but also its structure��
what should the hidden state represent� The most basic structure that is often imposed on speech HMMs
is the left�to�right structure� states �e�g� within a word HMM� are ordered sequentially and transitions go
from the �left� to the �right�� or from a state to itself� as in Figures 	� � and ��
The set of states is generally partitioned in subsets to which a particular linguistic meaning is attached

�e�g�� phoneme or word� in a particular context�� An example of the topology of a part of an HMM for speech
recognition is shown in Figure �� To reduce the number of free parameters and help generalize� designers of
speech recognition HMMs use the notion of a speech unit ���
 �representing a particular linguistic meaning
and the associated distribution on acoustic subsequences� which can be re�used �or shared� in many di�erent
places of an HMM� The simplest set of speech unit one can think of is simply the phoneme� For example� a
speech unit for phoneme �a� may be used in several higher�level units such as words that contain an �a� in
their linguistic de�nition� More complex speech units are context�dependent� they represent the acoustic
realization of a linguistic unit in the context �left or right� of other linguistic units� As illustrated in Figure ��
each word can be pronounced as a sequence of phonemes� each word HMM can be built as a concatenation
of corresponding speech units� If there are multiple pronunciations for a word� then a word HMM would be
made of several of these concatenations in parallel�
The constraints on the topology and sharing of parameters across states associated to di�erent instances

of the same speech unit represent very strong assumptions on the relation between the speech signal and the
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/the/ /dog/

Figure �� Example of a constrained HMM� representing the conditional distribution P �yT� jw
L
� �� Here y

T
� is

an acoustic sequence and wL
� is the sequence of two words �the� and �dog��

word sequence� and these assumptions are known to be too strong� The focus of much current research in
this �eld is therefore to build more faithful models �while keeping them tractable�� or make sure that the
imperfections of the model do not hurt too much the �nal decision taking� These assumptions� however�
have been found very useful in practice� in order to build the current state�of�the�art speech recognition
systems ���
 and applications to bioinformatics �	� 	
� See also in ��	
 the use of a prior topology to discover
sequential clusters in data� More generally� much research in learning language models addresses this issue
of learning a structure for the model� in addition to the parameters� See for example ���� ��
 and ��
 for
polynomial�time algorithms that constructively learn a probabilistic structure for the language by merging
states� and ���
 on the learnability of acyclic probabilistic �nite automata�

��� Learning Criteria

According to what learning criterion should we choose the parameters of the HMM� In this subsection we
discuss two types of criteria� those aimed at �tting the observed sequences� and those aimed at discriminating
among the observation sequences associated with di�erent classes �word sequences��
In many applications of HMMs such as speech recognition� there are actually two sequences of interest�

the observation �e�g�� acoustic� sequence� yT� � and the classi�cation �e�g� correct word� sequence� w
L
� � The

traditional approach to HMM speech recognition is to consider independently a di�erent HMM for each word
�or speech unit� and to learn the distribution of acoustic subsequences associated with each word or speech
unit� By concatenating the speech units associated with the correct word sequence wL

� � one can represent
the conditional acoustic probability P �yT� jw

L
� �� An HMM that is constrained by the knowledge of the correct

word sequence is called a constrained model� and is illustrated in Figure �� On the other hand� during speech
recognition� the correct word sequence is unknown� and all the word sequences allowed by the language model
must be taken into account� An HMM that allows all these word sequences is called a recognition model

�and it is generally much larger than a constrained model�� It represents the joint distribution P �yT� � w
L
� �

�or� when summing over all possible state paths� the unconditional probability P �yT� ���
A maximum likelihood criterion can then be applied to estimate the parameters of the speech

units that maximize the constrained acoustic likelihood� l��� �
Q

p P �y
Tp
� �p�jw

L
� �p�� ��� over all the training

sequences �indiced by p above�� For this purpose� the EM or GEM algorithms described in section ��� are
often used�
The above approach is called non�discriminant because it is based on learning the acoustic distribution

associated with each speech unit �i�e�� class�conditional density functions�� rather than learning how the var�
ious linguistic classes di�er acoustically� When trying to discriminate between di�erent interpretations wL

�

�i�e�� di�erent classes�� it is su�cient to know about these di�erences� e�g� using P �wL
� jy

T
� � or even directly

describing the decision surface in the space of acoustic sequences� The non�discriminant models contain the
additional information P �yT� �� since they learn P �yT� � w

L
� � � P �yT� jw

L
� �P �w

L
� � � P �wL

� jy
T
� �P �y

T
� �� That in�

cludes both P �wL
� jy

T
� � and P �y

T
� � but P �w

L
� jy

T
� � is su�cient to perform a classi�cation� so non�discriminant

approaches do more work� they learn P �yT� �� Furthermore� non�discriminant approaches strongly rely on
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the assumptions made on the form of the probability density of the acoustic data� Since the models chosen
to represent the data are generally imperfect� it has been found that better classi�cation results can often
be obtained when the objective of learning is closer to the reduction of the number of classi�cation errors�
Several approaches have been proposed to train HMMs with a discriminant criterion� The most common
are the maximum a posteriori criterion� to maximize P �wL

� jy
T
� �� and the maximum mutual information

criterion ���� ��� ��
� to maximize log
P �yT� jw

L
� �

P �yT
�
�
� The maximum mutual information criterion is therefore

obtained by comparing the log�probability of the constrained model� logP �yT� jw
L
� �� with the log�probability

the unconstrained recognition model� logP �yT� � � log
P

wL
�

P �yT� � w
L
� � allowing all the possible interpreta�

tions �word sequences�� Maximizing this criterion attempts to increase the likelihood of the correct �i�e��
constrained� model while decreasing the likelihood of all the other models� Other criteria have been proposed
to approximate the minimization of the number of classi�cation errors ���� ��
�
A gradient�based numerical optimization method is generally used with these criteria� the EM algorithm

cannot be used in general �an exception is the synchronous or asynchronous Input�Output HMM with discrete
observations� described in section ���

��� Performance

The performance of speech recognition systems based on HMMs varies a lot depending on the di�culty of
the task� Benchmarks to compare speech recognition systems have been set up by ARPA ���
 in the U�S�A��
The di�culty increases with the size of the vocabulary� the variability of the speech among the speakers�
and other factors� For example� on the ATIS benchmark �where the task is to provide airline information to
users� and the vocabulary has around ���� words�� laboratory experiments yielded around �� of incorrectly
answered queries ��	
� This task involves not only recognition but also understanding� On a large vocabulary
task set up by ARPA with around ���� words �no understanding� only recognition�� the word error rates
reported are below ���� However� performance of speech recognition systems is often worse in the �eld than
in the laboratories� Speech recognition is now used in commercial applications� as in the AT T telephone
network� This system looks for one of �ve keywords� It makes an error in less than �� of the calls and
processes around one billion calls per year ��	
�

��� Imbalance Between Emission and Transition Probabilities

One problem that is faced in classical applications of HMMs is that� on a logarithmic scale� the range of values
that emission probabilities P �ytjqt� can take is much larger from that of transition probabilities P �qt��jqt��
because typically there are only a few allowed transitions from a state to the next state� whereas the space
of observations is very large �e�g�� continuous��
As a consequence� the path chosen by the Viterbi �or other search� algorithm�

qT�� � argmaxqT
�
P �q��

T��Y

t��

P �qt��jqt�

TY

t��

P �ytjqt�� ���

is mostly in�uenced by the emission probabilities� When comparing two paths with equation �� what makes
the most di�erence is whether the emissions are well modeled by the sequence of states that is compatible
with the topology of the HMM� i�e�� with the choice of the existence or non�existence of transitions �obtained
by forcing some transitions to have zero probability�� In the extreme case� if the numerical value of non�zero
transition probabilities are completely ignored� the Viterbi algorithm only does a �dynamic time�warping�
match ���
 between the observation sequence and the sequence of probabilistic prototypes associated �through
the emission distributions� with a sequence of state values in the HMM� Some operational speech recognition
models actually ignore transition probabilities altogether� because of this problem� Many others introduce a
so�called �fudge factor� to adjust the weighing of acoustic and language model probabilities� This is usually
achieved by taking a linear combination of log�probabilities from the acoustic model �i�e�� emissions� and
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language model �i�e� transitions�� This was used for example in �	�
� These heuristic solutions point out a
weakness in our current probabilistic framework for modeling speech�
The notion of duration in speech models refers to the segmentation of the acoustic sequence into intervals

associated to di�erent speech units �e�g� phonemes�� Some phonemes tend to last longer than others �e�g��
plosives are very short� the duration of vowels can vary a lot� etc����� The distribution of durations associated
with each speech unit can in principle be represented by multiple states with a left�to�right structure and
appropriate transition probabilities between them� However� because of the imbalance problem� the only
constraint on durations that is really e�ective is the one obtained from the topology of the HMM� i�e�� by
forcing some transition probabilities to zero� Note that learning algorithms for parametric models� such as
the EM algorithm� cannot be used to learn such discrete structure� instead the topology of the HMM is often
decided a priori� Ignoring the value of non�zero transition probability corresponds to assigning a uniform
probability for the duration within certain intervals and zero outside these intervals�
In section � we discuss the recently proposed asynchronous Input�Output HMMs� which could signi�cantly

alleviate this problem�

� Integrating Artificial Neural Networks and HMMs

Arti�cial Neural Networks �ANNs� or connectionist models have been successfully used in several pattern
recognition and sequential data processing problems� Multi�layered ANNs ���
 can represent a non�linear
regression or classi�cation model� Di�erent researchers have proposed di�erent ways to combine ANNs
with HMMs� in particular for automatic speech recognition� What most of the proposed hybrids have in
common is that the neural networks are used to capture temporally local� but possibly complex and non�
linear dependencies� while the HMM is used to handle the temporal structure and the elastic time alignment
which is one of the strong and useful a�priori in speech HMMs� Put simply �but the details di�er�� the neural
networks have been generally used within the part of the model that represents the emissions �the type of
observations associated to each state�� How do these hybrids mainly di�er� there are several mathematical
formulations that have been proposed to integrate into a HMM the output of a neural network that takes
as input local speech observations� In some cases� the neural network and the HMM are trained separately�
whereas in some cases the training of both is with respect to a single criterion� This is normally the case
when the ANN is part of a Markovian probabilistic model �e�g�� to compute emission probabilities�� In some
approaches� the ANN is seen more as a preprocessor for the HMM� to transform the raw observations in
a form that is easier to model �but even in this case it is possible to train both with respect to a single�
discriminant criterion�� Finally� in some approaches� the ANN is used in a post�processing phase to re�ne
the scores that the HMM associates to each segment of speech�
The proposed advantages of such systems include more discriminant training� the ability to represent

the data with richer� non�linear models �in comparison to Gaussian or discrete models� and the improved
incorporation of context �by using as input multiple lagged values of the input variable�� Some models �such
as the Input�Output HMMs described in the next section� are also designed to learn long�term dependencies
better and to eliminate the problem of imbalance between emission and transition probabilities� therefore
yielding more e�ective models of duration� Several new variants of HMMs such as the ANN�HMM hybrids
attempt to address some of the modeling weaknesses in HMMs as they are used for speech recognition� such
as the incorrectness of the two Markov assumptions �with respect to the interpretation of state values that
is made in these models�� the poor modeling of phoneme duration �as discussed in section 	��� and the poor
use of some of the contextual information �including both short�term acoustic context and long�term context
such as prosody��
A left�to�right HMM can be seen as a �exible template and the Viterbi algorithm as a sophisticated way to

align that template to the observed speech� Since ANNs were successful at classifying individual phonemes�
initial research focused on using the dynamic programming tools of HMMs in order to go from the recognition
of individual phonemes �or other local classi�cation� to the recognition of whole sequences ��� ��� ��� ���
��� ��� ��� �	� ��� �
� In some cases ���� ��� �� �	� ��
� the ANN outputs are not interpreted as probabilities�
but are rather used as scores and generally combined with a dynamic programming algorithm akin to the
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Viterbi algorithm to perform the alignment and segmentation�
In some cases the dynamic programming algorithm is embedded in the ANN itself ��	� �
� Alterna�

tively� the ANN can be used to re�score the N�best hypotheses of phoneme segmentation produced with an
HMM ���
� by assigning posterior probabilities to the phonemes for each of the phonetic segments hypoth�
esized with the HMM� An HMM can also be viewed as a particular kind of recurrent ���
 ANN ���� ��
�
Although the ANN and the HMM are sometimes trained separately� most researchers have proposed schemes
in which both are trained together� or at least the ANN is trained in a way that depends on the HMM� The
models proposed by Bourlard et al� rely on a probabilistic interpretation of the ANN outputs ���� ��� �� ���
�
The ANN is trained to estimate posterior probabilities of HMM states� given a context of observation vec�
tors� P �qtjyt�k� � � � � yt��� yt� yt��� yt�k�� centered on the current time step� By normalizing these posteriors

with state priors P �qt�� one obtains scaled emission probabilities
P �ytjqt�

P �ytjy
t��

�
�
� These scaled emission probabil�

ities are used in the usual Viterbi algorithm for recognition� Training of the ANN is based on the optimal
state sequence obtained from the constrained HMM �with knowledge of the correct word sequence�� For
each time step� the ANN is supervised with a target value of � for the correct state and a target value of �
for the other states� This procedure has been found to converge and yield speech recognition performance
at the level of state�of�the�art systems ��� ���
� Bourlard et al� draw links between this procedure and the
EM algorithm� however� this procedure does not optimize a well�de�ned criterion during training� training
is based on the local targets provided by the constrained Viterbi alignment algorithm�
Another approach ��� ���� 	�
 uses the ANN to transform the observation sequence into a form that is

easier to model for an HMM that has simple �but continuous� emission models �e�g�� Gaussian or Gaussian
mixture�� The ANN is used as a non�linear trainable pre�processor or feature extractor for the HMM� In
that case� the objective of learning for the combined ANN�HMM system is given by a single criterion de�ned
at the level of the whole sequence� rather than at the level of individual observations or segments �e�g�� for
phonemes or characters�� In some applications of this idea� the ANN is viewed as an �object� spotter �e�g��
a phoneme or a character� for speech or handwriting recognition�� and the HMM as a post�processor that
can align the sequence of outputs from the ANN with a higher�level �e�g�� linguistic and lexical� model of the
temporal structure of the observed sequences� This model was introduced in ����
 for phoneme recognition�
It is also described in ��
� and was extended to character recognition in �	�
� The ANN transforms an input
sequence uT� into an intermediate observation sequence y

T
� � with a parameterized function y

T
� � f�uT� � ��� For

example� this function may capture some of the contextual in�uences� and transform the input in a way that
makes it more invariant with respect to the classi�cations of interest� A basic idea of the implementation
of this model is that the optimization criterion C used to train the HMM is a continuous and di�erentiable
function of the intermediate observations yt� Therefore� the gradients

�C
�yt

can be used to train the parameters

� of the ANN� gradient descent using the chain rule for derivatives �also called back�propagation ���
� yields
the parameter gradients

�C

��
�
X

t

�C

�yt

�yt

��
�

for a single sequence� Two criteria have been considered� the maximum likelihood criterion and the maximum
mutual information criterion� In both cases the derivatives �C

�yt
can be obtained from the state posteriors

P �qtjy
T
� � which would have to be computed for the EM algorithm�

In some cases of ANN�HMM hybrids� it is possible with an a priori idea of what the ANN should
accomplish to train the ANN and the HMM separately� However� it has been shown experimentally with the
above ANN�HMM hybrid how training the ANN jointly with the HMM improves performance on a speech
recognition problem ����� �
� bringing down the error rate on a plosive recognition task from ��� to ����
It has later been shown how using joint training with respect to a discriminant criterion on a handwriting
recognition problem �	�
 reduced the character error rate from ����� down to ���� �no dictionary�� or from
�� down to ���� �with a 	���word dictionary�� The idea of training a set of modules together �rather than
separately� with respect to a global criterion with gradient�based algorithms was proposed several years
ago ����� ��	� ��
�
Another way to integrate ANNs with HMMs in a mathematically clear way is based on the idea of
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Figure �� Bayesian network representing graphically the independence assumptions of a synchronous Input�
Output Hidden Markov Model� The state sequence is q�� � � � � qt� � � �� the output sequence is y�� � � � � yt� � � ��
and the input sequence is x�� � � � � xt� � � ��

Input�Output HMMs described in the next section�

� Input�Output HMMs

Input�Output Hidden Markov Models �IOHMMs� �
 �or Conditional HMMs� are simply HMMs for which
the emission and transition distributions are conditional on another sequence� called the input sequence� and
noted xL� � In that case� the observations modeled with the emission distributions are called outputs� and the
model represents not the distribution of sequences P �yT� � but instead the conditional distribution P �y

T
� jx

L
� ��

In the simpler models �rst presented here� the input and output sequences have the same length� but a
recent extension �section ��	� allows input and output sequences of di�erent lengths� Transducers �section �
which can be seen as generalizations of such conditional distributions� also allow input and output sequences
of di�erent lengths� The conditional independence assumption of a synchronous IOHMM are represented in
the Bayesian network of Figure ��
We say that HMMs are homogeneous �in the sense that the transition and emission probability distri�

butions do not depend on t� whereas IOHMMs are inhomogeneous �in the sense that the transition and
emission probability distribution change according to the input xt� so they change with time t��
In the simpler case in which the input and output sequences are synchronous� the mathematics of

IOHMMs is very similar to that of HMMs but more general� For this reason we will explain the EM
algorithm used to train HMMs �and IOHMMs� in this section �in section ����� Whereas in ordinary HMMs
the emission distributions are given by a homogeneous model P �ytjqt�� in IOHMMs� they are given by a time�
varying conditional model P �ytjqt� xt�� Similarly� instead of time�invariant transition probabilities P �qtjqt����
in IOHMMs we have P �qtjqt��� xt�� More generally values of the inputs xt�k� � � � � xt� � � � � xt�k at di�erent time
steps around xt can be used to condition these distributions� Whereas HMMs used for pattern recognition
are often trained by choosing parameters � to maximize the likelihood of the observations given the correct
classi�cation sequence� P �yT� jw

L
� � ��� IOHMMs may be trained to maximize the likelihood P �yT� jx

L
� � �� of

decision variables yT� given the actually observed variables x
L
� �

In the literature on learning algorithms ��� � �
� IOHMMs have been proposed for sequence processing
tasks� with complex emission and transition models based on ANNs� In the control and reinforcement learning
literature� similar models have been called Partially Observable Markov Decision Processes ����� ���� �
� In
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this case� the objective is not to model an output sequence given an input sequence� but rather� to �nd the
strategy �a sequence of actions which can be seen as the inputs for the model� which minimizes a cost function
de�ned on the sequence of outputs �which are observed�� In this case the IOHMM represents the probabilistic
relationship between the actions and the observations� with a hidden state variable� Although the HMMs
such as those described in section 	 for speech recognition do represent the conditional probability P �yT� jw

L
� �

of an observation sequence given a classi�cation sequence� this is achieved by deterministically attaching a
symbolic meaning to the di�erent values of the state variable� Instead� in IOHMMs� the state variable is
stochastically related to the output variable� and for classi�cation problems� one can view the output sequence
as the classi�cation sequence and the input �observed� sequence as the conditioning sequence� Recent work
related to IOHMMs is the research on modeling tree�shaped data structures �instead of sequences�� but using
a similar probabilistic framework ���
�
In some applications� it is conceivable that either HMMs or IOHMMs be used� For example� in speech

recognition we use HMMs to model P �acousticsjwords�� but we could instead use �asynchronous� IOHMMs
to model P �wordsjacoustics�� In econometrics� we can use HMMs to model a univariate or multivariate
time�series yT� with a model for P �y

T
� �� Instead we could consider that the dependent variable y

T
� should be

predicted using both its past value and independent variables xT� � with an IOHMM P �yT� jx
T
� �� Even if we

believe the xT� to be relevant� we could still use an HMM instead� to model the joint sequence P �xT� � y
T
� ��

Potential advantages of IOHMMs over HMMs are the following�

� When the output sequence is discrete� the training criterion is discriminant� since we use the maximum
a posteriori criterion� Furthermore� when the input sequence is also discrete� the EM algorithm can be
used even though the training criterion is discriminant�

� The local models �emission and transitions� can be represented by complex models such as ANNs�
which are �exible non�linear models more powerful and yet more parsimonious than the Gaussian
mixtures often used in HMMs� Furthermore� these ANNs can take into account a wide context �not
just the observations at time t but also neighboring observations in the sequence�� without violating
the Markov assumptions� because there are no independence assumptions on the conditioning input
variable� The ANN can even be recurrent ���� �
 �to take into account arbitrarily distant past contexts��

� Let us compare an IOHMM P �wL
� jy

T
� � and an HMM representing P �yT� jw

L
� �� In this case� the output

variable of the IOHMM �w�s� is discrete and takes relatively few values �e�g�� phonemes�� whereas
the output variable of the HMM �acoustic vector� can take many more values� As explained in sec�
tion 	�� having less output values reduces the problem of imbalance between transition probabilities
and emission probabilities �and would make the e�ect of transition probabilities more signi�cant��

� We expect long�term dependencies to be more easily learned in IOHMMs than in HMMs� because the
transition probabilities are less ergodic �i�e�� the state variable does not �mix� and forget past contexts
as quickly�� See ����
 for a development of this argument and an analysis of the di�culty of learning
to represent long�term dependencies in Markovian models in general�

� Even where there is no obvious input�output relation to model �e�g�� when modeling a time�series yT� ��
and it would seem that HMMs would be more appropriate� IOHMMs could o�er something particular�
With an IOHMM� one could use prior knowledge about what kind of transformations f�yt�� of the
past series yt� could be useful as summarizing informations used to condition the distribution of a
future value yt��� These summarizing functions could be added to the ordinary state variable qt�� as
conditionning variables in �input� of an IOHMM� so the emission distribution would have the form
P �yt��jqt��� f�y

t
���� with f�yt�� playing the role of an input variable for an IOHMM� In that case� we

would need less values for the state variable qt since f�y
t
�� already provides much information about

the past sequence�

In the next section we describe particular kinds of IOHMMs which have been proposed in the econometrics
literature� In the following section� we present the EM algorithm which can be used for training both HMMs
and synchronous HMMs�



Neural Computing Surveys �� �������� ����� http���www�icsi�berkeley�edu��jagota�NCS ���

��� Markov Switching Models

Markov Switching Models have been introduced in the econometrics literature ����� ���� ���� ��� ��
 for
modeling non�stationarities due to abrupt changes of regime in the economy ����� ���� ��	� ���� ���� ��
�
The point of view taken by most econometricians is to extend time�series regression models by the addition

of a discrete hidden state variable� which allows changing the parameters of the regression models when the
state variable changes its value�
Consider for example the time�series regression model

yt � �qtxt ! et ����

where yt is the observation �or output� variable at time t� et is a random variable with a zero�mean Gaussian
distribution� and xt is a vector of input variables �e�g�� past values of y� as in ���
� or present and past values
of other observed variables�� There are di�erent sets of parameters �qt for the di�erent �discrete� values of the
hidden state variable qt� This basically speci�es a particular form for the emission distribution P �ytjqt� xt�
of a IOHMM� a Gaussian distribution whose mean is a linear function of xt� with di�erent parameters for
the di�erent values of qt� The conditional mean can also be a non�linear function of xt� e�g�� using a neural
network� as in the applications of IOHMMs to modeling the distribution of future returns described in ���

�which shows that these non�linear models can yield to improved modeling of the distribution of stock market
indices future returns��
To obtain a complete picture of the joint distribution of yT� and q

T
� �given past observed values�� one then

needs to specify the distribution of the state variable� In most of the cases described in the econometrics
literature� this distribution is assumed to be time�invariant� and it is speci�ed by a matrix of transition
probabilities �as in ordinary HMMs�� although more complicated speci�cations have been suggested ����
���� ���� ���� ���
�
The representation of the variance of et in equation �� can be made more complex than a single constant

parameter� variance can also be a function of the state variable as well as of the input variables� See for
example ����� ���
 for Markov�switching ARCH models applied to analyzing respectively the changes in
variance of stock returns and interest rates�
The parameters of Markov switching models can generally be estimated using the EM algorithm �����

���� ���� ���
 to maximize the likelihood P �yT� j�� �see next section�� Other inference algorithms are used
in econometrics applications ���	
� for �ltering� smoothing� and prediction� A �ltering algorithm is used to
compute an estimate of the current distribution P �qtjy

t
�� x

t
�� for the state given past inputs and outputs� A

smoothing algorithm is used to compute an a�posteriori estimate of the distribution P �qtjy
T
� � x

T
� � for the

state path� given the whole sequence of inputs and outputs� Finally a prediction algorithm allows one to
compute the distribution of future states and outputs given past input and output observations�
In section �� we consider state�space models �in which the hidden state variable is continuous� and hybrids

with both discrete and continuous state variables� which have been used in similar time�series modeling
applications�

��� EM for HMMs and IOHMMs

In this section we will sketch the application of the EM �Expectation�Maximization� algorithm ��
 to
HMMs ���� ��� ��
 and IOHMMs� The papers by Baum et al� present a special case of the EM algorithm
applied to discrete emissions HMMs� but were written before the general version of the EM algorithm was
described ��
�
The basic idea of the EM algorithm is to use a hidden variable whose joint distribution with the observed

variable is �simpler� than the marginal distribution of the observed variable itself� In HMMs and IOHMMs�
the hidden variable is the state path qT� � We have already seen that P �y

T
� � q

T
� � is simpler to compute and

represent than P �yT� � �
P

qT
�

P �yT� � q
T
� �� Because the hidden variable is not given� the EM algorithm looks at

the expectation �over all values of the hidden variable� of the log�probability of the joint distribution� This
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expectation� called the auxiliary function� is conditioned on the previous values of the parameters� �k� and
on the training observations� The E�Step of the algorithm consists in forming this conditional expectation�

F ��j�k� � EQ�logP �Y �QjX � �� j Y �X � �
k
 ����

where EQ is the expectation over Q� Y � fyT�� ���� � � � � y
TN
� �N�g is the set of N output sequences� and

similarly X and Q are respectively the sets of N input and N state sequences� The EM algorithm is an
iterative algorithm successively applying the E�Step and the M�step� The M�Step consists in �nding the
parameters � which maximize the auxiliary function� At the kth iteration�

�k�� � argmax�F ��j�
k�� ����

It can be shown ��
 that an increase of F brings an increase of the likelihood� and this algorithm converges
to a local maximum of the likelihood� P �YjX � ��� When the above maximization cannot be done exactly
�but F increases at each iteration�� we have a GEM �Generalized EM� algorithm� The maximization can in
general be done by solving the system of equations

�F ��j�k�

��
� � ��	�

For HMMs� IOHMMs and state space models with simple enough emission and transition distributions�
this can be done analytically� We will discuss here the case of discrete states� where the expectation in
equation �� corresponds to a sum over the values of the state variable� and the solution of equation �	 can
be obtained e�ciently with recursive algorithms� To see this� we will �rst rewrite the joint probability of
states and observations by introducing indicator variables zi�t with value � when qt � i and � otherwise�

logP �yT� � q
T
� jx

T
� � �� �

X

t�i

zi�t logP �ytjqt�i� xt� �� !
X

t�i�j

zi�tzj�t�� logP �qt�ijqt���j� xt� ��

The overall joint log�probability for the whole training set is a sum over the training sequences of the above
sum� Moving the expectation in equation �� inside these sums� and ignoring the p indices for sequences
within the training set �which would make the notation very heavy��

F ��j�k� �
X

p�t�i

EQ�zi�tjx
T
� � y

T
� � �

k 
 logP �ytjqt�i� xt� ��

!
X

p�t�i�j

EQ�zi�t� zj�t��jx
T
� � y

T
� � �

k
 logP �qt�ijqt���j� xt� ��

Note how in this expression the maximization of F with respect to the parameters � of the emission and
transition probabilities have been completely decoupled in two separate sums� To simplify the notation �and
because they are often ignored in practice by forcing all state sequences to start from the same state� we
have ignored the initial state probabilities� In the M�Step� the problem becomes one of simple likelihood
maximization for each of the di�erent types of distributions� but with weights for each the probabilities in
the above sums� These weights are the state posterior probabilities

P �qt�ijx
T
� � y

T
� � �

k� � EQ�zi�tjx
T
� � y

T
� � �

k
�

and the transition posterior probabilities

P �qt�i� qt���jjx
T
� � y

T
� � �

k� � EQ�zi�t� zj�t��jx
T
� � y

T
� � �

k
�

Let us now see how these posterior probabilities� which we will note P �qtjx
T
� � y

T
� � and P �qt� qt��jx

T
� � y

T
� � to

lighten the notation� can be computed with the Baum�Welch forward and backward recursions ���� ��� ��
�
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We have already introduced the forward recursion �equation ��� which yields P �yt�� qtjx
T
� � recursively�

Note that P �yt�� qtjx
T
� � can be normalized to perform the �ltering operation� i�e�� to obtain P �qtjy

t
�� x

t
���

Using the two Markov assumptions �the equivalent of equations � and � conditioned on the input se�
quence�� the Baum�Welch backward recursion can be obtained�

P �yTt��jqt� x
T
� � �

X

qt��

P �yt��jqt��� xt���P �qt��jqt� xt���P �y
T
t��jqt��� x

T
� �

By multiplying the results of the forward and backward recursion and normalizing by the output sequence
probability� we obtain the state posteriors �i�e�� the smoothed estimates of the state distribution��

P �qtjx
T
� � y

T
� � �

P �yt�� qtjx
T
� �P �y

T
t��jqt� x

T
� �

P �yT� �
�

Similarly� the transition posteriors can be obtained from these two recursions and from the emission and
transition probabilities as follows�

P �qt� qt��jx
T
� � y

T
� � �

P �ytjqt� xt�P �y
t��
� � qt��jx

T
� �P �y

T
t��jqt� x

T
� �P �qtjqt��� xt�

P �yT� �

Some care must be taken in performing the forward and backward recursions in order to avoid numerical
over or under �ow �usually this is accomplished by performing the computation in a logarithmic scale with
a small base��
The details of the parameter update algorithm depends on the particular form of the emission and

transition distributions� If they are discrete� in the exponential family� or a mixture thereof� then exact
�and simple� solutions for the M�Step exist �by using a weighted form of the maximum likelihood solutions
for these distributions�� For other distributions such as those incorporating an arti�cial neural network
to compute conditional discrete probabilities or the conditional mean of a Gaussian� one can use a GEM
algorithm or the maximization of the observations likelihood by numerical methods such as gradient ascent�
Note that maximizing F by gradient ascent is equivalent to maximizing the likelihood by gradient ascent�
This can be shown by noting that the quantities computed in the backward pass are in fact gradients of the
likelihood with respect to the quantities computed in the forward pass�

P �yTt��jqt� x
T
� � �

�P �yT� �

�P �yt�� qtjx
T
� �

�

When the representation of the state variable is more complicated than in ordinary HMMs �e�g�� with multiple
state variables�� performing the E�Step exactly becomes di�cult� See for example the models discussed in
section ����

��� Asynchronous IOHMMs

In a recent paper on asynchronous HMMs ����
� it is shown how to extend the IOHMM formalism to the case
of output sequences shorter than input sequences� which is normally the case in speech recognition �where
the output sequence would typically be a phoneme sequence� and the input sequence a sequence of acoustic
vectors�� For this purpose the states can either emit or not emit an output at each time step� according to
a certain probability �which can also be conditioned on the current input��
When conceived as a generative model of the output �given the input�� an asynchronous IOHMM works

as follows� At time t � �� an initial state q� is chosen according to the distribution P �q��� and the length of
the output sequence l is initialized to �� At other time steps t � �� a state qt is �rst picked according to the
transition distribution P �qtjqt��� xt�� using the state at the previous time step qt�� and the current input xt�
A decision is then taken as to whether or not an output yl will be produced at time t or not� according to
the emit�or�not distribution�
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In the positive case� an output yl is then produced according to the emission distribution P �yljqt� xt��
The length of the output sequence is increased from l�� to l� The parameters of the model are thus the initial
state probabilities� P �q� � i�� and the parameters of the emit�or�not� emission and transition conditional
distribution models� P �emit� or� not at tjqt� xt�� P �yljqt� xt� and P �qtjqt��� xt��
The application of the EM algorithm to this model is similar to the one already outlined for HMMs

and synchronous IOHMMs� but the forward and backward recurrences require amounts of storage and
computation that are proportional to the product of the input and output lengths� times the number of
non�zero transition probabilities �whereas ordinary HMMs and synchronous IOHMMs only require resources
proportional to the product of the input length times the number of transitions��
A recognition algorithm �which looks for the most likely output and state sequence� can also be derived�

similarly to the Viterbi algorithm for HMMs� This recognition algorithm has the same computational
complexity as the recognition algorithm for ordinary HMMs� i�e�� the number of transitions times the length
of the input sequence�
Asynchronous IOHMMs have been proposed for speech recognition ����
 but could be used in other

applications to map input sequences to output sequences of a di�erent length� They represent a particular
type of probabilistic transducers� discussed in the next section�

� Acceptors and Transducers

One way to view an HMM is as a way to weigh various hypotheses� For example� in speech recognition HMMs�
di�erent sequences of speech units �corresponding to a subset of the possible state sequences� are associated
with di�erent weights �in fact the joint probability of these state sequences and the acoustic sequence�� More
generally� weighted acceptors and transducers ��� �� ��� ��
 can be used to assign a weight to a sequence
�or a pair of input�output sequences�� Weighted acceptors and transducers are attractive in applications
such as speech recognition and language processing because they can conveniently and uniformly represent
and integrate di�erent types of knowledge about a sequence processing task� Another advantage of this
framework is that it deals easily with sequences of di�erent lengths� Furthermore� algorithms for transducers
and acceptors can be applied to weight structures which include but are not limited to probabilities �and this
can be useful when the sequence processing task involves the processing of numbers which do not necessarily
have a probabilistic interpretation��
A weighted acceptor maps a sequence into a scalar �which may be a probability� for example�� A

weighted transducer maps a pair of sequences into a scalar �which may be interpreted as a conditional
probability of one sequence given another one��
Weighted acceptors and transducers can be represented by labeled weighted directed graphs� The label

on arcs of an acceptor graph can be an element of the set of �output� values or it can be the special �null
symbol�� Two labels are associated with the arcs of a transducer graph� the input label and the output
label� both of which can take the special �null symbol� value� The output sequence associated with a path
of a graph associated with an acceptor or transducer is obtained from the sequence of non�null output values
along that path� Because of the null symbol� the input and output sequences need not have the same length�
A speech recognition HMM for which labels are associated with subsets of state values �i�e�� speech

units� is in fact a transducer� with weights that are probabilities� It represents the joint distribution of
speech unit label sequences and acoustic observations sequences� Transducers are convenient to represent
the hierarchical structure of linguistic units that designers of speech recognition systems usually embed in
HMMs� A language model P �wL

� � for speech recognition is in fact an acceptor that assigns a probability to
every possible sequence of labels in a certain language� An acoustic transducer P �yt�ju� assigns a probability
to each speech unit u �e�g� a phoneme in a particular context�� for a subsequence of acoustic data yt��
Intermediate transducers represent the mapping between sequences of speech units and sequences of words�
e�g�� P �uN� jw

L
� ��

A generic composition operation ��� �� ��� ��
 allows to combine a cascade of transducers and acceptors�
e�g�� the joint distribution over acoustics� phonetic speech units� and words �with conditional independence
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between the di�erent levels��

P �wL
� � u

N
� � y

T
� � � P �yT� ju

N
� �P �u

N
� jw

L
� �P �w

L
� �� ����

integrates di�erent levels of knowledge about the data �e�g�� as in the hierarchical representation of speech
shown in Figure ���
Search algorithms �like the Viterbi algorithm� beam search� A�� etc���� can be used to look for the most

likely sequence of values for all the intermediate variables �e�g�� states in HMMs� speech units� words��

��� Generalized Transducers

A way to generalize transducers was recently proposed ����� ��
 which allows any kind of data structure to
be used as �labels� �instead of discrete symbols� in the sequences to be processed� generalizes the transducers
to parameterized operations on weighted graphs� and allows a cascade of these generalized transducers and
acceptors to be jointly trained with respect to a global criterion�
In this framework� data processing is viewed as a transformation of directed acyclic weighted graphs into

other directed acyclic weighted graphs� which we will call hypotheses graphs� These graphs are di�erent
from the graphs which may be used to represent transducers and acceptors� They have a start node and an
end node� and they typically represent a set of hypotheses about the input data� each path from an initial
node to a �nal node corresponds to a distinct hypothesis� with a weight that is the sum �or the product�
of the weights on the individual arcs� For example� let us consider the special case of IOHMMs� when
given the input sequence xT� � we are able to compute with the IOHMM a hypothesis graph that contains
all the possible sequences yT� � with a weight P �y

T
� jx

T
� � for each path� In this case� the graph might simply

be a regular lattice with T � m nodes when yt � f�� � � � �mg� More generally� a hypotheses graph may
have a di�erent structure� and this structure may be data�dependent� This feature is used pro�tably in the
document recognition applications described in ����� ��
� When normalized over all the paths� these path
weights can be formally interpreted as probabilities for di�erent hypotheses �conditional on the assumption
that the correct hypothesis is one of those represented in the graph�� Note again that although these weights
can be formally interpreted as probabilities� they should be viewed as tools for decision�taking� rather than
the actual and true probabilities that certain events would take place�
An object that maps one such graph to another one is called a transformer and can be viewed as a

generalization of a transducer� In our example� the IOHMM that represents the model P �yT� jx
T
� � can be

used as a transformer� As in equation ��� many transformers can be stacked on top of each other� in a
processing style that resembles the multi�layer neural networks� but in which the intermediate variables are
not simple numeric vectors but instead graphs representing a set of sequential interpretations for some data�
with arbitrary data structures attached to the arcs of the graph�
Whereas training algorithms for IOHMMs or HMMs require that both input and output sequences be

observed and each IOHMM in a composition is trained separately� in this framework the di�erent transformers
can be trained jointly with respect to a single performance criterion� usually computed at the last stage of
the transformers cascade� As in multi�layer neural networks� the parameters of a transformer can be learned
by propagating gradients with respect to this criterion in the reverse direction�
This approach was successfully used as part of a document analysis system ����� ��
 that reads amounts

from check images� It is used by customers of NCR to process millions of checks per day� The trans�
ducers cascade incorporates a sequence of processing stages� such as generating �eld location hypotheses�
segmentation hypotheses� isolated character recognition hypotheses� and a language model�

��� Variable Length Markov Models

In this section we will brie�y mention some constructive learning algorithms for acceptors and transducers�
which learn to process discrete sequences �e�g�� for language modeling tasks��
A Variable Length Markov Model ���
 is a probability model over strings in which the state variable is

not hidden� its value is a deterministic function of the past observation sequence� However� this function
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uses more or less of the past sequence for di�erent contexts� hence the name� variable length Markov model�
For subsequences which are frequent� a deeper context is maintained� The probability of a sequence has the
form

P �yT� � �
Y

t

P �ytjy
t��

t�d�yt��
�

�
��

where d�yt��� � is the depth of context when all the preceding symbols are yt��� � When d � � the next
output distribution is unconditional� A tree of su�xes for past contexts is used to e�ciently represent this
distribution� with each node representing a particular context yt��t�d� and the children of a node representing
contexts that are deeper by one time step� A constructive� on�line �one�pass�� learning algorithm was
proposed to adaptively grow this tree ���
� Each node of the tree at depth d represents a particular value
yt��t�d of the context of depth d� and may be associated with a distribution over the next symbol yt� The basic
idea is to add a child to a node �i�e�� deeper context for certain values of the context� when one measures
a su�ciently large Kullback�Liebler divergence �or relative entropy� of the next�output distribution of the
child from that of the parent node� The potential branching factor of the tree is equal to the size of the
alphabet for yt� but most nodes may have much fewer children�
More recently� an extension of this idea to probabilistic but synchronous transducers was proposed ��	
�

The conditional distribution of an output sequence yT� given an input sequence x
T
� has the form

P �yT� jx
T
� � �
Y

t

P �ytjx
t

t�d�xt��
�

�
�

and it can also be represented by a similar tree� where each node represents a particular input context�
associated with a distribution on the next output given that input context� and the root is associated with
the unconditional distribution of the next output� An on�line� one�pass� constructive learning algorithm
for su�x tree transducers is proposed that adaptively grows the tree when new contexts are encountered
�possibly up to a maximum depth D�� A simple pruning algorithm can be used to discard deep nodes with
low posterior probability �i�e�� the normalized product of the probability of emitting the right data� times a
prior which depends exponentially on the depth�� Using these posteriors� a mixture over a very large family
of such trees can be formed� whose generalization performance tracks that of the best tree in that family ��	
�
These algorithms were used in language modeling �	�� �	
 and handwritten character recognition �	�
�

� State Space Models

In this section we draw a few connections between HMMs �which traditionally are based on a discrete hidden
state� and state space models� which can be seen as HMMs with a continuous vector state variable�
To keep the mathematics tractable� most state space models are restricted to a transition model which

is Gaussian with a mean vector that is a linear function of the previous state �and possibly of the current
inputs� for input�output models��

P �qtjqt��� xt� � N�qt�Aqt�� !Bxt���qt��� xt��

where N�x����� is the probability of observing vector x under a Gaussian distribution with mean � and
covariance matrix �� A and B are matrices which are parameters of the model� Various models for the
covariance ��qt��� xt� have been proposed� it may be constant� or it may depend on the previous state
and the current input� Like the Markov switching models introduced earlier� state space models are more
generally expressed functionally�

qt � Aqt�� !Bxt ! vt�

where vt is a zero�mean Gaussian random variable� Similarly� a Gaussian emission model can be expressed
as in equation ���
The Kalman �lter ����
 is in fact such a model� and the associated algorithms allow to compute

P �qtjx
t
�� y

t
�� in a forward recursion �thus solving the �ltering problem�� Similarly to Markov switching
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models� a backward recursion �the Rauch equations ����
� allows to compute the posterior probabilities
P �qtjx

T
� � y

T
� � for T � t �thus solving the smoothing problem��

In the context of real�time control and other applications where learning must be on�line� numerical
maximization of the likelihood can be performed recursively with a second�order method which requires only
gradients ����
� For o��line applications� the EM algorithm can also be used ��	�
� with a backward pass
that is equivalent to the Rauch equations�

	�� Hybrids of Discrete and Continuous State

One disadvantage of the discrete representation of the state is that it is an ine�cient representation in com�
parison to a distributed representation with multiple state variables� When the state variable can take n
values� only O�logn� bits of information about the past of the observation sequence are carried by its value�
For example� if instead n binary variables were used� exponentially more bits would be available� Unfortu�
nally� the types of algorithms presented in this paper would also require exponentially more computation�
but so�called factorial HMMs ��	�
 have been proposed with such properties� and approximations to the EM
algorithm whose cost does not grow exponentially� Models with such a factorial �or distributed� state are
very appealing for their expressive power� and there has recently been a lot of research on trying to make
computationally e�cient learning algorithms for them �see for example ��	�� �		� �	�� �	�� �	� �	�
��
On the other hand� models with a continuous�valued state have been typically restricted to a linear�

Gaussian model� again for reasons of computational tractability of the learning algorithm� In this case�
the problem is that the EM algorithm requires computing integrals �rather than sums�� which can be done
analytically in the Gaussian case� but would have to be done numerically in general�
To model both the abrupt and gradual changes in time series� several researchers have in fact proposed

hybrids of state space models and discrete�state HMMs �or IOHMMs�� also known as state space models with
switching� or jump�linear systems� See ��	�
 and ��
 for a review of such models� Many early models assume
that some of the parameters of the distribution are known a�priori� and others ���
 approximate the EM
algorithm with a heuristic� because the E�step would require exponential computations� Others ��	�� �	�

used expensive Monte�Carlo simulations to address this problem� Instead� in ��
� a function that is a lower
bound on the log likelihood is maximized with a tractable algorithm� This paper uses the idea of variational
approximation that has already been proposed in ��	
 for other intractable models� A simpler version of
this idea used in physics is the mean��eld approximation ����
 for statistical mechanics systems�
Note how this kind of hybrid model again underlines the trade�o� that may occur between the choice

of a model class that �ts well to the data distribution and the e�ciency of training such a model� Similar
trade�o�s �between generality of the model and intractability of the learning algorithm� have been described
for variants HMMs and other �nite�state learning algorithms in ���� ��� ��
�

� Challenges for Future Research

Hidden Markov models are powerful models of sequential data which have already been successfully used
in several applications� notably speech recognition� They could be applied in many other domains� Many
extensions and related models have been proposed in recent years� making such models applicable to an even
wider range of learning tasks� Many interesting questions remain unanswered� but recent research suggests
several promising directions�

� Much research focuses on designing models that better re�ect the data� for example trying to remedy
the discrepancy between the Markov assumptions �which simplify the mathematics and the algorithms�
and the interpretations forced on the state variable �e�g�� in speech recognition�� In this context� hybrids
of HMMs and ANNs and other recent models such as asynchronous Input�Output HMMs are promising
but a clear superiority in performance with respect to ordinary HMMs remains to be shown�

� One important other issue that was not yet directly discussed in this paper is that of learning an
appropriate representation for the hidden state in Markovian models� In most current applications
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�such as speech recognition� and econometric applications of IOHMMs and state space models�� a lot
of prior knowledge must be applied to the de�nition of what the hidden state represents in order to
successfully learn what remains to be learned�

What happens when we try to learn what the hidden state should represent� The state variable
keeps some informations about the past sequence and discards others� It therefore captures the tem�
poral dependencies� In ����
� it was shown that� for Markovian models �including HMMs� IOHMMs�
Markov switching models and Partially Observable Markov Decision Processes�� learning of long�term
dependencies in sequential data becomes exponentially more di�cult as the span of these dependen�
cies increases� However� it was found that this problem is not as bad for conditional models �such as
IOHMMs� conditional Markov switching models and Partially Observable Markov Decision Processes�
because the state to next�state transformation� being conditioned with extra information� is generally
more deterministic�

One promising direction that was proposed to manage this problem is to split the state variable in
multiple sub�state variables ��	�
� which may operate at di�erent time scales ����
� since the �slow�
variables can more easily represent longer�term context� See also related work using Bayesian networks
to factor the state variable to represent di�erent types of contexts ���� �� �	�
�

� The above models raise the general problem of intractability of the computation of the likelihood �or
of the E�Step of the EM algorithm�� To address such problems� ��	
 recently introduced a promising
methodology of variational approximation based on tractable substructures in the Bayesian network�
This idea was applied to hybrids of continuous and discrete state variables ��
�

� Transducers o�er a generalization of Markovian models that can be applied to a wide range of learning
tasks in which complex a priori structural knowledge about the task is to be smoothly integrated with
learning from examples� Local probabilistic assumptions and interpretations of the numbers that are
processed by the learning algorithm may be wrong �inconsistent with the data�� and the normalization
imposed by probabilities may correspond to too strong assumptions about the correct solution� Some
of the di�culties inherent in making such probabilistic assumptions and interpretations can be avoided
by removing the local probabilistic assumptions and delaying the probabilistic interpretation to the
�nal level of decision�

� The problem of non�stationary time�series is addressed to a certain extent by IOHMMs and Markov
switching models� as long as the new regimes in the time series resemble already seen regimes� However�
models that can constructively add new states and new distributions �to the extent that the amount
of information in the data permits it� would better re�ect many time series �such as those studied
by econometricians�� In this vein� we have brie�y mentioned variable�length Markov models �section
��� that add more context to the state variable as more training data is encountered� With such
constructive algorithms even more than with parametric models� a careful balance between �tting the
data and allowing more capacity for representing it must of course be found to avoid over�tting�

� An interesting direction of research� in particular for speech and language processing applications�
concerns the higher�level tasks of understanding and man�machine dialogue� Some advocate a complete
integration of the recognition task with the understanding and decision�taking modules� to drive the
learning with the e�ect of the actions taken by the machine� using for example methodologies developed
in the reinforcement learning community�
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