
CS446: Machine Learning Fall 2015

October 27th, 2015

• This is a closed book exam. Everything you need in order to solve the problems is
supplied in the body of this exam.

• This exam booklet contains four problems. You need to solve all problems to get
100%.

• The exam ends at 1:45 PM. You have 75 minutes to earn a total of 100 points.

• Answer each question in the space provided. If you need more room, write on the
reverse side of the paper and indicate that you have done so.

• Besides having the correct answer, being concise and clear is very impor-
tant. For full credit, you must show your work and explain your answers.

Good Luck!

Name (NetID): (1 Point)

Short Questions /29
Kernels /25
Online Learning /25
Decision Trees /20

Total /100
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Short Questions [29 points]

(a) (5 points) In the following definition of PAC learning we left a few blank fields.
Fill in the blanks by choosing, for each empty field, one of the options given below.
Note that under each line defining a blank we provided a small set of options for
you to choose from.

(a) δ (b) ε (c) 1/δ (d) 1/ε (e) 1− δ (f) 1− ε
(g) m (h) n (i) nε/δ (j) size(H)

(k) number of examples (l) instance size (m) computation time

(n) linear (o) polynomial (p) exponential

(q) 1
2
− γ (r) 1

2
+ γ (s) 1− γ

A concept class C defined over the instance space X (with instances of length n) is
strongly PAC learnable by learner L using a hypothesis space H if for all concepts
f ∈ C, for all distributions D on X, and for all fixed δ, ε ∈ [0, 1], given a sample of
m examples sampled independently according to the distribution D, the learner
L produces with a probability

{at least | at most | equal to} {one of (a) to (f)}

a hypothesis g ∈ H with error
{at least | at most | equal to} {one of (a) to (f)}

where the
{one of (k) to (m)}

is
{one of (n) to (p)}

in

, , , and
{four of (a) to (j)}

.

(b) (8 points) Consider the following algorithm B for functions in C. B has
the property that given any polynomial size sample of m labeled examples
{(x1, c(x1)), . . . (xm, c(xm))} according to some c ∈ C, B outputs a hypothesis
h ∈ H that is incorrect on at most one of the m examples.

Then, the concept class C
{PAC learnable | not PAC learnable}

.

Justify your answer.
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(c) (8 points)

In this question we consider the Winnow algorithm.

(1) In class we proved that Winnow can learn k-monotone disjunctions over a
domain of n variables. State the upper bound on the number of examples
Winnow will make.

(2) We consider a learning problem of the domain X = {1, 2, . . . , N}d. A d-
dimensional hyper-rectangle over this domain X is a subset c ⊆ X defined
by 2d values: 1 ≤ ai ≤ bi ≤ N , for i = 1, . . . , d.
The subset is

c = {(x1, . . . , xd) ∈ X : ai ≤ xi ≤ bi∀i = 1, . . . , d}.

Let RECT denote the class of all such d-dimensional hyper-rectangles over
X.

i. Show that you can use Winnow to learn the concept class RECT. Justify
your answer.

ii. What is the mistake bound of your algorithm? Explain.
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(d) (8 points) We define a set of concepts

H = {sgn(ax2 + bx+ c); a, b, c,∈ R},

where sgn(z) is 1 when z is positive, and 0 otherwise. What is the VC dimension
of H? Prove your claim.
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Kernels [25 points]

In this question we will define kernels, study some of their properties and develop one
specific kerenl.

(a) (1 point) Choose one of the options below:
A function K(x, z) is a valid kernel if it corresponds to an

{”inner(dot) product” | ”sum”}
in some feature space, between feature rep-

resentations that correspond to x and z.

(b) (12 points) In the next few questions we guide you to prove the following prop-
erty of kernels:

Linear Combination Property: if ∀i, ki(x, x
′) are valid kernels, and ci > 0 are

constants, then k(x, x′) =
∑

i ciki(x, x
′) is a valid kernel.

i. Given a valid kernel k1(x, x′) and a constant c > 0, use the definition in(a)
to show that k(x, x′) = ck1(x, x′) is also a valid kernel.

ii. Given valid kernels k1(x, x′) and k2(x, x′), use the definition in (a) to show
that k(x, x′) = k1(x, x′) + k2(x, x′) is also a valid kernel.
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iii. Conclude that the Linear Combination Property holds.
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(c) (12 points) In order to learn functions over sets, we represent sets as feature
vectors in an n dimensional space, and define a kernel in this space. Our instances
are all subsets of a set S, of size |S| = m. The n dimensional feature representation
of A ⊆ S is:

ϕ(A) = (φU1(A), φU2(A), . . . , φUn(A)),

where U1, U2, . . . , Un are all the subsets of S, and the coordinates are defined using
the following feature mapping function:

φU(A) =

{
1, if U ⊆ A

0, otherwise.

That is, ϕ(A) ∈ {0, 1}n, where n = 2m.

Let A,B be subsets of S. We define the kernel

K(A,B) = ϕ(A)>ϕ(B).

Show that K(A,B) can be computed in time that is polynomial in m.
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On-Line Learning [25 points]

In this problem we will consider a few variations of the Perceptron Learning algorithm
and their properties. Recall the perceptron algorithm,

1: for (x, y) ∈ {xi, yi}Ti=1 do
2: if y(wᵀx) ≤ 0 then
3: w′ ← w + ηyx
4: w ← w′

5: end if
6: end for
7: return w

(a) (10 points) Suggest a variation of the preceptron update rule (line 3) which has
the following property:

If the algorithm sees two consecutive occurrences of the same example, it will never
make a mistake on the second occurrence.

(Hint: determine an appropriate learning rate that guarantees this property).
Your work will result in one of the options below.
Which one?

{one of (a) to (d)}

(a) η ≥ 1−y(wᵀx)
‖x‖2+1

(b) η ≤ −y(wᵀx)
‖x‖2+1

(c) η ≤ −y(wᵀx)
‖x‖2 (d) η ≥ −y(wᵀx)

‖x‖2

Prove that your proposed variation satisfies the property stated above (that is,
show how you derive the learning rate you chose).
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(b) (5 points) Consider the following variant of perceptron: Instead of returning w
in line 7, return w

‖w‖ .

Choose one of the following options and justify your answer: The decision bound-
ary of the variant and the standard perceptron are

{same | different}
because:

(c) (5 points) Consider the following variant of perceptron: Following each mistake,
instead of the usual update in line 3, perform the following update,

w′ ← w + ηyx

‖w + ηyx‖
.

Choose one of the following options and justify your answer: The decision bound-
ary of the variant and the standard perceptron are

{same | different}
because:
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(d) (5 points) Derive the SGD update for the SVM algorithm, which has the follow-
ing loss:

‖w‖2 +
M∑
i=1

max(0, 1− yi(w
ᵀxi))

(disregard the single point where the objective function is not differentiable. )
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Decision Trees [20 points]

(a) (10 points) Let x be a vector of n Boolean variables and let k ≤ n be an integer.
We define the class Pk of k-parity functions over the n variables. A k-parity
function fS is defined as follows: a set S ⊆ {x1, . . . , xn} is chosen such that
|S| = k. Let x = (x1, x2, . . . xn) ∈ {0, 1}n. Then fS(x) = 1 iff an odd number of
variables in S are set to 1 in x.

Example: Let n = 3 and consider functions in P2. Let S = {x1, x2}. Then
fS(100) = fS(101) = fS(010) = fS(011) = 1, and fS(000) = fS(001) = fS(110) =
fS(111) = 0.

i. Fix S ⊆ {x1, . . . , xn}, and assume that you are using ID3 to learn a decision
tree from data that is consistent with fS. Consider two variables, x1, x2 such
that x1 ∈ S and x2 6∈ S. Which of these variables is more likely to be the
root of the decision tree for fS?

{x1 ; x2}
Justify your answer:

ii. Consider fS ∈ Pk. State the depth of the smallest possible consistent decision
tree for fS in terms of n and k. Describe the shape of the decision tree for
fS.
Justify your answer.

11



(b) (10 points) Assume that you are using an implementation of ID3 that takes
an upper bound on the depth of the output decision tree as a parameter. You
will use this implementation of ID3 to learn from a dataset Dtrain, compute the
empirical error, and then evaluate the learned tree on a test set Dtest. You will
learn two trees, Tk, learned with bound k on the depth, and Tm, learned with a
depth bound m.
Assume k < m. (But note that we say nothing about the size of k; it could be a
very small number or a very large number).

i. Which tree, Tk or Tm, is likely to have larger empirical error (that is, error
on Dtrain)?

{Tk ; Tm ; impossible to tell}
Justify your answer:

ii. Which tree, Tk or Tm, is likely to have larger error when tested on Dtest?

{Tk ; Tm ; impossible to tell}
Justify your answer:
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