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Context Sensitive Text Correction

Illinois’ bored of education.                              board 

We took a walk it the park two.                        in, too

We fill it need no be this way                            feel, not

The amount of chairs in the room is… number

I’d like a peace of cake for desert                piece, dessert
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Disambiguation Problems

Middle Eastern  ____ are known for their sweetness

Task: Decide which of { deserts , desserts } is more    
likely in  the  given  context.

Ambiguity:modeled as confusion sets (class labels C )

C={ deserts, desserts}

C={ Noun,Adj.., Verb…}
C={ topic=Finance, topic=Computing}
C={ NE=Person, NE=location}
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Disambiguation Problems

Archetypical disambiguation problem

Data is available (?)

In principle, a solved problem
Golding&Roth, Mangu&Brill,…
But
Many issues are involved in making an “in principle” solution a 
realistic one
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Learning to Disambiguate

Given
♦ a confusion set     C={ deserts, desserts}
♦ sentence (s)

Middle Eastern  ____ are known for their sweetness
Map into a feature based representation
Learn a function FC that determines which of 
C={ deserts, desserts} more likely in a given context.
Evaluate the function on future C sentences 
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Learning Approach: Representation

S= I don’t know whether to laugh or cry
[x          x                    x     x]

Consider words, pos tags, relative location in window
Generate binary features representing presence of:

a word/pos  within window around target word
don’t within +/-3 know within +/-3      Verb at -1
to within +/- 3 laugh within +/-3      to a +1

conjunctions of size 2, within window of size 3
words: know__to;     ___to laugh
pos+words: Verb__to;     ____to Verb
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Learning Approach: Representation

S= I don’t know whether to laugh or cry
Is represented as a set of its active features 

S= (don’t at -2 ,  know within +/-3,… ____to Verb,...)
Label= the confusion set element that occurs in the text

Hope:      S=I don’t care whether to laugh or cry 
has almost the  same representation

This representation can be used by any propositional learning 
algorithm.  (features examples, )

Previous works: TBL (Decision Lists) NB, SNoW, DT,...
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Notes on Representation

There is a huge number of potential features (~105).
Out of these – only a small number is actually active in each 
example. 

The representation can be significantly smaller if we list only 
features that are active in each examples.

Some algorithms can take this into account. Some cannot. 
(Later).
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Notes on Representation (2)

Formally: 
A feature =a characteristic function over sentences

When the number of features is fixed, the collection of all 
examples is 

When we do not want to fix the number of features (very 
large number, on-line algorithms,…) can work in the infinite 
attribute domain

}1,0{: →Sχ

n
n }1,0{)},...,,{( 21 ≡χχχ

∞≡ }1,0{,...)},...,,{( 21 nχχχ
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An Algorithm

Consider all training data              S:  {(l, f, f,….)}
Represent as:

S={(f, #(l=0), #(l=1)} for all features     

1. Choose best feature f* (and the label it suggests)
2. S ← S \ {Examples labeled in (1)}
3. GoTo 1
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An Algorithm:Hypothesis

If       f1    then      label
Else, if       f2 then        label
Else…
Else                                default label

A decision list

Issues: How well will this do? 
We train on the training data, what about new data?
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Generalization

I saw the girl it the park                                              
The from needs to be completed

I maybe there tomorrow

New sentences you have not seen before. Can you recognize 
and correct it this time? 

Intuitively, there are some regularities in the language, 
“identified” from previous examples,  which can be utilized on 
future examples.  

Two technical ways to formalize this intuition
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1: Direct Learning

Model the problem of text correction as a problem of 
learning from examples.
Goal: learn directly how to make predictions.

PARADIGM
Look at many examples.
Discover some regularities in the data.
Use these to construct a prediction policy.
A policy (a function, a predictor) needs to be specific.

[it/in] rule: if the occurs after the target ⇒in
(in most cases, it won’t be that simple, though)
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2: Generative Model

Model the problem of text correction as that of generating 
correct sentences.
Goal: learn a model of the language; use it to predict.

PARADIGM
Learn a probability distribution over all sentences

Use it to estimate which sentence is more likely.
Pr(I saw the girl it the park) <>   Pr(I saw the girl in the park)

[In the same paradigm we sometimes learn a conditional probability distribution]

In practice: make assumptions on the distribution’s type

In practice: a decision policy depends on the assumptions
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Example: Model of Language

Model 1: There are 5 characters, A, B, C, D, E
At any point can generate any of them, according to:

P(A)= 0.3;   P(B) =0.1;   P(C) =0.2;   P(D)= 0.2;   P(E)= 0.1   P(END)=0.1

Graphical representation: A sunflower model
A sentence in the language:     AAACCCDEABB.
A less likely sentence: DEEEEBBBBEEEEBBBBEEE

Given the model, can compute the probability of a sentence, 
and decide which is more likely.
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Example: Model of Language

Model 2: A probabilistic finite state model.

Start:                         Ps(A)=0.4;      Ps(B)=0.4;       Ps(C)=0.2
From A:           PA(A)=0.5; PA(B)=0.3; PA(C)=0.1; PA(S)=0.1
From B:            PB(A)=0.1;  PB(B)=0.4; PB(C)=0.4;  PB(S)=0.1
From C:            PC(A)=0.3; PC(B)=0.4; PC(C)=0.2 ; PC(S)=0.1 

Practical issues: 
What is the space over which we define the model? 
Characters? Words? Ideas?
How do we acquire the model? Estimation; Smoothing
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Learning Paradigms: Comments

The difference in not along probabilistic/deterministic or 
statistical/symbolic Lines. Both paradigms can do both.

The difference is in the basic assumptions underlying the 
paradigms, and why they work.

1st: Distribution Free: uncover regularities in the past; hope they will be 
there in the future. 
2nd: Know the (type of) probabilistic model of the language (target
phenomenon). Use it.

Direct Learning vs. Generative: major philosophical debate in 
learning. Interesting computational issues too.
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Direct Learning: Formalism

Goal: discover some regularities from examples and generalize 
to previously unseen data.

What are the examples we learn from?
Instance Space X: The space of all examples

How do we represent our hypothesis?
Hypothesis Space H: Space of potential functions

Goal: given training data S⊂X, find a good h∈H

∞= }1,0{or   }1,0{ nX

}1,0{: →Xh
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Why Does Learning Work?

Learning is impossible, unless….
Outcome of Learning cannot be trusted,  unless,…
How can we quantify the expected generalization?     
Assume h is good on the training data; what can be said on 
h’s performance on previously unseen data? 

These are some of the topics studied in Computational 
Learning Theory (COLT)

notice: mode of interaction is also important
More on all of these in CS346 (CS440 now?)
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Learning is impossible, unless…

y  = f (x1, x2, x3, x4)

Given:
Training examples (x,f ((x))
of unknown function f 

Find:
A good approximation to f

Unknown
function

x1
x2
x3
x4

Example x1 x2 x3 x4     y
1 0     0     1     0     0

3 0     0     1     1     1
4          1      0     0     1     1
5 0      1    1     0     0
6 1      1    0     0     0
7 0      1     0     1    0

2 0     1     0     0     0



21

Why Does Learning Work (2)?

Complete Ignorance: There are 216

= 56536 possible functions over 
four input features. 

We can’t figure out which one is 
correct until we’ve seen every 
possible input-output pair. 

Even after seven examples we still 
have 29 possibilities for f 

Is Learning Possible? 

Example x1 x2 x3 x4     y

1     1     1     1     ?

0     0     0     0     ?

1     0     0     0     ?

1     0     1     1     ?
1     1     0     0     0
1     1     0     1     ?

1     0     1     0     ?
1     0     0     1     1

0     1     0     0     0
0     1     0     1     0
0     1     1     0     0
0     1     1     1     ?

0     0     1     1     1
0     0     1     0     0
0     0     0     1     ?

1     1     1     0     ?
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Hypothesis Space

Simple Rules: There are  only 16 simple conjunctive rules           
of the form             

y=xi ∧ xj ∧ xk

Try to learn a function of this form that explains the data.  
(try it: there isn’t).

m-of-n rules: There are 29 possible rules of the form 

”y = 1 if and only if at least m of the following n variables are 1”

(try it, there is).
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Bias

Learning requires guessing a good, small hypothesis class. 

We can start with a very small class and enlarge it until it 
contains an hypothesis that fits the data. 

(model selection)

We could be wrong !
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Can We Trust the Hypothesis?

There is a hidden conjunction the learner is to learn
f=x2 ∧ x3 ∧ x4 ∧ x5 ∧ x100

How many examples are needed to learn it ?  How ?

Protocol:
Some random source (e.g., Nature) provides training examples;   
Teacher (Nature) provides the labels (f(x))

Not the only possible protocol (membership query; 
teaching)

<(1,1,1,1,1,1,…,1,1), 1>             <(1,1,1,0,0,0,…,0,0), 0>
<(1,1,1,1,1,0,...0,1,1),1>           <(1,0,1,1,1,0,...0,1,1), 0>
<(1,1,1,1,1,0,...0,0,1),1>           <(1,0,1,0,0,0,...0,1,1), 0>
<(1,1,1,1,1,1,…,0,1), 1>            <(0,1,0,1,0,0,...0,1,1), 0>
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Learning Conjunction

Algorithm: Elimination 
Start with the set of all literals as candidates
Eliminate a literal if not active (0) in a positive example

<(1,1,1,1,1,1,…,1,1), 1>        f= x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5 ∧ x100
<(1,1,1,0,0,0,…,0,0), 0>        learned nothing
<(1,1,1,1,1,0,...0,1,1),1>       f= x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5 ∧x99 ∧x100
<(1,0,1,1,0,0,...0,0,1),0>       learned nothing
<(1,1,1,1,1,0,...0,0,1),1>       f= x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5 ∧x100
<(1,0,1,0,0,0,...0,1,1),0>      
<(1,1,1,1,1,1,…,0,1), 1>
<(0,1,0,1,0,0,...0,1,1),0>        Final: f= x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5 ∧x100
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Prototypical Learning Scenario

Instance Space: X 
Hypothesis Space: H (set of possible hypotheses) 
Training instances S: 

positive and negative examples of the target f
S: sampled according to a fixed, unknown, probability 
distribution D over X
Determine: A hypothesis h ∈ H such that

h(x) = f(x)     for all x ∈ S ? 
h(x) = f(x)     for all x ∈ X ?

Evaluated on future instances sampled according to D
f= x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5 ∧x100
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PAC Learning: Intuition

Have seen many examples (drawn according to D ) 
Since in all the positive examples x1 was active, it is likely  to 
be active in future positive examples  
If not, in any case, in D, x1 is active only in relatively few 
examples, so our error will be small.

f
h

f and h disagree

+ +
-

-

-
h(x)][f(x)Error

DxD Pr ≠=
∈

Error can be bounded
Via Chernoff bounds

A distribution free 
notion!
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Generalization for Consistent Learners

Claim: The probability that there exists a hypothesis h ∈ H that:
(1) is consistent with m examples and 
(2) satisfies err(h) > ε

is less than   |H|(1- ε )m 

For any distribution D governing the IID generation of 
training and test instances, for all h∈H , for all 0< ε ,δ <1,
if 

m > {ln(|H|) + ln(1/ δ)}/ε
Then, with probability at least 1-δ (over the choice of the 
training set of size m), 

err(h) < ε

Equivalently: 
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Generalization for Consistent Learners

Claim: The probability that there exists a hypothesis h ∈ H that:
(1) is consistent with m examples and 
(2) satisfies err(h) > ε

is less than   |H|(1- ε )m 

Proof: Let h be such a bad hypothesis. 
The probability that h is consistent with one example of f is

P x∈D [f(x)=h(x)] < (1- ε )

Since the m examples are drawn independently of each other,                
the probability that h is consistent with m examples is less than
(1- ε )m

The probability that some hypothesis in H is consistent with m
examples is less than |H|(1- ε )m
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Generalization for Consistent Learners

We want this probability to be smaller than δ, that is:
|H|(1- ε)m <  δ

And with (1- x < e-x)
ln(|H|) - m ε <  ln(δ)

For any distribution D governing the IID generation of 
training and test instances, for all h∈H , for all 0< ε ,δ <1,
if 

m > {ln(|H|) + ln(1/ δ)}/ε
Then, with probability at least 1-δ (over the choice of the 
training set of size m), 

err(h) < ε

What kind of hypothesis spaces 
do we want ? Large ? Small ?

To guarantee consistency we 
need H ⊇ C. But do we want the 
smallest H possible ?  
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Generalization (Agnostic Learners)

In general: we try to learn a concept f using hypotheses in H, but f ∉ H

Our goal should be to find a hypothesis h∈H, with a small training error:

ErrTR(h)= Px∈S [f(x)≠h(x)]

We want a guarantee that a hypothesis with a small training error will 
have a good  accuracy on unseen examples

ErrD(h)= Px∈D [f(x)≠h(x)]

Hoeffding bounds characterize the deviation between the true 
probability of an event and its observed frequency over m independent 
trials.               

Pr(p > E(p)+ ε ) < exp{-2m ε2}

(p is the underlying probability of the binary variable being 1)
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Generalization (Agnostic Learners)

Therefore, the probability that an element h∈H will have training error 
which is off by more than ε can be bounded as follows:

Pr(ErrD(h) > ErrTR(h) + ε ) < exp{-2m ε2}

As in the consistent case: use union bound to get a uniform bound on 
all H;   to get |H|exp{-2mε2} < δ we have the following        
generalization bound: a bound on how much will the true error deviate 
from the observed error.

For any distribution D generating training and test instance, 
with probability at least 1-δ over the choice of the training 
set of size m, (drawn IID), for all h∈H

m
H

hErrhErr TRD 2
)/1log(||log

)()(
δ+

+<
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Summary: Generalization

Learnability depends on the size of the hypothesis space.

In the case of a finite hypothesis space:

In the case of an infinite hypothesis space

Where VC(H) is the Vapnik-Chernvonenkis of the hypothesis class, a 
combinatorial measure of its comlexity. 

m
H

hErrhErr TRD 2
)/1log(||log

)()(
δ+

+<

m
HkVC

hErrhErr TRD 2
)/1log(||

)()(
δ+

+<
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Learning Theory: Summary (1)

Labeled  observations
sampled according to a distribution D on

Goal: to compute a hypothesis h∈H that performs well on 
future, unseen observations.

 } l)(x, {S m
1i==

 {0,1}  X×

Assumption: test examples are also sampled according to 
D (label is not observed)
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Learning Theory:Summary(2) [Why does it work?]

Look for h∈H that minimizes the  true error

All we get to see is the empirical error

 l][h(x)Pr(h)Err Dl)(x,D ≠= ∈

|S| /|} lh(x)|Sx  {|(h)ErrS ≠∈=

Basic theorem: With probability at least (1-δ)

)]/mln(1/[kVC(H)(h)Err  (h)Err SD δ++<
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Practical Lesson

Use Hypothesis Space with small expressivity
E.g. prefer to use a function that is linear in the feature space, over 
higher order functions

f(x) = ΣIciχi

VC dimension of a linear function of dimension N: is N+1

Sparsity: If there are a maximum of k active in each example then VC 
dimension is k+1

Algorithmic issues: There are good algorithms for linear function; 
learning higher order functions is computationally hard.
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Advances in Theory of Generalization

VC dimension based bounds are unrealistic. 
The value is mostly in providing quantitative understanding of “why 
learning works” and what are the important complexity parameters.

In recent  years, this understanding has helped both to 
drive new algorithms
Develop new methods that can actually provide somewhat realistic
generalization bounds.

PAC-Bayes Methods (McAlister, McAlister&Langford)

Random Projection Methods (Garg, Har-Peled, Roth)

This method can be shown to have some algorithmic implications.
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2: Generative Model

Model the problem of text correction as that of generating 
correct sentences.
Goal: learn a model of the language; use it to predict.

PARADIGM
Learn a probability distribution over all sentences

Use it to estimate which sentence is more likely.
Pr(I saw the girl it the park) <>   Pr(I saw the girl in the park)

[In the same paradigm we sometimes learn a conditional probability distribution]

In practice: make assumptions on the distribution’s type

In practice: a decision policy depends on the assumptions
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Before: Error Driven Learning

Consider a distribution D over space X×Y
X - the instance space;   Y - set of labels. (e.g. +/-1)

Given a sample {(x,y)}1
m

,, and a loss function L(x,y)          
Find  h∈H that minimizes   

Σi=1,mL(h(xi),yi)

L can be:  L(a,b)=1, a≠b, o/w L(a,b) = 0   (0-1 loss)

L(a,b)= (a-b)2 ,                           (L2 ) 

L(a,b)=exp{- yi h(xi)}

Find an algorithm that minimizes average loss; then, we know 
that things will be okay (as a function of H).
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Basics of Bayesian Learning

Goal: find the best hypothesis from some space H of 
hypotheses, given the observed data D.

Define best to be: most probable hypothesis in H

In order to do that, we need to assume a probability 
distribution over the class H.

In addition, we need to know something about the relation 
between the data observed and the hypotheses (E.g., a coin 
problem.)

As we will see, we will be Bayesian about other things, e.g., the 
parameters of the model 
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Basics of Bayesian Learning

P(h) - the prior probability of a hypothesis h
Reflects background knowledge; before data is observed. If no 
information - uniform distribution.

P(D) - The probability that this sample of the Data is 
observed. (No knowledge of the hypothesis)

P(D|h): The probability of observing the sample D, given that 
the hypothesis h holds

P(h|D): The posterior probability of  h. The probability h
holds, given that D has been observed. 
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Bayes Theorem

P(D)
P(h)h)|P(DD)|P(h =

P(h|D) increases with P(h) and with P(D|h)

P(h|D) decreases with P(D)
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Learning Scenario

P(D)
P(h)h)|P(DD)|P(h =

The learner considers a set of candidate hypotheses H 
(models), and attempts to find the most probable one h ∈H, 
given the observed data.

Such maximally probable hypothesis is called maximum a 
posteriori hypothesis (MAP); Bayes theorem is used to 
compute it:

h)P(h)|P(Dargmax
P(D)

P(h)h)|P(DargmaxD)|P(hargmaxh

Hh

HhHhMAP

∈

∈∈

=

==
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Learning Scenario (2)

We may assume that a priori,  hypotheses are equally probable 

We get the Maximum Likelihood hypothesis: 

Here we just look for the hypothesis that best explains the 
data 

h)P(h)|P(DargmaxD)|P(hargmaxh HhHhMAP ∈∈ ==

Hh,hP(hP(h jiji ∈∀= ),)

h)|P(Dargmaxh HhML ∈=
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Bayes Optimal Classifier

How should we use the general formalism?
What should H be?

H can be a collection of functions. Given the training data, 
choose an optimal function. Then, given new data, evaluate 
the selected function on it.
H can be a collection of possible predictions. Given the data, 
try to directly choose the optimal prediction. 
H can be a collection of (conditional) probability 
distributions.

Could be different!
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