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CS598:Learning and NLP Lec 9: Discriminative Models Fall 2004

These notes outline the discussion we will have on discriminative approaches to classification.

1 Outline

• Most approaches in NLP make decisions based on linear functions over their feature space.

• The key difference between algorithms is how they determine the weight of the coefficients. This is
related to the loss function optimized by different algorithms.

• Different algorithms can be compared based on generalization and efficiency (both in training and
evaluation). Properties of the instance space (features and examples) and the function space can be
very significant in affecting generalization.

• Algorithms: Winnow, Perceptron, SVM, Adaboost.

• Feature space: Kernels vs. blowing up the feature space. What’s better and when?

• Multiclass classification: 1-vs-all; pairwise classification; constraint classification.

• Semi-supervised learning

2 Introduction

We have seen that the decision surface of the naive Bayes classifier and several other classifiers is a linear
function in its feature space.

In most cases, we are interested approximating a function y = f(x) from a collection of examples (x, y).
In binary classification problems we are interested in predicting y ∈ {−1,+1} which is typically done by
predicting

y = sgn(f(x)).

The classification error of the function f is given by:

Err(f(x, y) = I{yf(x)<0},

where IC denote the characteristic function of the set C, taking value 1 in C and 0 outside it.

We are interested in finding a function f that minimizes the empirical error

Erremp =
1
|S|

∑

x∈S

I{yf(x)<0}.
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This can be viewed as an approximation of the true error that we want to minimize.

However, in most cases, and specifically in the case of linear functions, minimizing this cost function is
NP-hard. Most algorithms therefore attempt instead to optimize a different cost function, which is an
upper bound of the true error function. Different algorithms optimize different cost functions, and provide
different justifications for why this is a reasonable cost functions.

There are many cost functions that have been studied. Examples include:

• Max Entropy: optimizes the logistic regression cost function.
∑

{x∈S}
ln(1 + exp{−f(x)y})

• Adaboost optimizes an exponential cost function:
∑

{x∈S}
exp{−f(x)y}

• SVM optimizes with respect to ∑

{x∈S}
max{1− f(x)y, 0}

• Least Mean Square optimizes with respect to:
∑

{x∈S}
(y − f(x))2

Justification vary from margin based analysis (in the case of Boosting and SVM) to relation to maximum-
likelihood (in the case of maximum entropy) and more direct methods.

In this lecture we will present two important families of algorithms the learn linear functions - additive up-
date algorithms and multiplicative update algorithms - analyze their properties and study their suitability
to NLP tasks.

3 Linear Functions

We study functions f : X → Y were Y = {0, 1} (or sometimes, for convenience, we will use Y = {−1,+1}
). The domain X can be in most cases either {0, 1}n or Rn. The algorithms we present can apply in both
cases.

We are concerned with linear functions, that is, functions that can be represented as a weight vector
w ∈ Rn. Given w ∈ Rn, x ∈ X, we predict:

y = 1 iff w · x ≥ θ

and otherwise we predict y = 0
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W.l.o.g we can always assume θ = 0 by appending a constant feature to the input vector x to offset the
effect of θ. In this new dimensional space we can now discuss only hyperplanes that go through the origin.

We say the a sample S = {(x, y)}m
1 is linearly separable if there exist a linear function f that is consistent

with it.

Many functions are linear:

• k−disjunctions

• k−conjunctions

• Threshold functions: Thk,m, (k out of m).

Which means that when we see a sample taken according to a function of this sort we know that it is
linearly separable.

Notice: some algorithms that learn linear representations may not be able to represent all linear functions.

In Problem set 3 you will show that a hypothesis generated using the naive Bayes algorithm cannot
represent the function Th3,7 (sample takes over the uniform distribution and labeled according to this
function).

Not all functions are linearly separable:

The function
f(a, b) = a⊕ b = ab̄ ∨ bā

is not linearly separable over the domain {a, b}. Function that belong to

• k−DNF

• k−DL

are not linearly separable over their original space; but, there is a simple and efficient (polynomial) trans-
formation that makes them linear.

4 On Line Learning

We will study the algorithms for learning linear functions in the on-line learning model. This is a natural
model of learning in which we assume that a change to the hypothesis is made only given the last example
observed. (This is non-trivial to formalize in a rigorous way). See comments later.

Learning protocol: Assume there is a hidden function f : X → Y . (Same can be done if we are learning
agnostically and simply see examples over (X,Y ) without the notion of a hidden function.)

For i = 1, 2, . . .
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1. Learner is given x(i) ∈ X

2. Learner predicts h(x(i)) ∈ Y

3. Learning is told y(i) ∈ X

Performance: The learner makes a mistake when h(x(i)) 6= y(i).

Define MA(c, S) to be the number of mistakes the algorithm A makes on the sequence S of examples
when the target concept is c.

MA(c) = maxsMA(c, S)

is the number of mistakes A makes on the worst sequence of examples.

MA(C) = maxc∈CsMA(C)

is the worst case number of mistakes A makes over all possible concepts and sequences.

Definition: We say that A is a mistake bound learning algorithm if MA(C) is polynomial in n, where n
is the complexity parameter of the target concept.

5 Comments

1. We could ask: how many mistakes the learner makes before reaching an ε - δ PAC behavior. Instead
we are talking about the number of mistakes before learning the concept exactly.

2. Before, in the PAC models, we had a notion of distribution; we did not have to know it, but we were
trained and tested on the same distribution. Now, we are tested on the worst case.

3. In the PAC model our performance was local – what is the probability of correct prediction in a
randomly drawn example (although we may take many examples to evaluate this probability). Now,
it is global – performance along time. Actually, even if we say that the algorithm makes 17 mistakes,
in general, we do not know when we are going to make these mistakes.

4. Main drawback: too simple; does not seem to model many important learning situations. Also –
we have no way to tell whether we have made all the mistakes. We do not know where we are.
But, there are some relations between mistake bound guarantees and pac guarantees. In fact, every
mistake bound algorithm can be shown to be pac (in the sample complexity sense).

5. Advantages: Very simple; many issues arise even in this setting. There is a generic way to transform
results here to results in other models. Although the definition seem to be weak, it is more strong
than we think. There is no natural learning problem for which we know how to prove that the
concept is PAC learnable but not mistake bound learnable.

6. Memory: Sometimes people like to think of on-line learning as a model in which we do not remember
the examples. We see an example, react, perhaps update our internal representation, but get rid of
the example, and go one. It turns out that this is not so easy to define formally. With the current
definition, it is possible for the algorithm to remember all the previous examples, and at every point
run a batch learning algorithm.

But, informally, you can think of an on-line algorithm as an algorithm that makes an update that
depends on a single example, the last one observed.
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Moreover, some of our algorithms will even be conservative algorithms, in the sense that they will
make an update only when they made a mistake. These are also called mistake driven algorithms.

7. Although we have defined mistake bound algorithms as those that make a polynomial number of
mistakes (where n, say, is the dimensionality of the instance space) in general, it is non trivial that
algorithms even have a finite mistake bound. If the hypothesis space is finite, than clearly there are
“generic” algorithms with a finite mistake bound (but they might not be efficient).

6 Perceptron

We will assume X = Rn, Y = {−1,+1}. The input is a sample S = {(x1, y1), . . . (xm, ym)} that is treated
in an on-line way. Typically, the algorithm is run repeatedly on this batch of data until it finds the weight
vector that is correct on all the training data.

We use ||x||2 to denote the Euclidean length of x, ||x||2 =
√∑n

1 x2
i (see appendix)

The algorithm was first studied by Rosenblatt [?].

1. Initialize w = 0 ∈ Rn

2. Predict the label of a new instance x to be ŷ= sgn(w · x).

3. If ŷ6= y update the weight vector to
w = w + rxy,

where r is some constant, called the learning rate. We will assume from now on that r = 1. (Notice
that in the case X = {0, 1}n, only coefficients of active features are updated.)

4. If the prediction is correct then w is not updated.

It was shown in the early sixties that if the data is linearly separable, then the perceptron algorithm will
make a finite number of mistakes. Therefore, if it is used to repeatedly cycle through the training set, it
will converge to a vector which correctly classifies all the examples. Moreover, the number of mistakes is
upper bounded by a function of the minimal gap between true separator and the examples, also known as
the margin.

Before we go on to prove it, notice the implications on some of your assignments, in cases
where you got 100% with one of the algorithms.

Theorem 6.1 (Block, Novikoff) Let S = {(x1, y1), . . . (xm, ym)} be a sequence of labeled examples with
||xi|| ≤ R. Suppose that there exists a vector u such that ||u|| = 1 and

yi(u · xi) ≥ γ

for all examples in the sequence. Then the number of mistakes made by the online perceptron algorithm on
this sequence is at most R/γ.



Oct. 26 2004 6

Proof: The intuition of the proof is very simple. The idea is that the weight vector you maintain, w,
should come pretty close to u. (It does not have to be identical to u, though).

We can, for example, consider the distance ||w − u||2 which is non negative, and show that it decreases
with every mistake the algorithm makes by some amount. This will bound the number of mistakes that
the algorithm can make. Actually, we will not consider exactly this distance but, for technical reasons, a
slightly different potential function:

Wt = ||wt − R2

γ
u||22.

Let wk be the weight vector used prior to the kth mistake (w1 = 0). We will look at

Wk+1 −Wk.

Recall that if the kth mistake occurs on (xi, yi) then

yi(wk · xi) ≤ 0

and that
wk+1 = wk + yixi.

Therefore

Wk+1 = ||wk+1 − R2

γ
u||22 = ||(wk − R2

γ
u) + yixi||22 (1)

= Wk + 2yixi(wk − R2

γ
u) + ||xi||22 = Wk + 2yixiwk − 2yixi R

2

γ
u + ||xi||22 (2)

≤ Wk − 2γ · R2

γ
+ R2 (3)

= Wk −R2 (4)

Where the inequality is due to (1) yi(wk · xi) ≤ 0 (second term is replace by 0), (2) yi(u · xi) ≥ γ and,
||x||22 < R2.

Now, since Wt > 0 for all t, its initial value is W1 = R4/γ2, and it goes down by at least R2 every time the
algorithm makes a mistake, then the number of mistakes it can make is at most R2/γ2 mistakes before it
gets to 0.

Therefore, the general bound we get (not restricting now ||u||2 = 1) is: The perceptron algorithm learns a
weight vector that correctly classifies all training data after at most M updates, where,

M =
||u||22 maxi ||xi||22

mini(u · xi)2
.
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7 Winnow

Similar to Perceptron, the Winnow [?] algorithm is also on-line and mistake driven. There are several
versions of the algorithm and we will discuss here the unnormalized positive Winnow version and mention
transformations to the general case later.

We will assume X = Rn, Y = {−1,+1}. The input is a sample S = {(x1, y1), . . . (xm, ym)}, that is treated
in an on-line way.

1. Initialize w = µ ∈ Rn

2. Predict the label of a new instance x to be ŷ= sgn(w · x).

3. If ŷ6= y update the weight vector to
w = w · exp rxy,

where r is some constant, called the learning rate. We will assume from now on that r = 1. (Notice
that in the case X = {0, 1}n, only coefficients of active features are updated.)

4. If the prediction is correct then w is not updated.

Notice that, as in the case of perceptron, this is a mistake driven algorithm, that is, we update the weights
only when a mistake is made. Also, when the instance space is Boolean, only weights of active features are
updated, and they can either be multiplied by a constant or divided by a constant.

Winnow has been generalize in several ways; like in the perceptron case, one can use it as a regressor rather
than a classifier. In this case, a threshold is not applied to the output, and the amount of update depends
on the difference |y− ŷ|. See [?].

The basic version of Winnow [?] actually uses two separate learning rates, one of promotion and another
for demotion. Since the proof of the general bounds of Winnow is a lot harder than that one for perceptron,
we will prove below a simple case, that will give some idea as to the properties of this algorithm. We will
first write down the algorithm in a more explicit way.

Initialize θ = n, w = (1, 1, . . . , 1)
Predict c(x) = 1 iff w · x ≤ θ
If prediction OK, do nothing
If c(x) = 1 but w · x ≤ θ, double all the weights wi where xi = 1 (promotion)
If c(x) = 0 but w · x ≤ θ, divide all the weights wi where xi = 1 by 2 (demotion)

We will study the case of a learning the a function in the class k-disjunctions using Winnow. Clearly, this
is a linear function. Notice that this class can be learned using a simpler elimination algorithm. (Think
about it). Also, it is clear that Perceptron can also learning this class of functions. However for both these
algorithms, the mistake bound is O(n), where n is the dimensionality of the instance space. (That is, there
are sequences of examples on which they will make these many mistakes.) For winnow, we will show:

Theorem 7.1 Winnow makes O(k lg n) mistakes on k disjunctions.
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Proof: Let u be the number of false negatives (promotions), and v the number of false positives (demotions)
(Alternatively - eliminations). The total number of mistakes is u + v.

Intuition: the worry may be that we may go back a force many times, We could promote and then demote,
and do it again and again.

Luckily, we are talking about disjunctions, so this intuition is false, since there are certain variables that
we will never demote - those that really appear in the function. This intuition leads to the idea that we
can bound the number of positive mistakes. Let us first see that we cannot promote too many times.

Lemma 7.2 u ≤ k · log 2θ

Proof: We consider the number of mistakes done on Positive examples. Consider the wi that corre-
spond to the variables in the disjunctions. Clearly, none of them is ever demoted, since they are never
active in a negative example. Hence, they are only promoted. Every time a mistake is made on a positive
example, at least one of these weights is promoted. This can go only until they all exceed theta. Then,
there will not be any more mistakes on positive examples. This implies the bound.

Now, that we have a bound on the number of mistakes on positive examples, we see that it must bound
also the number of mistakes on negative, since we cannot go back and forth too many times.

Lemma 7.3 Lemma 1: v ≤ n/Θ + u
We will argue by observing what happens to the total weight of the function. Initially,

∑n
1 = n.

Proof: Here the argument is going to be a little more subtle. We will consider the total weight of the
linear function, and use it to derive some relation between u and v. What can be said on the total sum of
weights ?

1. First consider the case of mistakes on positive examples: In each case, we double the weights of
the active attributes. Since we made a mistake in this round, their sum is less than θ, so we add at
most θ to the total weight.

TW (t + 1) ≤ TW (t) + θ

2. Now, the Negative examples

Here, we demote (in WINNOW1 – eliminate) the weights of the active variables. Since we made a
mistake on a negative example, we know that this sum exceeds θ, and therefore, the decrease in the
weights is at least θ/2.

3. Putting these together, we can tie u and v. We know that the sum of weights is bounded from above
by its initial value (n) plus all the additions (due to the at most), minus all the subtractions (due to
the at least). We also know that it remains positive. (The sum of the weights can never go below
zero, since they are either doubled or zeroed, and they start positive.)

Thus
0 ≤

∑
wi ≤ n + u.θ − v.θ ⇒ v ≤ n/θ + u

which implies the bound on u + v.
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7.1 The general case

Proving the general mistake bound for the family of the multiplicative update algorithms is harder. See [?]
for a discussion and some pointers. However, similar to the bound we gave for perceptron, we can give
here a bound.

Theorem 7.4 The winnow algorithm learn a weight vector that correctly classifies all training data after
at most M updates, where,

M =
2 ln 2N ||u||21 maxi ||xi||2∞

mini(u · xi)2
.

8 Relative Merits: Generalization (Convergence) Issues

To understand the relative merits of the two algorithms, we need to study the perceptron’s bound:

Mp = ||u||22 max
i
||xi||22

and winnow’s bound:
Mw = 2 ln 2n||u||21 max

i
||xi||2∞.

Notice that although these bounds are for the realizable case, very similar bounds could be shown also
for the non-realizable case. That is, the case in which the data is not linearly separable. In this case, the
quantities presented will be the loss of the algorithm relative to the best possible. That is, a bound of the
form:

M = Mbest + Mp(Mw)

where Mbest would be the number on mistakes made by the best linear separator on this data.

The bounds Mp,Mw are not comparable. Each has cases in which it is better. Also, these bounds assume
a good setting of parameters, which could be non trivial in both cases, and is typically a little harder for
Winnow. (Two learning rate parameters; non zero initial weights).

For clarity, we consider two extreme cases, for the Boolean instance space X = {−1, 1}n.

• First, assume that u has exactly k active features and the restn − k are inactive. That is, only k
input features are relevant for the prediction task. Then:

– ||u||2 =
√

k

– ||u||1 = k

– max||x||2 =
√

n

– max||x||∞ = 1

– We now have:
Mp = kn

and
Mw = 2k2 ln 2n.
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– Therefore, for k << n the winnow bound can be much better.

• Assume now that u = (1, 1, . . . , 1), and the instances are very sparse, say, the rows of a n × n unit
matrix. Then,

– ||u||2 =
√

n

– ||u||1 = n

– max||x||2 = 1

– max||x||∞ = 1

– We now have:
Mp = n

and
Mw = 2n2 ln 2n.

– Therefore, perceptron algorithm clearly has a better bound.

Thus, the bounds are incomparable, and for large n the difference can be arbitrarily large in either direction.
Notice that although we talk about it in terms of mistake bounds, it is very easy to translate this to
generalization performance. Intuitively, having better mistake bounds mean that, given unlimited data,
one algorithm will converge faster to the true concept. Equivalently, if the amount of data is limited, it
means that after a fixed amount of examples have been seen, the algorithm with the smaller mistake bound
is closer to convergence, and thus is likely to make less mistake on new, unseen examples.

8.1 Comments on Features and Relevancy

In many cases people refer to learning algorithms for linear functions, in particular, Winnow, as algorithms
that find the relevant features. This comment is meant to clarify that this is not a correct terminology.
Actually, an old tradition in Machine Learning, suggested to (1) preprocess the data to find what are the
relevant features (the feature selection process) and then (2) run a learning algorithm. This paradigm is
due to the lack of some algorithms to deal with high dimensional data. In our case, though, there is not
feature selection stage, but it is also not accurate to view the algorithms as selecting the “important” of
features. The algorithms simply converge fairly rapidly to a good linear function.

In the extreme case, which I will phrase here for the case of conjunctive concept, the following holds:

Theorem 8.1 ([?], Thm 5.1) Given a sample of data of dimensionality n that is consistent with some
conjunctive hypothesis, it is NP-hard to find a conjunctive hypothesis that is both consistent with this sample
and has the minimum number of attributes.

This shows that the problem of finding the best set of features is computationally hard. Winnow is not
doing it. It just finds a function that is consistent with the data (or, with the target concept), but not the
relevant features in it.
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9 Computational Issues

So far we have discussed the positive Winnow but, in general, this is not expressive enough. There is a
standard mapping of the input space into a higher dimensional one x = [x,−x]. In this way, one can
run the positive Winnow algorithm and use all the theoretical results as is. The problem is that in this
way there is no way to take advantage of the sparse instance space, for computational reasons. Using this
mapping, half of the features are going to be active in each example. When the dimensionality (number of
potential features) is very high and the number of active features in each example is relatively small, this
will have significant implications computationally.

The infinite attribution space [?] gives a way to do it. Basically, it represents examples as a list of all
active features. Working this way, the examples observed by the learning algorithm are actually examples
of variables size. This is the representation used in SNoW.

When working of a Boolean instance space, the general results that hold for Perceptron and Winnow hold
also in this model.

10 Discussion: Relationship with PAC learning

Is the previous algorithm good also in a PAC sense ?
Given the hard bound on the number of mistakes, one might expect that a mistake bound algorithm is
also a PAC learning algorithm.

Notice – the setting is different, but we can assume that we are give a mistake bound algorithm, and we
are using it now in a PAC setting. The question is, will it guarantee a PAC performance ?

Of course, if we wait until we make all the mistakes, are guaranteed. But we can see many examples (w/o
making mistakes) before we get to this number of mistakes.

Theorem 10.1 If the algorithm A learn a concept class C in the mistake bound model, then A also learns
C in the PAC model.

Proof: From the algorithm A with a mistake bound M , we will construct APAC in the following way:

Run A on the data seen, halting if the hypothesis survives from more than 1
ε log 1

δ subsequent examples.
Return h as the hypothesis of the algorithm APAC .

Since the number of mistakes of A is bounded by M we know for sure that APAC will terminate within
M
ε log 1

δ examples.

The probability that the algorithm accepts a hypothesis with error greater than ε is bounded by the
probability that a bad such hypothesis predicts 1

ε log 1
δ example correctly, which is at most

(1− ε)
1
ε

log 1
δ = ((1− ε)

1
ε )log 1

δ < elog 1
δ = δ
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11 Other linear classifiers

Several other classification methods have been shown to be quite successful in NLP applications but we
will not have time to present them in details.

Transformation Based Learning [?, ?, ?] is a methods that, in most applications, is equivalent to Decision
Lists, although in general (e.g., that way it was used for POS tags) it is not even a classifier citeBrill95.
See [?] for a presentation of TBL as a linear function.

Memory Based Learning [?, ?] is another popular and successful classification method that had been used
a lot in NLP. It is a lazy learning algorithm in the sense that it stores the training data as is and uses it
to make decisions, based on a distance metric and a k nearest neighbor algorithm at test time. See [?] for
details and analysis.

12 Appendix: Norms

Definition 12.1 We define the following norms on Rn:

1. The l1 norm: ||x||1 =
∑n

i=1 xi

2. The l2 norm: ||x||2 = (
∑n

i=1 x2
i )

1/2

3. The lp norm: ||x||p = (
∑n

i=1 xp
i )

1/p

4. The l∞ norm: ||x||∞ = max1≤i≤n |xi|

Theorem 12.1 Any two norms on Rn are equivalent. In particular,

1. ||x||2 ≤ ||x||1 ≤
√

n||x||2
2. ||x||∞ ≤ ||x||2 ≤

√
n||x||∞

3. ||x||∞ ≤ ||x||1 ≤ n||x||∞


