CS598: Machine Learning and Natural Language Lecture 7: Introduction to Classification

Oct. 5,12 2004

Dan Roth University of Illinois, Urbana-Champaign danr@cs.uiuc.edu <u>http://L2R.cs.uiuc.edu/~danr</u>

COGNITIVE COMPUTATION GROUP UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Context Sensitive Text Correction

Illinois' bored of education.	board
We took a walk it the park two.	in, too
We fill it need no be this way	feel, not
The amount of chairs in the room is	number
I'd like a peace of cake for desert	piece, dessert

Middle Eastern _____ are known for their sweetness

Task: Decide which of { deserts , desserts } is more likely in the given context.

Ambiguity:modeled as confusion sets (class labels C) C={ deserts, desserts} C={ Noun,Adj.., Verb...} C={ topic=Finance, topic=Computing} C={ NE=Person, NE=location}

Disambiguation Problems

- Archetypical disambiguation problem
- Data is available (?)
- In principle, a solved problem
 Golding&Roth, Mangu&Brill,...
- But

Many issues are involved in making an "in principle" solution a realistic one

Learning to Disambiguate

- <u>Given</u>
 - ♦ a confusion set C={ deserts, desserts}
 - sentence (s)
 - Middle Eastern _____ are known for their sweetness
- <u>Map</u> into a feature based representation
- Learn a function F_C that determines which of
 - C={ deserts, desserts} more likely in a given context.
- <u>Evaluate</u> the function on future C sentences

Learning Approach: Representation

S= I don't know whether to laugh or cry [x x x x] Consider words, pos tags, relative location in window Generate binary features representing presence of:

a word/pos within window around target word conjunctions of size 2, within window of size 3 don't within +/-Rnownow within to BaughVerb at -1 to within the Verbas: Verbaughowith in +/63 Verbto a +1 S= I don't know whether to laugh or cry Is represented as a set of its active features S= (don't at -2, know within +/-3,..._to Verb,...) Label= the confusion set element that occurs in the text

Hope: S=I don't <u>care</u> whether to laugh or cry has almost the same representation

This representation can be used by any propositional learning algorithm. (<u>features</u>, <u>examples</u>) <u>Previous works:</u> TBL (Decision Lists) NB, SNoW, DT,...

Notes on Representation

- There is a huge number of potential features ($\sim 10^5$).
- Out of these only a small number is actually active in each example.
- The representation can be significantly smaller if we list only features that are active in each examples.
- Some algorithms can take this into account. Some cannot. (Later).

Notes on Representation (2)

Formally:

A feature =a characteristic function over sentences

 $\chi: S \to \{0,\!1\}$

 When the number of features is fixed, the collection of all examples is

$$\{(\chi_1, \chi_2, ..., \chi_n)\} \equiv \{0, 1\}^n$$

 When we do not want to fix the number of features (very large number, on-line algorithms,...) can work in the infinite attribute domain

$$\{(\chi_1, \chi_2, ..., \chi_n, ...)\} \equiv \{0, 1\}^{\infty}$$

Consider all training data S: {(l, f, f,)} Represent as: $S={(f, #(l=0), #(l=1))}$ for all features

- 1. Choose best feature f^* (and the label it suggests)
- 2. $S \leftarrow S \setminus \{\text{Examples labeled in (1)}\}$
- 3. GoTo 1

If	f1 then	label
Else, if	f2 then	label
Else		
Else		default label

A decision list

Issues: How well will this do? We train on the training data, what about new data?

Generalization

I saw the girl it the park The from needs to be completed I maybe there tomorrow

- New sentences you have not seen before. Can you recognize and correct it this time?
- Intuitively, there are some regularities in the language, "identified" from previous examples, which can be utilized on future examples.
- Two technical ways to formalize this intuition

1: Direct Learning

- Model the problem of text correction as a problem of learning from examples.
- Goal: learn directly how to make predictions.

PARADIGM

- Look at many examples.
- Discover some regularities in the data.
- Use these to construct a prediction policy.
- A policy (a function, a predictor) needs to be specific.
 [it/in] rule: if the occurs after the target ⇒in
 (in most cases, it won't be that simple, though)

2: Generative Model

- Model the problem of text correction as that of generating correct sentences.
- Goal: learn a model of the language; use it to predict.

PARADIGM

- Learn a probability distribution over all sentences
 - In practice: make assumptions on the distribution's type
- Use it to estimate which sentence is more likely.
 Pr(I saw the girl it the park) <> Pr(I saw the girl in the park)
 [In the same paradigm we sometimes learn a conditional probability distribution]
 - In practice: a decision policy depends on the assumptions

Example: Model of Language

- Model 1: There are 5 characters, A, B, C, D, E
- At any point can generate any of them, according to:

P(A)= 0.3; P(B)=0.1; P(C)=0.2; P(D)= 0.2; P(E)= 0.1 P(END)=0.1

- Graphical representation: A sunflower model
- A sentence in the language: AAACCCDEABB.
- A less likely sentence: DEEEBBBBBEEEBBBBBEEE
- Given the model, can compute the probability of a sentence, and decide which is more likely.

Example: Model of Language

Model 2: A probabilistic finite state model.

Start:	P _s (A)=0.4;	P _s (B)=0.4;	$P_{s}(C)=0.2$
From A:	$P_A(A) = 0.5; P_A(B) =$	=0.3; P _A (C)=0.1	; P _A (S)=0.1
From B:	$P_{B}(A) = 0.1; P_{B}(B) =$	$O.4; P_B(C)=O.4$; P _B (S)=0.1
From C:	$P_{C}(A) = 0.3; P_{C}(B) =$:0.4; P _C (C)=0.2	2; P _C (S)=0.1

Practical issues:

- What is the space over which we define the model? Characters? Words? Ideas?
- How do we acquire the model? Estimation; Smoothing

Learning Paradigms: Comments

- The difference in not along probabilistic/deterministic or statistical/symbolic Lines. Both paradigms can do both.
- The difference is in the basic assumptions underlying the paradigms, and why they work.
 - 1st: Distribution Free: uncover regularities in the past; hope they will be there in the future.
 - 2nd: Know the (type of) probabilistic model of the language (target phenomenon). Use it.
- Direct Learning vs. Generative: major philosophical debate in learning. Interesting computational issues too.

Direct Learning: Formalism

 Goal: discover some regularities from examples and generalize to previously unseen data.

What are the examples we learn from?

<u>Instance Space X</u>: The space of all examples

 $X = \{0,1\}^n$ or $\{0,1\}^\infty$

How do we represent our hypothesis?
<u>Hypothesis Space H:</u> Space of potential functions

 $\boldsymbol{h}: \boldsymbol{X} \to \{0,1\}$

• Goal: given training data $S \subset X$, find a good $h \in H$

Why Does Learning Work?

- Learning is impossible, unless....
- Outcome of Learning cannot be trusted, unless,...
- How can we quantify the expected generalization?
- Assume h is good on the training data; what can be said on h's performance on previously unseen data?

- These are some of the topics studied in Computational Learning Theory (COLT)
- notice: mode of interaction is also important
- More on all of these in CS346 (CS440 now?)

Learning is impossible, unless...

Given:

Training examples (x,f (x)) of unknown function f

Find: A good approximation to f

$$\rightarrow$$
 y = $f(x_1, x_2, x_3, x_4)$

Example	X 1	X 2	X 3	X 4	у
1	0	0	1	0	0
2	0	1	0	0	0
3	0	0	1	1	1
4	1	0	0	1	1
5	0	1	1	0	0
6	1	1	0	0	0
7	0	1	0	1	0

Why Does Learning Work (2)?

- Complete Ignorance: There are 2¹⁶
 = 56536 possible functions over four input features.
- We can't figure out which one is correct until we've seen every possible input-output pair.
- Even after seven examples we still have 2⁹ possibilities for f
- Is Learning Possible?

Example	X 1	X 2	X 3	X 4	L y
	0	0	0	0	?
	0	0	0	1	?
	0	0	1	0	0
	0	0	1	1	1
	0	1	0	0	0
	0	1	0	1	0
	0	1	1	0	0
	0	1	1	1	?
	1	0	0	0	?
	1	0	0	1	1
	1	0	1	0	?
	1	0	1	1	?
	1	1	0	0	0
	1	1	0	1	?
	1	1	1	0	?
	1	1	1	1	?

Hypothesis Space

 Simple Rules: There are only 16 simple conjunctive rules of the form

$y = x_i \wedge x_j \wedge x_k$

- Try to learn a function of this form that explains the data. (try it: there isn't).
- m-of-n rules: There are 29 possible rules of the form
 - "y = 1 if and only if at least m of the following n variables are 1"
 - (try it, there is).

- Learning requires guessing a good, small hypothesis class.
- We can start with a very small class and enlarge it until it contains an hypothesis that fits the data.
 - (model selection)
- We could be wrong !

Can We Trust the Hypothesis?

- There is a hidden conjunction the learner is to learn $f=x_2 \wedge x_3 \wedge x_4 \wedge x_5 \wedge x_{100}$
- How many examples are needed to learn it ? How ?
- Protocol:
 - Some random source (e.g., Nature) provides training examples;
 - Teacher (Nature) provides the labels (f(x))
- Not the only possible protocol (membership query; teaching)

<(1,1,1,1,1,1,...,1,1), 1> <(1,1,1,1,1,0,...0,1,1),1> <(1,1,1,1,1,0,...0,0,1),1> <(1,1,1,1,1,1,...,0,1), 1>

<(1,1,1,0,0,0,...,0,0), 0><(1,0,1,1,1,0,...0,1,1), 0><(1,0,1,0,0,0,...0,1,1), 0><(0,1,0,1,0,0,...0,1,1), 0>

Learning Conjunction

- Algorithm: Elimination
- Start with the set of all literals as candidates
- Eliminate a literal if not active (O) in a positive example

 $<(1,1,1,1,1,1,1,...,1,1), 1> \\<(1,1,1,0,0,0,...,0,0), 0> \\<(1,1,1,1,1,0,...0,1,1), 1> \\<(1,0,1,1,0,0,...0,0,1), 0> \\<(1,1,1,1,1,0,...0,0,1), 1> \\<(1,0,1,0,0,0,...0,1,1), 0> \\<(1,1,1,1,1,1,1,...,0,1), 1> \\<(0,1,0,1,0,0,...0,1,1), 0>$

 $\begin{aligned} f &= x_1 \wedge x_2 \wedge x_3 \wedge x_4 \wedge x_5 \wedge x_{100} \\ \text{learned nothing} \\ f &= x_1 \wedge x_2 \wedge x_3 \wedge x_4 \wedge x_5 \wedge x_{99} \wedge x_{100} \\ \text{learned nothing} \\ f &= x_1 \wedge x_2 \wedge x_3 \wedge x_4 \wedge x_5 \wedge x_{100} \end{aligned}$

Final: $f = x_1 \land x_2 \land x_3 \land x_4 \land x_5 \land x_{100}$

Prototypical Learning Scenario

- Instance Space: X
- Hypothesis Space: H (set of possible hypotheses)
- Training instances S:
 - positive and negative examples of the target f
- S: sampled according to a fixed, unknown, probability distribution D over X
- Determine: A hypothesis $h \in H$ such that

 $\begin{aligned} h(x) &= f(x) & \text{ for all } x \in S \\ h(x) &= f(x) & \text{ for all } x \in X \end{aligned}$

• Evaluated on future instances sampled according to D $f = x_1 \land x_2 \land x_3 \land x_4 \land x_5 \land x_{100}$

PAC Learning: Intuition

- Have seen many examples (drawn according to D)
- Since in all the positive examples x₁ was active, it is likely to be active in future positive examples
- If not, in any case, in D, x_1 is active only in relatively few examples, so our error will be small.

Generalization for Consistent Learners

Claim: The probability that there exists a hypothesis h ∈ H that:

 (1) is consistent with m examples and
 (2) satisfies err(h) > ε
 is less than |H|(1-ε)^m

Equivalently:

• For any distribution D governing the IID generation of training and test instances, for all $h \in H$, for all $O < \varepsilon$, $\delta < 1$, if

 $m > {ln(|H|) + ln(1/\delta)}/\epsilon$

• Then, with probability at least $1-\delta$ (over the choice of the training set of size m),

 $err(h) < \varepsilon$

Generalization for Consistent Learners

Claim: The probability that there exists a hypothesis h ∈ H that:
 (1) is consistent with m examples and
 (2) satisfies err(h) > ε
 is less than |H|(1-ε)^m

- Proof: Let h be such a bad hypothesis.
 - The probability that h is consistent with one example of f is $P_{x \in D} [f(x)=h(x)] < (1 \varepsilon)$
 - Since the m examples are drawn independently of each other, the probability that h is consistent with m examples is less than $(1 \varepsilon)^m$
 - The probability that *some* hypothesis in H is consistent with m examples is less than $|H|(1 \varepsilon)^m$

Generalization for Consistent Learners

• We want this probability to be smaller than δ , that is: $|H|(1-\varepsilon)^m < \delta$ What kin

And with (1- x < e^{-x})

 $\ln(|H|) - m \varepsilon < \ln(\delta)$

What kind of hypothesis spaces do we want ? Large ? Small ?

To guarantee consistency we need $H \supseteq C$. But do we want the smallest H possible ?

• For any distribution D governing the IID generation of training and test instances, for all $h \in H$, for all $O < \varepsilon$, $\delta < 1$, if

 $m > {ln(|H|) + ln(1/\delta)}/\varepsilon$

• Then, with probability at least $1-\delta$ (over the choice of the training set of size m),

 $err(h) < \varepsilon$

Generalization (Agnostic Learners)

- In general: we try to learn a concept f using hypotheses in H, but $f \notin H$
- Our goal should be to find a hypothesis $h \in H$, with a small training error:

 $\operatorname{Err}_{\operatorname{TR}}(h) = \operatorname{P}_{x \in S} [f(x) \neq h(x)]$

 We want a guarantee that a hypothesis with a small training error will have a good accuracy on unseen examples

$\operatorname{Err}_{D}(h) = P_{x \in D} [f(x) \neq h(x)]$

 Hoeffding bounds characterize the deviation between the true probability of an event and its observed frequency over m independent trials.

$Pr(p > E(p) + \varepsilon) < exp{-2m \varepsilon^2}$

(p is the underlying probability of the binary variable being 1)

Generalization (Agnostic Learners)

• Therefore, the probability that an element $h \in H$ will have training error which is off by more than ϵ can be bounded as follows:

 $Pr(Err_D(h) > Err_{TR}(h) + \epsilon) < exp{-2m \epsilon^2}$

- As in the consistent case: use union bound to get a uniform bound on all H; to get $|H|exp\{-2m\epsilon^2\} < \delta$ we have the following generalization bound: a bound on how much will the true error deviate from the observed error.
- For any distribution D generating training and test instance, with probability at least $1-\delta$ over the choice of the training set of size m, (drawn IID), for all $h \in H$

$$Err_{D}(h) < Err_{TR}(h) + \sqrt{\frac{\log|H| + \log(1/\delta)}{2m}}$$

Summary: Generalization

- Learnability depends on the size of the hypothesis space.
- In the case of a finite hypothesis space:

$$Err_{D}(h) < Err_{TR}(h) + \sqrt{\frac{\log|H| + \log(1/\delta)}{2m}}$$

In the case of an infinite hypothesis space

$$Err_{D}(h) < Err_{TR}(h) + \sqrt{\frac{kVC|H| + \log(1/\delta)}{2m}}$$

 Where VC(H) is the Vapnik-Chernvonenkis of the hypothesis class, a combinatorial measure of its comlexity.

Learning Theory: Summary (1)

- Labeled observations $S = \{ (x,l) \}_{i=1}^{m}$ sampled according to a distribution D on $X \times \{0,1\}$
- Goal: to compute a hypothesis h∈H that performs well on future, unseen observations.

Assumption: test examples are also sampled according to
 D (label is not observed)

• Look for $h \in H$ that minimizes the true error

 $\mathbf{Err}_{\mathbf{D}}(\mathbf{h}) = \mathbf{Pr}_{(\mathbf{x},\mathbf{l})\in\mathbf{D}}[\mathbf{h}(\mathbf{x})\neq\mathbf{l}]$

All we get to see is the empirical error

 $Err_{S}(h) = |\{ x \in S \mid h(x) \neq l \}| / |S|$

• Basic theorem: With probability at least $(1-\delta)$

 $\operatorname{Err}_{D}(h) < \operatorname{Err}_{S}(h) + \left[kVC(H) + \ln(1/\delta)\right]/m$

Practical Lesson

- Use Hypothesis Space with small expressivity
- E.g. prefer to use a function that is linear in the feature space, over higher order functions

$$f(\mathbf{x}) = \Sigma_{\mathsf{I}} \mathsf{C}_{\mathsf{i}} \chi_{\mathsf{i}}$$

- VC dimension of a linear function of dimension N: is N+1
- Sparsity: If there are a maximum of k active in each example then VC dimension is k+1
- Algorithmic issues: There are good algorithms for linear function; learning higher order functions is computationally hard.

Advances in Theory of Generalization

- VC dimension based bounds are unrealistic.
- The value is mostly in providing quantitative understanding of "why learning works" and what are the important complexity parameters.
- In recent years, this understanding has helped both to
 - drive new algorithms
 - Develop new methods that can actually provide somewhat realistic generalization bounds.
- PAC-Bayes Methods (McAlister, McAlister&Langford)
- Random Projection Methods (Garg, Har-Peled, Roth)
- This method can be shown to have some algorithmic implications.

2: Generative Model

- Model the problem of text correction as that of generating correct sentences.
- Goal: learn a model of the language; use it to predict.

PARADIGM

- Learn a probability distribution over all sentences
 - In practice: make assumptions on the distribution's type
- Use it to estimate which sentence is more likely.
 Pr(I saw the girl it the park) <> Pr(I saw the girl in the park)
 [In the same paradigm we sometimes learn a conditional probability distribution]
 - In practice: a decision policy depends on the assumptions

Before: Error Driven Learning

- Consider a distribution D over space X×Y
- X the instance space; Y set of labels. (e.g. +/-1)
- Given a sample $\{(x,y)\}_{1}^{m}$, and a loss function L(x,y)Find $h \in H$ that minimizes $\sum_{i=1,m} L(h(x_i), y_i)$
- L can be: $L(a,b)=1, a\neq b, o/w L(a,b)=0$ (0-1 loss)

 $L(a,b) = (a-b)^2$,

 $L(a,b)=exp\{-y_ih(x_i)\}$

 Find an algorithm that minimizes average loss; then, we know that things will be okay (as a function of H).

Basics of Bayesian Learning

- Goal: find the best hypothesis from some space H of hypotheses, given the observed data D.
- Define <u>best</u> to be: most <u>probable hypothesis</u> in H
- In order to do that, we need to assume a probability distribution over the class H.
- In addition, we need to know something about the relation between the data observed and the hypotheses (E.g., a coin problem.)
 - As we will see, we will be Bayesian about other things, e.g., the parameters of the model

Basics of Bayesian Learning

- P(h) the prior probability of a hypothesis h Reflects background knowledge; before data is observed. If no information - uniform distribution.
- P(D) The probability that <u>this sample</u> of the Data is observed. (No knowledge of the hypothesis)
- P(Dlh): The probability of observing the sample D, given that the hypothesis h holds
- P(h|D): The <u>posterior probability</u> of h. The probability h holds, given that D has been observed.

$\mathbf{P}(\mathbf{h} \mid \mathbf{D}) = \mathbf{P}(\mathbf{D} \mid \mathbf{h}) \frac{\mathbf{P}(\mathbf{h})}{\mathbf{P}(\mathbf{D})}$

- P(hID) increases with P(h) and with P(DIh)
- P(h|D) decreases with P(D)

Learning Scenario

$$\mathbf{P}(\mathbf{h} \mid \mathbf{D}) = \mathbf{P}(\mathbf{D} \mid \mathbf{h}) \frac{\mathbf{P}(\mathbf{h})}{\mathbf{P}(\mathbf{D})}$$

- The learner considers a set of <u>candidate hypotheses</u> H (models), and attempts to find <u>the most probable</u> one h ∈ H, given the observed data.
- Such maximally probable hypothesis is called <u>maximum a</u> <u>posteriori</u> hypothesis (<u>MAP</u>); Bayes theorem is used to compute it:

$$\begin{split} \mathbf{h}_{\mathrm{MAP}} &= argmax_{\mathbf{h}\in\mathbf{H}} \mathbf{P}(\mathbf{h} \mid \mathbf{D}) = argmax_{\mathbf{h}\in\mathbf{H}} \mathbf{P}(\mathbf{D} \mid \mathbf{h}) \frac{\mathbf{P}(\mathbf{h})}{\mathbf{P}(\mathbf{D})} \\ &= argmax_{\mathbf{h}\in\mathbf{H}} \mathbf{P}(\mathbf{D} \mid \mathbf{h}) \mathbf{P}(\mathbf{h}) \end{split}$$

$\mathbf{h}_{\mathrm{MAP}} = argmax_{h \in H} P(h \mid D) = argmax_{h \in H} P(D \mid h) P(h)$

We may assume that a priori, hypotheses are equally probable

$$P(h_i) = P(h_j), \forall h_i, h_j \in H$$

• We get the Maximum Likelihood hypothesis:

$\mathbf{h}_{\mathrm{ML}} = \operatorname{argmax}_{\mathbf{h} \in \mathbf{H}} \mathbf{P}(\mathbf{D} \mid \mathbf{h})$

Here we just look for the hypothesis that best explains the data

Bayes Optimal Classifier

- How should we use the general formalism?
- What should H be?
- H can be a collection of functions. Given the training data, choose an optimal function. Then, given new data, evaluate the selected function on it.
- H can be a collection of possible predictions. Given the data, try to directly choose the optimal prediction.
- H can be a collection of (conditional) probability distributions.
- Could be different!