
CS446: Machine Learning Fall 2016

October 25th, 2016

• This is a closed book exam. Everything you need in order to solve the problems is
supplied in the body of this exam.

• This exam booklet contains four problems. You need to solve all problems to get
100%.

• Please check that the exam booklet contains 14 pages, with the appendix at the end.

• The exam ends at 1:45 PM. You have 75 minutes to earn a total of 100 points.

• Answer each question in the space provided. If you need more room, write on the
reverse side of the paper and indicate that you have done so.

• A list of potentially useful functions has been provided in the appendix at the end.

• Besides having the correct answer, being concise and clear is very impor-
tant. For full credit, you must show your work and explain your answers.

Good Luck!

Name (NetID): (1 Point)

Decision Trees /20
PAC Learning /29
Neural Networks /25
Short Questions /25

Total /100
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Decision Trees [20 points]

You work in a weather forecasting company and your job as a machine learning expert
is to design a decision tree which would predict whether it is going to rain today
(‘WillRain?’ = 1) or not (‘WillRain?’ = 0). You are given a dataset D with the
following attributes: IsHumid ∈ {0, 1}, IsCloudy ∈ {0, 1}, RainedYesterday ∈ {0, 1}
and Temp>20 ∈ {0, 1}.

IsHumid IsCloudy RainedYesterday Temp>20 WillRain?

1 1 1 0 1
0 1 0 0 0
1 0 0 0 0
1 0 0 1 0
1 0 1 1 0
1 1 0 1 1
0 1 0 0 0
1 0 1 1 0

To simplify your computations please use: log2(3) ≈ 3
2
.

(a) (4 points) What is the entropy of the label ‘WillRain?’?

Entropy(‘WillRain?’)= -2
8
log2(

2
8
) -6

8
log2(

6
8
) = 7

8
= 0.875

(b) (4 points) What should the proportion of the examples labeled ‘WillRain?’=1
be, in order to get the maximum entropy value for the label?

Half of the examples should have label 1 and the other half have the label 0.
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(c) (4 points) Compute the Gain(D, IsCloudy).

Entropy(D, IsCloudy=1) = -2
4
log2(

2
4
)-2

4
log2(

2
4
)

⇒ 1
Entropy(D, IsCloudy=0) = -0

4
log2(

0
4
)-4

4
log2(

4
4
)

⇒ 0
Gain(D, IsCloudy) = 0.875 - 4

8
×1 - 4

8
×0

⇒ 0.375

(d) (4 points) You are given that:

• Gain(D, IsHumid) = 0.25,

• Gain(D, RainedYesterday) = 0.11,

• Gain(D, Temp>20) = 0

• Gain(D, IsCloudy) is as computed in part c.

i. Which node should be the root node?
IsCloudy should be the root node since it gives the highest information gain.

ii. Without any additional computation, draw a decision tree that is consistent
with the given dataset and uses the root chosen in (i).

if(IsCloudy):
if(IsHumid):

1
else:

0
else:

0
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(e) (4 points) Express the function ‘WillRain?’ as a simple Boolean function over
the features defining the data set D. That is, define a Boolean function that
returns true if an only if ‘WillRain?’=1.
IsCloudy

∧
IsHumid
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PAC Learning [29 points]

We define a set of functions

T = {f(x) = 1[x > a] : a ∈ R},

where 1[x > a] is the indicator function returning 1 if x > a and returning 0 otherwise.
For input domain X = R, and a fixed positive number k, consider a concept class DTk
consisting of all decision trees of depth at most k where the function at each non-leaf
node is an element of T . Note that if the tree has only one decision node (the root)
and two leaves, then k = 1.

(a) (4 points) We want to learn a function in DTk. Define

i. The Instance Space X
X = R

ii. The Label Space Y
Y = {0, 1}

iii. Give an example of f ∈ DT2.
There are many possible answers for this. Here is one, where we assume that
the right branch is taken if the node is satisfied and the left node is taken

otherwise.

iv. Give 3 examples that are consistent with your function f and one that is not
consistent with it.
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For the previous tree, here are three consistent examples:
x = 10, y = 1
x = −1

2
, y = 0

x = −50000, y = 1

And here is an inconsistent example: (x = 10, y = 0), since the label of x = 10
should be 1.
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(b) (7 points) Determine the VC dimension of DTk, and prove that your answer is
correct.

First, note that the root node of the tree partitions the input space into two
intervals. Each child node then recursively divides the corresponding interval
into two more intervals. Hence, a full decision tree of depth k divides the input
space into at most 2k intervals, each of which can be assigned a label of 0 or 1.
We will show that the VC dimension of DTk is 2k.

Proof that V CDim(DTk) ≥ 2k: given 2k points, construct a decision tree such
that each point lies in a separate interval. Then, one can assign labels to the
leaves of the tree corresponding to any possible labeling of the points.

Proof that V CDim(DTk) < 2k+1: recall that a function from DTk can divide the
input space into at most 2k intervals. Consequentially, the pigeonhole principle
tells us that, given 2k + 1 points, at least one interval must contain two points no
matter which function we are considering. This implies that no function in DTk
can shatter 2k + 1 points, since every function in the class will contain an interval
with more than one point and thus cannot assign different labels to those points.
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(c) (5 points) Now consider a concept class DT∞ consisting of all decision trees of
unbounded depth where the function at each node is an element of T . Give the
VC dimension of DT∞, and prove that your answer is correct.

We will show that V CDim(DT∞) =∞.

Proof: For all positive integers m, given m points, we can construct a tree of
height dlog2(m)e that places each point in a separate interval, thus allowing the
set of points to be shattered. Since there is no limit to how deep the tree can be
constructed, we can therefore shatter any number of points.
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(d) (7 points) Assume that you are given a set S of m examples that are consistent
with a concept in DTk. Give an efficient learning algorithm that produces a
hypothesis h that is consistent with S.

Note: The hypothesis you learn, h, does not need to be in DTk. You can
represent it any way you want.

Let S = {(x1, y1), . . . (xm, ym)} be the set of the m examples after we sorted it
based on the values of the xis. That is, x1 ≤ x2 ≤ . . . xm.

We create a list of interval boundaries in the following way: we place a bound-
ary between two points with a different label. We represent the set of intervals
determined by the set S as a set of pairs (bi, yi), where bi is the lower end of the
interval and yi is the label for that interval. Formally:

• Initialize list of interval boundaries I = [(−∞, y1)]
• for i = 1 . . .m− 1:

◦ if yi 6= yi+1:

∗ add (xi+xi+1

2
, yi+1) to I

The set I is the hypothesis learned by our algorithm.

To classify a x, find the boundary with the largest bi such that bi ≤ x. and assign
x the label yi. Note that this way it is clear that the hypothesis I is consistent
with the training set S.

Since the set S of examples given is known to be consistent with a function in
DTk, at most 2k intervals will be constructed. Building the hypothesis can thus be
done in O(m logm) (assuming an efficient sorting algorithm is used). Classifying
new points can be accomplished in O(k) time if binary search is used.

(e) (6 points) Is the concept class DTk PAC learnable? Explain your answer.

Yes. Any hypothesis class with a finite VC dimension is PAC Learnable.
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Neural Networks [25 points]

Consider the following set S of examples over the feature space X = {X1, X2}. These
examples were labeled based on the XNOR (NOT XOR) function.

X1 X2 y∗ (Label)

0 0 1
0 1 0
1 0 0
1 1 1

(a) (4 points) The set of 4 examples given above is not linearly separable in the
X = {X1, X2} space. Explain this statement in one sentence.

It means that there exists no triple of real numbers (w1, w2, b) such that for all
labeled examples (X1, X2, y

∗) given, we have that: y∗(w1X1 + w2X2 + b) > 0.

(b) (6 points) Propose a new set of features Z = {Z1, . . . Zk} such that in the Z
space, this set of examples is linearly separable.

i. Define each Zi as a function of the Xis.

There are many such mappings, and any reasonable mapping that results in
linearly separable data is acceptable. One such mapping is :-

Z1 = ¬X1 ∧ ¬X2, Z2 = X1 ∧X2

ii. Write down the set of 4 examples given above in the new Z space.

Following the same order of examples as in the table above, we get:

Z1 Z2 y∗ (Label)

1 0 1
0 0 0
0 0 0
0 1 1
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iii. Show that the data set is linearly separable. (Show, don’t just say that it is
separable.)

Given the definition of linear separability in (a), we need to provide a triple
(w1, w2, b) that linearly separates the points in the Z space. We note that
in the Z space the target function is a disjunction Z1 ∨ Z2 and therefore one
such triple is (w1 = 1, w2 = 1, b = −0.5).
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(c) (5 points) Now consider running the set S of examples presented above in the
space X through a neural network with a single hidden layer, as shown in the
figure below.

Note that numbers on the edges correspond to weights and the arrows into the
units indicate the bias term. Recall that the output of a node (denoted by the
terms inside the nodes in the graph e.g. a1, a2, y) in the neural network is given
by f(wTx+ b), where x is the input to the unit, w are the weights on the input,
b is the bias in the unit, and f is the activation function.

For the sake of simplicity, assume that the function sgn(x) (sgn(x) = 1 if x ≥ 0,
0 otherwise) is used as the activation function at all the nodes of the network.

Which of the following sets of weights guarantees that the neural network
above is consistent with all the examples in S? (That is, the 0-1 loss is 0).

The correct set of weights is (3)
{option (1) | option (2) | option (3)}

Options:

Options w11 w21 b1 w12 w22 b2 v1 v2 u

1 1 0 - 0.5 0 1 - 0.5 - 1 - 1 0.9
2 1 1 0.5 - 1 - 1 2.5 0 - 1 0.5
3 1 1 - 0.5 - 1 - 1 1.5 - 1 - 1 1.5

To show that the neural network is consistent with that dataset, one needs to
run each example through the neural network, and check that the output of the
neural network matches with the true label. We show this for option (3) below.
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X1 X2 a1 a2 y y∗ (Label)

0 0 0 1 1 1
0 1 1 1 0 0
1 0 1 1 0 0
1 1 1 0 1 1
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(d) (10 points) We now want to use the data set S to learn the neural network
depicted earlier.

We will use the sigmoid function, sigmoid(x) = (1 + exp−x)−1, as the activation
function in the hidden layer, and no activation function in the output layer
(i.e. it’s just a linear unit). As the loss function we will use the Hinge Loss:

Hinge loss(w, x, b, y*) =

{
1− y∗(wTx+ b), if y∗(wTx+ b) > 1

0, otherwise

Write down the BackPropagation update rules for the weights in the output
layer (∆vi), and the hidden layer (∆wij). By definition, we have that:

vt+1
i = vti + ∆vi

and
wt+1

ij = wt
ij + ∆wij

where the updates are computed by:

∆vi = −η∇vi

and
∆wij = −η∇wij

We now need to compute the derivatives. First, assuming no activation function
on the output layer, we get that:

∇vi =

{
−y∗ai, if y∗y > 1

0, otherwise

and:

δi =

{
−y∗vi, if y∗y > 1

0, otherwise

And, assuming the sigmoid function as the activation function in the hidden layer,
we get:

∇wij = δjaj(1− aj)xi
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Short Questions [25 points]

(a) (10 points) In this part of the problem we consider Adaboost. Let Dt be the
probability distribution in the tth round of Adaboost, ht be the weak learning
hypothesis learned in the tth round, and εt its error.

i. Denote by Dt(i) the weight of the ith example under the distribution Dt. Use
it to write an expression for the error εt of the AdaBoost weak learner in the
tth round.

Let S be the set of all examples. We denote by [a] the characteristic function
that returns 1 if a is true and 0 otherwise. Then, the error is defined as the
total weight, under Dt, of the examples ht misclassifies:

εt = ErrorDt(ht) =
∑
i∈S

Dt(i)[ht(i)¬ = y(i)]

ii. Consider the following four statements with respect to the hypothesis at
time t, ht. Circle the one that is true, and provide a short explanation.

A. ∀t, ErrorDt(ht) = ErrorDt+1(ht)

B. ∀t, ErrorDt(ht) > ErrorDt+1(ht)

C. ∀t, ErrorDt(ht) < ErrorDt+1(ht)

D. The relation between ErrorDt(ht) and ErrorDt+1(ht) cannot be deter-
mined in general.

Explanation: The right option is C. Consider the set of examples that are
misclassified by ht. On the left hand side we have an expression that gives
the total weight of these examples under Dt. On the right hand side we have
an expression that gives the total weight of the same set of examples under
Dt+1. However, Adaboost reweighs each example e that is misclassified by ht
so that Dt+1(e) > Dt(e), resulting in C being correct.

Note also that we know that the value of the left hand side is less than 1/2,
by the weak learning assumption, and it can be shown (but not needed as
part of the explanation) that the value of the right hand side is exactly 1/2.
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(b) (10 points) We consider Boolean functions in the class L10,20,100. This is the
class of 10 out of 20 out of 100, defined over {x1, x2, . . . x100}.
Recall that a function in the class L10,20,100 is defined by a set of 20 relevant
variables. An example x ∈ {0, 1}100 is positive if and only if at least 10 out these
20 are on.

In the following discussion, for the sake of simplicity, whenever we consider a mem-
ber in L10,20,100, we will consider the function f in which the first 20 coordinates
are the relevant coordinates.

i. Show that the perceptron algorithm can be used to learn functions in the
class L10,20,100. In order to do so,

A. Show a linear threshold function h that behaves just like f ∈ L10,20,100 on
{0, 1}100.
f is determined by a bias terms b = −10, and a weight vectors w ∈ R100

so that wi = 1, for i = 1, 2, . . . 20, and wi = 0 otherwise.
It is easy to see that w · x+ b > 0 iff f(x) = 1

B. Write h as a weight vector that goes through the origin and has size (as
measured by the L2 norm) equal to 1.

To represent h as a weight vector that goes through the origin we represent
the example now as x′ = (x, 1) ∈ {0, 1}101 and the weight vector as
w′ = (w, b) ∈ R101. We note that w · x + b = w′ · x′. To make sure that
h has L2 norm that is equal to 1, we normalize it by dividing (w, b) by
||(w, b)||2 =

√
20 + 100.
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ii. Let R be the set of 20 variables defining the target function. We consider the
following two data sets, both of which have examples with 50 on bits.

D1 : In all the negative examples exactly 9 of the variables in R are on;
in all the positive examples exactly 11 of the variables in R are on.

D2 : In all the negative examples exactly 5 of the variables in R are on;
in all the positive examples exactly 15 of the variables in R are on.

Consider running perceptron on D1 and on D2. On which of these data sets
do you expect Perceptron to make less mistakes?

Perceptron will make less mistakes on the data set

{D1 | D2}

Perceptron will make less mistakes on D2 since the margin of this data set is
larger than that of D1.

iii. Define the margin of a data set D with respect to weight vector w.

γ = min||w||2=1|yw · x|

Explain your answer to (ii) using the notion of the margin.
Formally we can appeal to Novikoff’s bound, assuming that, w.l.o.g., R will
be the same, since the mistake bound of perceptron is lower bounded by
R2/γ2.
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(c) (5 points) Let f be a concept that is defined on examples drawn from a distri-
bution D. The “true” error of the hypothesis h is defined as

ErrorD(h) = Prx∈D (h(x) 6= f(x)) .

In the class, we saw that the true error of a classifier is bounded above by two
terms that relate to the training data and the hypothesis space. That is

ErrorD(h) < A + B

What are A and B? (If you do not remember the exact functional forms of these
terms, it is sufficient to briefly describe what they mean.)

A is the training error of h.

B is a term that bounds how much will the true error of h deviate from the
observed (training) error of h. This term scales proportionally with the VC di-
mension of the hypothesis space H, and is inversely proportional to the number
of training examples.
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Appendix

(a) Entropy(S) = −p+log2(p+)− p−log2(p−)

(b) Gain(S, a) = Entropy(S)−
∑

v∈values(a)

|Sv|
|S|

Entropy(Sv)

(c) sgn(x) =

{
1, if x ≥ 0

0, if x < 0

(d) sigmoid(x) =
1

1 + exp−x

(e)
∂

∂x
sigmoid(x) = sigmoid(x)

(
1− sigmoid(x)

)
(f) ReLU(x) = max(0, x)

(g)
∂

∂x
ReLU(x) =

{
1, if x > 0

0, otherwise

(h) tanh(x) =
ex − e−x

ex + e−x

(i)
∂

∂x
tanh(x) = 1− tanh2(x)

(j) Zero-One loss(y, y∗) =

{
1, if y 6= y∗

0, if y = y∗

(k) Hinge loss(w, x, b, y*) =

{
1− y∗(wTx+ b), if y∗(wTx+ b) > 1

0, otherwise

(l)
∂

∂w
Hinge loss(w, x, b, y*) =

{
−y∗(x), if y∗(wTx+ b) > 1

0, otherwise

(m) Squared loss(w, x, y∗) =
1

2
(wTx− y∗)2

(n)
∂

∂w
Squared loss(w, x, y∗) = x(wTx− y∗)
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